
Effort-Index-Based Software Reliability Growth Models and
Performance Assessment

Chin-Yu Huangl, Sy-Yen Kuo*, and Michael R. L p * *
* *

*Department of Electrical Engineering Computer Science & Engineering Department
National Taiwan University

Taipei, Taiwan
sykuo@cc.ee.ntu.edu. tw

Abstract

In this paper, we first show that the logistic testing-
efort function is practically acceptabldhelpfl for
modeling sojhvare reliability growth and providing a
reasonable description of resource consumption.
Therefore, in addition to the exponential-shaped models,
we will integrate the logistic testing-efortjimction into S-
shaped model for further analysis. The model is
designated as the Yamada Delayed S-shaped model. A
realistic failure data set is used in the experiments to
demonstrate the estimation procedures and results.
Furthermore, the analysis of the proposed model under
imperfect debugging environment is investigated. In fact,
from these Experimental results and discussions, it b
apparent that the logistic testing-effort function is well
suitable for making estimations of resource consumption
during the sofiware developmendtesting phase.

1. Introduction

The complexity and size of a computer system have
grown dramatically for the past two decades. The growing
trend of software criticality has generated more researches
into the field of high-quality software development. In
highly complex modem software systems, reliability is the
most important factor since it quantifies software failures
during the process of software development and software
quality control. Software reliability is the probability that
a given software will be functioning without failure in a
given environment during a specified period of time [1-31.
A common approach for measuring software reliability is
by using an analytical model whose parameters are
generally estimated from available data on software
failures [l-91. In the field of software reliability modeling,
the span of time may be considered as calendar time, clock

The Chinese University of Hong Kong
Shatin, Hong Kong

lyu@cse.cuhk. edu. hk

time, and execution time. Musa et al. [2-31 and Ohba [6]
showed that the effort index or the execution time is a
better time domain for software reliability modeling than
the calendar time because the shape of observed reliability
growth curve depends strongly on the time distribution of
the testing-effort. Unfortunately, most papers assumed
that the consumption rate of besting resource expenditures
during the testing phase is a constant or even do not
consider such testing effort. If the effort index data or
execution-time-based data are available in the actual
observed data set, software reliability models should be
developed by incorporating the testing-effort functions in
real development environment [2-3, 6-7, 14-16]. In this
paper, we will first review ii SRGM based on the Non-
Homogeneous Poisson Process (NHPP) which
incorporates a logistic testing-effort function. We show
some equations to describe the mathematical properties of
this model. Besides, in order to demonstrate the
applicability/superiority of the logistic testing-effort
function and make fair comparisons with other
conventional software reliability growth models, we thus
try to integrate the logistic testing-effort function into the
S-shaped model, particularly the Yamada S-shaped
software reliability growth model. Experiments have been
performed based on real testldebug data sets and the results
show that the proposed SRGM with logistic testing-effort
function is a simple and compact model and can estimate
the number of initial faults better than previous models. In
addition, the analysis of the proposed model under
imperfect debugging environment is also investigated.
From these experimental results and discussions, it is
apparent that the extended model to incorporate imperfect
debugging is isomorphic to the original model we
proposed in this paper.

In the remaining of the paper, there are four more
sections. We investigate how to incorporate logistic
testing-effort function into the exponential-shaped and the
S-shaped software reliability growth modeling in section

0-7695-0792-1100 $10.00 0 2000 IEEE
454

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

mailto:sykuo@cc.ee.ntu.edu

2. The applications of these models to actual tesddebug
data set are discussed in section 3. Besides, the
imperfect-debugging problem based on the proposed
model is discussed in section 4. Finally, section 5 gives
some concluding remarks on the results obtained.

