
Effort-Index-Based Software Reliability Growth Models and 
Performance Assessment 

Chin-Yu Huangl, Sy-Yen Kuo*, and Michael R. L p * *  
* *  

*Department of Electrical Engineering Computer Science & Engineering Department 
National Taiwan University 

Taipei, Taiwan 
sykuo@cc.ee.ntu.edu. tw 

Abstract 

In this paper, we first show that the logistic testing- 
efort function is practically acceptabldhelpfl for 
modeling sojhvare reliability growth and providing a 
reasonable description of resource consumption. 
Therefore, in addition to the exponential-shaped models, 
we will integrate the logistic testing-efortjimction into S- 
shaped model for further analysis. The model is 
designated as the Yamada Delayed S-shaped model. A 
realistic failure data set is used in the experiments to 
demonstrate the estimation procedures and results. 
Furthermore, the analysis of the proposed model under 
imperfect debugging environment is investigated. In fact, 
from these Experimental results and discussions, it b 
apparent that the logistic testing-effort function is well 
suitable for making estimations of resource consumption 
during the sofiware developmendtesting phase. 

1. Introduction 

The complexity and size of a computer system have 
grown dramatically for the past two decades. The growing 
trend of software criticality has generated more researches 
into the field of high-quality software development. In 
highly complex modem software systems, reliability is the 
most important factor since it quantifies software failures 
during the process of software development and software 
quality control. Software reliability is the probability that 
a given software will be functioning without failure in a 
given environment during a specified period of time [ 1-31. 
A common approach for measuring software reliability is 
by using an analytical model whose parameters are 
generally estimated from available data on software 
failures [l-91. In the field of software reliability modeling, 
the span of time may be considered as calendar time, clock 
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time, and execution time. Musa et al. [2-31 and Ohba [6] 
showed that the effort index or the execution time is a 
better time domain for software reliability modeling than 
the calendar time because the shape of observed reliability 
growth curve depends strongly on the time distribution of 
the testing-effort. Unfortunately, most papers assumed 
that the consumption rate of besting resource expenditures 
during the testing phase is a constant or even do not 
consider such testing effort. If the effort index data or 
execution-time-based data are available in the actual 
observed data set, software reliability models should be 
developed by incorporating the testing-effort functions in 
real development environment [2-3, 6-7, 14-16]. In this 
paper, we will first review ii SRGM based on the Non- 
Homogeneous Poisson Process (NHPP) which 
incorporates a logistic testing-effort function. We show 
some equations to describe the mathematical properties of 
this model. Besides, in order to demonstrate the 
applicability/superiority of the logistic testing-effort 
function and make fair comparisons with other 
conventional software reliability growth models, we thus 
try to integrate the logistic testing-effort function into the 
S-shaped model, particularly the Yamada S-shaped 
software reliability growth model. Experiments have been 
performed based on real testldebug data sets and the results 
show that the proposed SRGM with logistic testing-effort 
function is a simple and compact model and can estimate 
the number of initial faults better than previous models. In 
addition, the analysis of the proposed model under 
imperfect debugging environment is also investigated. 
From these experimental results and discussions, it is 
apparent that the extended model to incorporate imperfect 
debugging is isomorphic to the original model we 
proposed in this paper. 

In the remaining of the paper, there are four more 
sections. We investigate how to incorporate logistic 
testing-effort function into the exponential-shaped and the 
S-shaped software reliability growth modeling in section 
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2. The applications of these models to actual tesddebug 
data set are discussed in section 3. Besides, the 
imperfect-debugging problem based on the proposed 
model is discussed in section 4. Finally, section 5 gives 
some concluding remarks on the results obtained. 

