
Automating App Review Response Generation

Cuiyun Gao† Jichuan Zeng† Xin Xia‡ David Lo§ Michael R. Lyu† Irwin King†

†Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
‡Faculty of Information Technology, Monash University, Australia

§School of Information Systems, Singapore Management University, Singapore

{cygao,jczeng,lyu,king}@cse.cuhk.edu.hk xin.xia@monash.edu davidlo@smu.edu.sg

Abstract—Previous studies showed that replying to a user
review usually has a positive effect on the rating that is given
by the user to the app. For example, Hassan et al. found
that responding to a review increases the chances of a user
updating their given rating by up to six times compared to
not responding. To alleviate the labor burden in replying to the
bulk of user reviews, developers usually adopt a template-based
strategy where the templates can express appreciation for using
the app or mention the company email address for users to follow
up. However, reading a large number of user reviews every day
is not an easy task for developers. Thus, there is a need for more
automation to help developers respond to user reviews.

Addressing the aforementioned need, in this work we propose
a novel approach RRGen that automatically generates review
responses by learning knowledge relations between reviews and
their responses. RRGen explicitly incorporates review attributes,
such as user rating and review length, and learns the relations
between reviews and corresponding responses in a supervised
way from the available training data. Experiments on 58 apps
and 309,246 review-response pairs highlight that RRGen out-
performs the baselines by at least 67.4% in terms of BLEU-4
(an accuracy measure that is widely used to evaluate dialogue
response generation systems). Qualitative analysis also confirms
the effectiveness of RRGen in generating relevant and accurate
responses.

Index Terms—App reviews, response generation, neural ma-
chine translation.

I. INTRODUCTION

Mobile apps are software applications designed to run on

smartphones, tablets and other mobile devices. They already

serve as an integral part of people’s daily life, and continuously

gain traction over the last few years. The apps are typically

available from app stores, such as Apple’s App Store and

Google Play. These app stores allow users to express their

opinions to apps by writing reviews and giving ratings. User

experience determines if users will keep using an app or unin-

stall it, possibly posting favorable or unfavorable feedbacks.

For example, a survey in 2015 [1] reported that 65% users

chose to leave a rating or review after a negative experience,

and only 15% users would consider downloading an app with

a 2-star rating. To compete with the bulk of the apps offering

similar functionalities, ensuring good user experience is crucial

for app developers.

App reviews act as one direct communication channel

between developers and users, delivering users’ instant ex-

perience after their interactions with apps. Analysis on app

reviews can assist developers in discovering in a timely manner

important app issues, such as bugs to fix or requested features,

for app maintenance and development [2], [3]. Currently, both

Apple’s App Store and Google Play provide a review response

system for developers to manually respond to a review, after

which the corresponding user who posted the review will be

notified and have the option to update their reviews [4], [5].

In the response, developers can talk about the roadmap about

users’ proposed feature requests, explain the usage of app

functionalities, or just thank users for their shared opinions.

Empirical studies [6]–[9] that analyze the interactions be-

tween users and developers demonstrate that responding to

user feedback in a timely and accurate manner can (1)

enhance app development and (2) improve user experience.

Specifically, Nayebi et al. [9] automatically summarized user

requests which was proven to shorten the cycle between issue

escalation and developers’ fix. McIlroy et al. [7] observed

that users change their rating 38.7% of the time following a

developer response. Hassan et al. [8] found that developers of

34.1% of the apps they analyzed respond to at least one review,

and also confirmed the positive effect of the responses on

rating change. For example, they discovered that the number

of users who increases their ratings after receiving a response

are six times more than those who receive no response. App

developers can also solve 34% of the reported issues without

deploying an update. In spite of the benefits of the review-

response mechanism, due to the large and ever-increasing

number of reviews received daily, many reviews still did not

receive timely response [4], [8]. This highlights the necessity

and importance of automatic response generation, which is the

focus of our work.

Dialogue generation has been extensively studied in the

natural language processing field [10]–[12], for facilitating

social conversations, e.g., the Microsoft XiaoIce chatbot [13].

Such work is generally grounded in the basic RNN Encoder-

Decoder model (or Neural Machine Translation model, ab-

breviated as NMT) [14], [15], where the context and corre-

sponding response are regarded as source and target sequences

respectively. The RNN Encoder-Decoder model is an end-

to-end learning approach for automated translation. It has

been applied to a number of software engineering tasks, such

as producing a sequence of APIs given a natural language

query [16], parsing natural language into machine interpretable

sequences (e.g., database queries) [17], generating commit

messages according to code changes [18], [19], and infer-

ring variable types based on contextual code snippets [20].