2. Software reliability growth modeling and
testing-effort function

2.1 SRGM with logistic testing-effort function

In this section, we will first review logistic testing-
effort functions. During the software-testing phase,
significant test-effort is required, such as the number of
test cases, human power, and CPU time. As usual, the
test-effort during the testing phase and the time-dependent
behavior of development effort in the software
development process can be described by a Weibull-type
consumption curve, see Yamada et al. [lo-131. In fact,
since actual testing-effort data represent various
expenditure patterns, sometimes the testing-effort
expenditures are difficult to be described by only an
exponential or a Rayleigh curve. Although the Weibull-
type curve can fit the data well under general software
development environment, however, it will have an
extreme peak work rate when the shape parameter m 2 3.
That is, when m=3, 4, and 5, we can find that these
testing-effort curves have an apparent peak point (i.e.
non-smoothly increasing and degrading consumption
curve) during the software development process [14- 161.
This fact seems not so realistic because it is not commonly
used to interpret the actual software developmenthest
process and may not be suitable for modeling the test effort
consumption curve. Therefore, we will use a logistic
testing-effort function instead of the Weibull-type testing-
effort consumption function as the testing-effort k c t i o n
to describe the test effort patterns during the software
development process. This function differs from the
Weibull-type function described in the above subsection
and was used to derive the resource consumption curve of
a software project over its life cycle and predict the future
costs/schedules [14-161. It is a dynamic model since the
resource consumption is estimated from a set of variables
that are interdependent. Besides, DeMarco also reported
that this function was fairly accurate in the Yourdon
1978- 1980 project survey [171. The cumulative testing-
effort consumption of logistic testing-effort function in
time (0, t] is depicted in the following:

N

1 + A exp[-at]
W (t) = (1)

where N is the total amount of testing effort to be
eventually consumed, a is the consumption rate of
testing-effort expenditures, and A is a constant.

Therefore, the current testing-effort expenditures at testing
time t are given by

We can see that the w(t) is a smooth bell-shaped function
and its left side is tailed. Besides, the w(f) reaches its
maximum value at time

InA
tm, =- a

This basic SRGM is based on the following assumptions:
1. The fault removal process follows the Non-

Homogeneous Poisson Process ("P).
2. The software system is subject to failures at random

times caused by faults remaining in the system.
3. The mean number of faults detected in the time

interval (f , t+Af] by the current test-effort is
proportional to the mean number of remaining faults
in the system.
The proportionality is a constant over time.
The consumption curve of testing effort is modeled
by a logistic testing-effort function.
Each time a failure occurs, the fault that caused it is
immediately removed, and no new faults are
introduced.

4.
5 .

6.

Therefore, we can describe the mathematical expression of
a testing-effort-based as the following:

dm(f) 1
r x [U - m(t)] , u>O, O<r< 1 (4) x-=

dt w(f)
that is,

-- dm.(f) - w(t) x r x [U - m(t)]
df

Solving the above differential equation under the boundary
condition m(O)=O (i.e., the mean value function m(f) must
be equal to zero at time 0), we have

where m(t) is the expected mean number of faults detected
in time (0, t], w(t) is current testing-effort consumption at
time t, a is the expected number of initial faults, and r is
error detection rate per unit testing-effort at testing time I
that satisfies r >O.

2.2 Yamada S-shaped model with logistic testing-
effort function

The Delayed S-shaped SRGM was originally proposed
by Yamada et at. [6-7, 12-13] and was a simple
modification of the NHPP to obtain an S-shaped growth

455

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

curve for the cumulative number of failures detected. This
model's software fault detection process can be viewed as
a learning process that the software testers become familiar
with the testing environments and tools as time progresses,
these testers' skills gradually improve and then level off as
the residual faults become more difficult to uncover [I, 6-
7, 12-13]. Because the original S-shaped model is for the
analysis of fault isolation data, i.e. the testing process
contains not only a fault detection process, but also a fault
isolation process. Following the similar steps described in
subsection 2.1, we can get the following relationship
between m(t) and w(t) for an extended Yamada S-shaped
software reliability model:

I I I

Yamada Delayed S- 374.05 0.197651 4.48 368.67
Shaped Model
Delayed S model 338.136 0.10004 5.54 242.79
with Logistic TEF
Delayed S model 459.08 0.0273367 28.23 268.42
with Rayleigh TEF
G-0 Model 760.00 0.0322688 112.29 139.82
Inflection S-Shaped 389.10 0.0935493 8.69 333.53
Model

(8)
dg(0 1 -x- = E x [f (t) - g(t)]

dt w(t)
wheref(t) is the cumulative number of failures detected up
to t and g(r) is the cumulative number of failures isolated
up to t.
Solving Eq. (7) and Eq. (8) under the boundary condition
AO) = g(0) = 0, we have

(9)
where m is the failure detection rate.
And

1 g(t) = a[l- -(me-sW*(z) --Ee-w*('))] (10)
W --E

where E is the failure isolation rate.