2. Software reliability growth modeling and 
testing-effort function 

2.1 SRGM with logistic testing-effort function 

In this section, we will first review logistic testing- 
effort functions. During the software-testing phase, 
significant test-effort is required, such as the number of 
test cases, human power, and CPU time. As usual, the 
test-effort during the testing phase and the time-dependent 
behavior of development effort in the software 
development process can be described by a Weibull-type 
consumption curve, see Yamada et al. [lo-131. In fact, 
since actual testing-effort data represent various 
expenditure patterns, sometimes the testing-effort 
expenditures are difficult to be described by only an 
exponential or a Rayleigh curve. Although the Weibull- 
type curve can fit the data well under general software 
development environment, however, it will have an 
extreme peak work rate when the shape parameter m 2 3. 
That is, when m=3, 4, and 5, we can find that these 
testing-effort curves have an apparent peak point (i.e. 
non-smoothly increasing and degrading consumption 
curve) during the software development process [ 14- 161. 
This fact seems not so realistic because it is not commonly 
used to interpret the actual software developmenthest 
process and may not be suitable for modeling the test effort 
consumption curve. Therefore, we will use a logistic 
testing-effort function instead of the Weibull-type testing- 
effort consumption function as the testing-effort k c t i o n  
to describe the test effort patterns during the software 
development process. This function differs from the 
Weibull-type function described in the above subsection 
and was used to derive the resource consumption curve of 
a software project over its life cycle and predict the future 
costs/schedules [14-161. It is a dynamic model since the 
resource consumption is estimated from a set of variables 
that are interdependent. Besides, DeMarco also reported 
that this function was fairly accurate in the Yourdon 
1978- 1980 project survey [ 171. The cumulative testing- 
effort consumption of logistic testing-effort function in 
time (0, t]  is depicted in the following: 

N 

1 + A exp[-at] 
W ( t )  = ( 1 )  

where N is the total amount of testing effort to be 
eventually consumed, a is the consumption rate of 
testing-effort expenditures, and A is a constant. 

Therefore, the current testing-effort expenditures at testing 
time t are given by 

We can see that the w(t) is a smooth bell-shaped function 
and its left side is tailed. Besides, the w(f) reaches its 
maximum value at time 

InA 
tm, =- a 

This basic SRGM is based on the following assumptions: 
1. The fault removal process follows the Non- 

Homogeneous Poisson Process ("P). 
2. The software system is subject to failures at random 

times caused by faults remaining in the system. 
3. The mean number of faults detected in the time 

interval ( f ,  t+Af] by the current test-effort is 
proportional to the mean number of remaining faults 
in the system. 
The proportionality is a constant over time. 
The consumption curve of testing effort is modeled 
by a logistic testing-effort function. 
Each time a failure occurs, the fault that caused it is 
immediately removed, and no new faults are 
introduced. 

4. 
5 .  

6. 

Therefore, we can describe the mathematical expression of 
a testing-effort-based as the following: 

dm(f)  1 
r x [ U  - m(t) ]  , u>O, O<r< 1 (4) x-= 

dt w(f )  
that is, 

-- dm.(f) - w(t)  x r x [U - m(t ) ]  
df 

Solving the above differential equation under the boundary 
condition m(O)=O (i.e., the mean value function m(f)  must 
be equal to zero at time 0), we have 

where m(t) is the expected mean number of faults detected 
in time (0, t], w(t) is current testing-effort consumption at 
time t, a is the expected number of initial faults, and r is 
error detection rate per unit testing-effort at testing time I 
that satisfies r >O. 

2.2 Yamada S-shaped model with logistic testing- 
effort function 

The Delayed S-shaped SRGM was originally proposed 
by Yamada et at. [6-7, 12-13] and was a simple 
modification of the NHPP to obtain an S-shaped growth 
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curve for the cumulative number of failures detected. This 
model's software fault detection process can be viewed as 
a learning process that the software testers become familiar 
with the testing environments and tools as time progresses, 
these testers' skills gradually improve and then level off as 
the residual faults become more difficult to uncover [I, 6- 
7, 12-13]. Because the original S-shaped model is for the 
analysis of fault isolation data, i.e. the testing process 
contains not only a fault detection process, but also a fault 
isolation process. Following the similar steps described in 
subsection 2.1, we can get the following relationship 
between m(t) and w(t) for an extended Yamada S-shaped 
software reliability model: 