By assuming the fault detection rate parameter the fault
isolation rate parameter (E) Z the fault detection rate
parameter (P), the NHPP model with a Delayed S-shaped
growth curve of detected software faults is:

m(c) = a(1 - (1 + V / (W (Z) - W(O)) x e -V(W)-W(ON)

= a(1- (1 + w*(z)) x e-vv*(f)) (1 1)
where v / = fault detection rate per unit testing-effort at
testing time t that satisfies v BO.

3. Numerical examples

The data set analyzed here is from a study by Ohba [6].
The total cumulative number of detected faults after a long
period of testing is 358 and this value can be used as an
additional comparison criterion. Through using the
methods of MLE and LSE, these estimated parameters of
the logistic tesiing-effort function are N=54.8364,
A=13.0334, and ~ ~ 0 . 2 2 6 3 3 7 . Table 1 shows the estimated
parameters of Eq. (6), comparisons with the estimated
initial faults a, and MSF of other general SRGMs. In

addition, the testing effort function reaches the maximum
at time ~ 1 1 . 3 4 3 8 weeks which corresponds to w(t)=
3.10288 CPU hours and W(t)=23.5107 CPU hours.
Furthermore, the number of faults removed up to this time
tmaX is 245.421. Fig. l(a) graphically shows the actual
fitting number of software faults, the mean value function
of Eq. (6), and the 90% upper and lower confidence
bounds vs. test time. It shows that the variation in m(t)
constantly increases with time f and eventually becomes a
constant. The observed failure data and the fitted curve for
the extended S-shaped model with logistic testing-effort
function are plotted in Fig. I(b). From these figures, the
testers can use the results to estimate the number of
additional tests to run and the additional amount of
resources needed to reach the given objective, and such
information are more useful them those based on historical
data. Besides, fiom the information provided by Fig. l(a),
(b) and Table 1, we can see that the model in Eq. (6) gives
a better fit to the observed data than the Delayed S-shaped
model with logistic testing-effort function does. Moreover,
according to the study in [6], even the Delayed S-shaped
model does not fit the observed data well when the testing
effort spent on failure detectioi~/isolation is not a constant.
But by integrating the testing-effort function we proposed
into the Delayed S-shaped soltware reliability model, we
can find that the extended Delayed S-shaped model with
logistic testing-effort function has smaller AE and MSF
than with Rayleigh testing-efbrt functions from Table 1.
From these figures and comparison results, we can
conclude that the advantage of logistic testing-effort
function is the applicability to various kinds of models and
it can yield better predictions for other reliability metxics.
It means that the logistic testing-effort function we
proposed is really good enough to give a more accurate
description of resource consumption during the software
development phase.

Table 1: Comp.arison results.

Model r(or v3 A E (%) MSF
SRGM with Logistic 394.076 0.0427223 10.06 118.29

333.18 0.100415 6.93 798.49 SRGM with
avleith TEF

ii,- Modei ~ i U r(or v3 AE (%) MSF
SRGM with Logistic 394.076 0.0427223 10.06 118.29

IIExponential Model 1455.371 (0.0267368(27.09 I 206.93 11
AE = Accuracy of Estimation
MSF = Mean of Square fitting Faults
TEF = Testing-Effort Function

456

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

Number of F a i l u r e s

. / 35011 /

' 300

250

200

' 300

250

200

T i m e (Weeks i
0 2 .5 5 7 . 5 1 0 1 2 . 5 1 5 17 .5

Figure l(a): Mean value function m(t) of Eq. (6)
and the 90% confidence bounds vs. time.

Number of Failures

' d 350 -
3 0 0 ,

250

200

'imelwreksi
0 2.5 5 7.5 10 12.5 1 5 17 .5

Figure 1 (b): Mean value function m(t) of Eq. (1 1) and
the 90% confidence bounds vs. time.