I I I 

Yamada Delayed S- 374.05 0.197651 4.48 368.67 
Shaped Model 
Delayed S model 338.136 0.10004 5.54 242.79 
with Logistic TEF 
Delayed S model 459.08 0.0273367 28.23 268.42 
with Rayleigh TEF 
G-0  Model 760.00 0.0322688 112.29 139.82 
Inflection S-Shaped 389.10 0.0935493 8.69 333.53 
Model 

(8) 
dg(0 1 -x- = E x [ f ( t )  - g(t)] 

dt w(t)  
wheref(t) is the cumulative number of failures detected up 
to t and g(r)  is the cumulative number of failures isolated 
up to t. 
Solving Eq. (7) and Eq. (8) under the boundary condition 
AO) = g(0) = 0, we have 

(9) 
where m is the failure detection rate. 
And 

1 g(t) = a[l- -(me-sW*(z) --Ee-w*('))] (10) 
W --E 

where E is the failure isolation rate. 

By assuming the fault detection rate parameter the fault 
isolation rate parameter ( E )  Z the fault detection rate 
parameter ( P ), the NHPP model with a Delayed S-shaped 
growth curve of detected software faults is: 

m(c) = a(1 - (1 + V / ( W ( Z )  - W(O)) x e -V(W)-W(ON ) 

= a(1- (1 + w*(z)) x e-vv*(f) ) (1 1) 
where v / =  fault detection rate per unit testing-effort at 
testing time t that satisfies v BO. 

3. Numerical examples 

The data set analyzed here is from a study by Ohba [6]. 
The total cumulative number of detected faults after a long 
period of testing is 358 and this value can be used as an 
additional comparison criterion. Through using the 
methods of MLE and LSE, these estimated parameters of 
the logistic tesiing-effort function are N=54.8364, 
A=13.0334, and ~ ~ 0 . 2 2 6 3 3 7 .  Table 1 shows the estimated 
parameters of Eq. (6), comparisons with the estimated 
initial faults a, and MSF of other general SRGMs. In 

addition, the testing effort function reaches the maximum 
at time ~ 1 1 . 3 4 3 8  weeks which corresponds to w(t)= 
3.10288 CPU hours and W(t)=23.5107 CPU hours. 
Furthermore, the number of faults removed up to this time 
tmaX is 245.421. Fig. l(a) graphically shows the actual 
fitting number of software faults, the mean value function 
of Eq. (6), and the 90% upper and lower confidence 
bounds vs. test time. It shows that the variation in m(t) 
constantly increases with time f and eventually becomes a 
constant. The observed failure data and the fitted curve for 
the extended S-shaped model with logistic testing-effort 
function are plotted in Fig. I(b). From these figures, the 
testers can use the results to estimate the number of 
additional tests to run and the additional amount of 
resources needed to reach the given objective, and such 
information are more useful them those based on historical 
data. Besides, fiom the information provided by Fig. l(a), 
(b) and Table 1, we can see that the model in Eq. (6) gives 
a better fit to the observed data than the Delayed S-shaped 
model with logistic testing-effort function does. Moreover, 
according to the study in [6], even the Delayed S-shaped 
model does not fit the observed data well when the testing 
effort spent on failure detectioi~/isolation is not a constant. 
But by integrating the testing-effort function we proposed 
into the Delayed S-shaped soltware reliability model, we 
can find that the extended Delayed S-shaped model with 
logistic testing-effort function has smaller AE and MSF 
than with Rayleigh testing-efbrt functions from Table 1. 
From these figures and comparison results, we can 
conclude that the advantage of logistic testing-effort 
function is the applicability to various kinds of models and 
it can yield better predictions for other reliability metxics. 
It means that the logistic testing-effort function we 
proposed is really good enough to give a more accurate 
description of resource consumption during the software 
development phase. 

Table 1: Comp.arison results. 

Model r(or v3 A E  (%) MSF 
SRGM with Logistic 394.076 0.0427223 10.06 118.29 

333.18 0.100415 6.93 798.49 SRGM with 
avleith TEF 

ii,- Modei ~ i U r(or v3 AE (%) MSF 
SRGM with Logistic 394.076 0.0427223 10.06 118.29 

IIExponential Model 1455.371 (0.0267368( 27.09 I 206.93 11 
AE = Accuracy of Estimation 
MSF = Mean of Square fitting Faults 
TEF = Testing-Effort Function 
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Figure l(a): Mean value function m(t) of Eq. (6) 
and the 90% confidence bounds vs. time. 

Number of Failures 

' d  350 - 
3 0 0 ,  

250 

200 

'imelwreksi 
0 2.5 5 7.5 10 12.5 1 5  17 .5  

Figure 1 (b): Mean value function m(t) of Eq. (1 1) and 
the 90% confidence bounds vs. time. 

4. Investigation of imperfect debugging 

4.1 Modeling SRGM with logistic testing-effort 
function under imperfect debugging environment 

From our studies [l-31, different SRGMs make 
different assumptions and therefore can be applied to 
different situations. Most SRGMs published in the 
literature assume that each time a failure occurs, the error 
that caused it is immediately removed and no new errors 
are introduced. Besides, some people also assume that the 
correction of an error takes only negligible time and an 
error detected is removed with certainty [18-201. These 
assumptions help to reduce the complexity of modeling 
software reliability growth [21-241. In this section, we 
plan to incorporate a relaxation of the above assumption in 
order to make the SRGMs more realistic and practical. 
Specially, the software reliability growth model with a 
logistic testing-effort function under the imperfect 
debugging environment can be illustrated. To show this, 
we modify the sixth assumption presented in Section 2: 

1. When a fault is detected and removed, it is possible to 
generate another one; 

2. When removing/fucing a detectedfault, the probability of 
introducing another fault i s  a constant p. 

Based on the assumptions (1) - (5)  described in Section 
2 and the above modified assumptions, we demonstrate the 
modified software reliability gr0wt.h model under 
imperfect debugging environment in detail. Due to the 
limitation of space, here we only use Eq. (6) as the 
estimated mean value function for describing the imperfect 
debugging. Similarly, the Eq. (1 1) can also be applied 
based on the same procedure. Rewriting the Eq. ( 5 )  as 

Here we propose a fault content function: 

( 1 3 )  n(t) = a + p x m ( t )  

Solving the above two differential equations, we have 
a 

m ( t )  = - x ( 1  - e 
1 - P  

) (14) 
-rx( I-p)x( W(f)-W( 0)) 

It is noted that the failure intensity function h( f )  is given by 

h(t) = anu(t)exp[-r(1-flW*(t)] (16) 
The expected number of remaining faults after testing time 
t is 

mrw"nin&t)  = n(t)-m(f) = a ( ~ ~ [ - r ( l - f l ~ * ( ~ ) l )  (17) 

It is clear that the above equation m,,,,,,g(t) is a 
monotonic decreasing function in testing time t. However, 
the above equations can represent the case where a fault is 
not successfully removed and new faults are introduced 
during the testingdebugging phase. Besides, the expected 
number of detected faults after an infinite amount of test 
time is 