4. Investigation of imperfect debugging

4.1 Modeling SRGM with logistic testing-effort
function under imperfect debugging environment

From our studies [l-31, different SRGMs make
different assumptions and therefore can be applied to
different situations. Most SRGMs published in the
literature assume that each time a failure occurs, the error
that caused it is immediately removed and no new errors
are introduced. Besides, some people also assume that the
correction of an error takes only negligible time and an
error detected is removed with certainty [18-201. These
assumptions help to reduce the complexity of modeling
software reliability growth [21-241. In this section, we
plan to incorporate a relaxation of the above assumption in
order to make the SRGMs more realistic and practical.
Specially, the software reliability growth model with a
logistic testing-effort function under the imperfect
debugging environment can be illustrated. To show this,
we modify the sixth assumption presented in Section 2:

1. When a fault is detected and removed, it is possible to
generate another one;

2. When removing/fucing a detectedfault, the probability of
introducing another fault i s a constant p.

Based on the assumptions (1) - (5) described in Section
2 and the above modified assumptions, we demonstrate the
modified software reliability gr0wt.h model under
imperfect debugging environment in detail. Due to the
limitation of space, here we only use Eq. (6) as the
estimated mean value function for describing the imperfect
debugging. Similarly, the Eq. (1 1) can also be applied
based on the same procedure. Rewriting the Eq. (5) as

Here we propose a fault content function:

(1 3) n(t) = a + p x m (t)

Solving the above two differential equations, we have
a

m (t) = - x (1 - e
1 - P

) (14)
-rx(I-p)x(W(f)-W(0))

It is noted that the failure intensity function h(f) is given by

h(t) = anu(t)exp[-r(1-flW*(t)] (16)
The expected number of remaining faults after testing time
t is

mrw"nin&t) = n(t)-m(f) = a (~ ~ [- r (l - f l ~ * (~) l) (17)

It is clear that the above equation m,,,,,,g(t) is a
monotonic decreasing function in testing time t. However,
the above equations can represent the case where a fault is
not successfully removed and new faults are introduced
during the testingdebugging phase. Besides, the expected
number of detected faults after an infinite amount of test
time is

m (~) = - e x (l - ~ p [- r (l - f l -]) (18)
NA

1-a 1 + A

4.2 Fitting imperfect debugging model to real
software data set

Using the proposed imperfect-debugging model, we
now show a real numerical illustration for software
reliability measurement. Here, in order to validate the
imperfect-debugging model, the AE and MSF are selected
as the evaluation criteria. Table 2 shows the estimated
parameters of Eq. (14) and the comparison among the
estimated initial faults a and MSF of different models
presented. The observed data, estimated growth curves of
the cumulative number of detected faults, and the
introduced faults versus time are plotted in Figure 2. It
shows that Eq. (14) fits this data set well. According to

457

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

Table 2, we found that the proposed imperfect debugging
model has smaller AE and MSF. Furthermore, the
extended model of Eq. (14) has a better fit to the observed
data compared with other proposed imperfect debugging
models. Hence, we can conclude that the fault removal
process in the software developmenthesting environment
may not be a pure perfect debugging process (the estimated
fault introduction rate w.0149353 is close to zero but not
a zero). However, if we ignore the impact of imperfect
debugging, the original model in Eq. (6) still can have a
better fit than other models even in the imperfect-
debugging environment. The plot of estimated remaining
fault content at testing time is shown in Figure 3. We can
see that it decreases as time progresses but does not
approach to zero. That is, some faults are eventually
undetectedhemoved in the testing phase. Moreover, we
note that fl can be pre-calculated fiom experiences or
previous projects releases and the possible values of fl are
listed in Table 2. From the simulation results, we know
that the larger the fault introduction rate, the larger the
fault detection rate and the smaller the number of initial
faults. The simulation results reflect that the introduction
of new faults during the correction process tends to be a
minor effect in many development efforts if we apply our
proposed model. The reason is that the derivations of
logistic testing-effort function in its basic concepts already
incorporate the human factors and uncertainties into
consideration [14]. Therefore, we can conclude that the
proposed model in Eq. (6) has the built-in flexibility and
has been tested on real software failure data to show its
applicability even if the assumption of perfect debugging
is eliminated. In fact, in [22] they found that about 14
percent of the errors detected and removed during the
observation period were introduced as a result of imperfect
debugging. They also supported the conjecture that the
exponential SRGMs (particularly the G-0 model) still can
be used in practice even when the assumption of perfect
debugging does not hold [22, 251. Actually, in any case,
the extended model to incorporate imperfect debugging in
Eq. (14) is isomorphic to Eq. (6).