m ( ~ ) = - e x ( l - ~ p [ - r ( l - f l - ] )  (18) 
NA 

1-a 1 + A  

4.2 Fitting imperfect debugging model to real 
software data set 

Using the proposed imperfect-debugging model, we 
now show a real numerical illustration for software 
reliability measurement. Here, in order to validate the 
imperfect-debugging model, the AE and MSF are selected 
as the evaluation criteria. Table 2 shows the estimated 
parameters of Eq. (14) and the comparison among the 
estimated initial faults a and MSF of different models 
presented. The observed data, estimated growth curves of 
the cumulative number of detected faults, and the 
introduced faults versus time are plotted in Figure 2. It 
shows that Eq. (14) fits this data set well. According to 
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Table 2, we found that the proposed imperfect debugging 
model has smaller AE and MSF. Furthermore, the 
extended model of Eq. (14) has a better fit to the observed 
data compared with other proposed imperfect debugging 
models. Hence, we can conclude that the fault removal 
process in the software developmenthesting environment 
may not be a pure perfect debugging process (the estimated 
fault introduction rate w.0149353 is close to zero but not 
a zero). However, if we ignore the impact of imperfect 
debugging, the original model in Eq. (6) still can have a 
better fit than other models even in the imperfect- 
debugging environment. The plot of estimated remaining 
fault content at testing time is shown in Figure 3. We can 
see that it decreases as time progresses but does not 
approach to zero. That is, some faults are eventually 
undetectedhemoved in the testing phase. Moreover, we 
note that fl can be pre-calculated fiom experiences or 
previous projects releases and the possible values of fl are 
listed in Table 2. From the simulation results, we know 
that the larger the fault introduction rate, the larger the 
fault detection rate and the smaller the number of initial 
faults. The simulation results reflect that the introduction 
of new faults during the correction process tends to be a 
minor effect in many development efforts if we apply our 
proposed model. The reason is that the derivations of 
logistic testing-effort function in its basic concepts already 
incorporate the human factors and uncertainties into 
consideration [14]. Therefore, we can conclude that the 
proposed model in Eq. (6) has the built-in flexibility and 
has been tested on real software failure data to show its 
applicability even if the assumption of perfect debugging 
is eliminated. In fact, in [22] they found that about 14 
percent of the errors detected and removed during the 
observation period were introduced as a result of imperfect 
debugging. They also supported the conjecture that the 
exponential SRGMs (particularly the G-0 model) still can 
be used in practice even when the assumption of perfect 
debugging does not hold [22, 251. Actually, in any case, 
the extended model to incorporate imperfect debugging in 
Eq. (14) is isomorphic to Eq. (6). 

. 

Table 2: Comparison results under the imperfect- 
debugging environment 

a r B II Original Mode' I 394.076 10.04272231 0.00 I 118.29 110.06 

E . 14 359.968 0.0457567 114.08 0.55 
E . 14 356.013 0.0462651 0.10 114.08 0.56 

Number of Failures 

7'1 

300 400  t 
200 I 
- Time I . .  . , 

2 . 5  5 7 . 5  10 121.5 15 11.5 20 

Figure 2: The cumulative number of observedl 
estimated failures vs. time. 

Number of Remaining Fault Content 

.--7---7 

loOll 

(Weeks) 

O I A - 1  Time (Weeks) 
0 2 . 5  5 7.5 10 12.5 1 5  17.5 

Figure 3: Expected number of remaining fault content. 

5. Conclusions 

In this paper, we have proposed a SRGM incorporating 
the logistic testing-effort f ic t ion that is completely 
different fiom the traditional Weibull-type curve. We 
show that the software reliability growth analysis based on 
the effort index is more accurate than that based on the 
calendar time data through several experiments on real 
data. The reason is that most software reliability growth 
curves are similar and depend on the distributions of the 
testing-effort expenditures in the real world. In addition to 
incorporating the logistic te sting-effort function into the 
exponential-shaped software reliability model, we also 
integrate this testing-effort function into the Yamada S-  
shaped software reliability model. The experimental 
results indicate that the proposed two models fits the real 
data set fairly well and gives us an exactheasonable 
description of fault detection process. Ohba [6] mentioned 
that Delayed S-shaped model does not fit the observed data 
well when the testing effort spent on failure detection/ 
isolation is not a constant. However, by integrating the 
testing-effort function into lhe Delayed S-shaped software 
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reliability model, we can find that the extended Delayed 
S-shaped model with logistic testing-effort function still 
has smaller AE and MSF than with Rayleigh testing-effort 
function. In addition, we also discuss the extended SRGM 
where the assumption of perfectly removing faults is not 
adopted. The simulation results reflect that the 
introduction of new faults during the correction process 
tends to be a minor effect in many development efforts 
since the derivations of logistic testing-effort function in 
the original basic concepts already incorporate the human 
factors into consideration. Therefore, the assumption of 
fault introduction rate being a constant over time in this 
model should be valid and reasonable. 
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