.

Table 2: Comparison results under the imperfect-
debugging environment

a r B II Original Mode' I 394.076 10.04272231 0.00 I 118.29 110.06

E . 14 359.968 0.0457567 114.08 0.55
E . 14 356.013 0.0462651 0.10 114.08 0.56

Number of Failures

7'1

300 400 t
200 I
- Time I . . . ,

2 . 5 5 7 . 5 10 121.5 15 11.5 20

Figure 2: The cumulative number of observedl
estimated failures vs. time.

Number of Remaining Fault Content

.--7---7

loOll

(Weeks)

O I A - 1 Time (Weeks)
0 2 . 5 5 7.5 10 12.5 1 5 17.5

Figure 3: Expected number of remaining fault content.

5. Conclusions

In this paper, we have proposed a SRGM incorporating
the logistic testing-effort f ic t ion that is completely
different fiom the traditional Weibull-type curve. We
show that the software reliability growth analysis based on
the effort index is more accurate than that based on the
calendar time data through several experiments on real
data. The reason is that most software reliability growth
curves are similar and depend on the distributions of the
testing-effort expenditures in the real world. In addition to
incorporating the logistic te sting-effort function into the
exponential-shaped software reliability model, we also
integrate this testing-effort function into the Yamada S-
shaped software reliability model. The experimental
results indicate that the proposed two models fits the real
data set fairly well and gives us an exactheasonable
description of fault detection process. Ohba [6] mentioned
that Delayed S-shaped model does not fit the observed data
well when the testing effort spent on failure detection/
isolation is not a constant. However, by integrating the
testing-effort function into lhe Delayed S-shaped software

458

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

reliability model, we can find that the extended Delayed
S-shaped model with logistic testing-effort function still
has smaller AE and MSF than with Rayleigh testing-effort
function. In addition, we also discuss the extended SRGM
where the assumption of perfectly removing faults is not
adopted. The simulation results reflect that the
introduction of new faults during the correction process
tends to be a minor effect in many development efforts
since the derivations of logistic testing-effort function in
the original basic concepts already incorporate the human
factors into consideration. Therefore, the assumption of
fault introduction rate being a constant over time in this
model should be valid and reasonable.

Acknowledgment

We would like to express our gratitude for the support
of the National Science Council, Taiwan, R.O.C., under
Grant NSC 87-TPC-E-002-0 17. The work described in this
paper was partially supported by a grant fi-om the Research
Grant Council of the Hong Kong Special Administrative
Region (Project No. CUHK4432/99E), and by a grant from
Francemong Kong Joint Research Scheme 1999/2000.
Besides, the authors also thank several anonymous
referees for their constructive reviews and comments.

References

M. R. Lyu (1996). Handbook of Softare Reliability
Engineering. McGmw Hill.
J. D. Musa, A. Iannino, and K. Okumoto (1987). Software
Reliability, Measurement, Prediction and Application.
McGraw Hill.
J. D. Musa (1999). Software Reliability Engineering:
More Reliable Software, Faster Development and Testing.
McGraw-Hill.
M. R. Lyu, "Reliability-Oriented Software Engineering:
Design, Testing, and Evaluation Techniques," IEE
Software-Proceedings, vol. 145, no. 6, pp. 191-197, 1998
A. L. Goel, "Software Reliability Models: Assumptions,
Limitations, and Applicability," IEEE Trans. on Software
Engineering, Vol. SE-1 1, No. 12, Dec. 1985.
M. Ohba, "Software Reliability Analysis Models, " IBMJ.
Res. Develop., Vol. 28, No. 4, pp. 428-443, July 1984.
P. N. Misra, "Software Reliability Analysis, " IBM
Systems Journal, Vol. 22, No. 3, pp. 262-279, 1983.
W. Everett, S. Keene, and A. Nikora, "Applying Software
Reliability Engineering in the 1990s, " IEEE Transactions
on Reliability, Vol. R-47, pp. 372-378, Sept. 1998.
A. Gana and S. T. Huang, "Statistical Modeling Applied
to Managing Global 5ESS-2000 Switch Software
Development," Bell Labs Technical Journal, Vol. 2, No.1,
pp. 144-153, winter 1997.
S. Yamada, H. Ohtera, and H. Narihisa, "Software
Reliability Growth Models with Testing Effort, " IEEE
Trans. on Reliability, vol. R-35, No. 1, pp. 19-23, 1986.
S. Yamada, J. Hishitani, and S. Osaki, "Software
Reliability Growth Model with Weibull Testing Effort: A

Model and Application, " IEEE Trans. on Reliability, Vol.

S. Yamada, J. Hishitani, and S. Osaki, " A Software
Reliability Growth Model for Test-Effort Management,"
Proceedings of the Fifreenth Annual International
Computer Software and Applications Conference, pp.
585-590, Sept. 11-13, 1991, Tokyo, Japan.
J. Hishitani, S. Yamada, and S. Osaki, "Comparison of
Two Estimation Methods of the Mean Time-Interval
Between Software Failures, " Proceedings of the Ninth
Annual International Phoenix Conference on Computers
and Communications Conference, pp.418-424, March
21-23, 1990, Scottsdale, Arizona, USA.
C. Y. Huang, S. Y. Kuo and I. Y. Chen, "Analysis of a
Software Reliability Growth Model with logistic Testing-
Effort Function, " Proceedings of the 8th International
Symposium on Software Reliability Engineering, pp. 378-
388, 1997, Albuquerque, New Mexico. U.S.A.
C . Y. Huang, J. H. Lo and S. Y. Kuo, "A Pragmatic Study
of Parametric Decomposition Models for Estimating
Software Reliability Growth," Proceedings of the 9fh
International Symposium on Sofiare Reliability
Engineering, pp. 11 1-123, 1998, Paderbom, Germany.
C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R Lyu,
"Software Reliability Modeling and Cost Estimation
Incorporating Testing-Effort and Efficiency,"
Proceedings of the 10th International Symposium on
Sof iare Reliability Engineering, pp. 62-72, 1999, Boca
Raton, FL, U.S.A.

[171 T. DeMarco (I 982). Controlling Software Projects:
Management, Measurement and Estimation. Prentice-Hall,

R-42, pp. 100-105,1993.
[12]

[13]

[14]

[151

[I61

Englekood Cliffs, NJ.
S . Chatterjee, R. B. Misra and S. S. Alam, "Joint Effect of
Test Effort and Learning Factor on Software Reliability
and Optimal Release Policy," International Journal of
Systems Science, Vol. 28, No. 4, pp. 391-396, 1997.
G. Xia, P. Zeephongsekul, and S. Kumar, "Optimal
Software Release Policy with a Learning Factor for
Imperfect Debugging," Microelectronics and Reliability,

H. Pham, L. Nordmann, and X. Zhang, "General
Imperfect-Software-Debugging Model with S-Shaped
Fault-Detection Rate, 'I IEEE Transactions on Reliability,
Vol. R-48, No. 2, pp. 169-175, June 1999.
S. Yamada, K. Tokuno, and S. Osaki, "Imperfect
Debugging Models with Fault Introduction Rate for
Software Reliability Assessment," Intemational Journal of
Systems Science, Vol. 23, No. 12, pp. 2241-2252, 1992.
M. Ohbaand X, Chou, "Does Imperfect Debugging Affect
Software Reliability Growth?," Proc. 1 lth International
Conference on Software Engineering, pp. 237-244, 1989.
P. K. Kapur and R. B. Garg, "Modeling an lmperfect
Debugging Phenomenon in Software Reliability," Micro-
electronics and Reliability, Vol. 36, pp. 645-650, 1996.
R. H. Hou, S. Y. Kuo and Y. P. Chang, "Hyper-Geometric
Distribution Software Reliability Growth Model with
Imperfect Debugging," Proceedings of the 1995
International Symposium on Software Reliability
Engineering, pp. 195-200, Nov. 1995, Tolouse, France.
M. R. Lyu and A. Nikora, '' Using Software Reliability
Models More Effectively," IEEE Software, pp. 43-52, July
1992.

Vol. 33, pp. 81-86, 1993.

459

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on February 12,2021 at 10:31:22 UTC from IEEE Xplore. Restrictions apply.