However, the applicability of the NMT model for app review

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

response generation has not been studied. To fill in this gap,

we explore the usability of the NMT model in the app review-

response dialogue scenario here, by regarding user reviews and

the corresponding replies as the source and target sequences

respectively.

Directly applying the NMT model to app dialogue gener-

ation may not be appropriate, since the app review-response

dialogues and social conversations are different in many ways.

First, the purpose of app dialogues is to further understand

users’ complaints or solve user requests, while social conver-

sations are mainly for entertainment purpose. This implies that

app reviews require more accurate and clearer response [4].

Second, users’ sentiment expressed in reviews should be

precisely identified. Although reviews contain the information

of star ratings, the ratings and actual emotions may not be

totally consistent [21], [22]. For example, one user may write

positive feedback like “Great”, but only give one-star rating.

Third, app reviews are generally short in length and usually

with only one round of dialogue. According to Hassen et

al. [8], 97.5% of the app dialogues end after one iteration.

Such limited context increases the difficulty of generating a

concise response.

In this paper, we propose an improved NMT model, named

RRGen, for accurate Review Response Generation. We extend

basic NMT by incorporating review-specific characteristics

(e.g., star ratings and review lengths) to capture user’s senti-

ment and complaint topics. To evaluate the effectiveness of our

model, we collected 309,246 review-response pairs from 58

popular apps published on Google Play. For a comprehensive

comparison, besides the basic NMT model, we also choose

the state-of-the-art approach in commit message generation

based on code changes [23], named NNGen, as one baseline

model. Because NNGen adopts basic information retrieval

technique which is commonly used in traditional dialogue

generation tasks [24]–[26], and claims better performance

than the basic NMT model. Our experimental results show

that RRGen significantly outperforms the baseline models by

67.4%∼450% in terms of BLEU-4 score [27] (an accuracy

measure that is widely used to evaluate dialogue response

generation systems). Human evaluation done through a user

study also indicates that RRGen can generate a more rele-

vant and accurate response than NNGen. Besides reporting

the promising results, we investigate the reason behind the

superior performance of our model and the key constraints on

automatic response generation.

The main contributions of our work are as follows:

• To our knowledge, we are the first to consider the problem

of automatic review response generation, and propose a

deep neural network technique for solving the problem.

We propose a novel neural machine translation model,

RRGen1, to learn both topics and sentiments of reviews

for a accurate response generation.

• The accuracy of RRGen is empirically evaluated using

a corpus of more than 300 thousand real-life review-

1available at: https://github.com/ReMine-Lab/RRGen

response pairs. A user study was also conducted to verify

RRGen’s effectiveness in generating reasonable reviews.

Paper structure. Section II illustrates the background of

review-response system, and neural encoder-decoder model.

Section III presents our proposed model for user review

response generation. Section IV and Section V describe our

experimental setup and the quantitative evaluation results.

Section VI details the results of a human evaluation of our

proposed model. Section VII discusses the advantages, limita-

tion, and threats of our work. Related work and final remarks

are discussed in Section VIII and Section IX, respectively.

II. BACKGROUND

Our work adopts and augments advanced techniques from

deep learning and neural machine translations [28]–[30]. In

this section, we introduce the user-developer dialogue and

discuss the background of these techniques.

A. User-Developer Dialogue

Figure 1 depicts an example of the user-developer dialogue

of the TED app in Google Play. A user initiates the dialogue

by posting a review, including a star rating, for an app.

User reviews convey valuable information to developers, such

as major bugs, feature requests, and simple complaints or

praise about the experience [31]. As encouraged by the App

Store [4], responding to feedback in a timely and consistent

manner can improve user experience and an app’s ranking.

For example, the review in Fig. 1 was complaining about the

unclear functionality usage related to adding “video subtitles”.

The TED developer then responded with detailed steps for

putting subtitles, and later, the user changed the star rating to

five.

Generally, developers could not reply to all app reviews due

to their limited time and efforts, and also a large number of

reviews. As studied by Hassan et al. [8], developers respond

to 2.8% of the collected user reviews, and they tend to reply

reviews with low ratings and long contents. The App Store

also suggests developers to consider prioritizing reviews with

the lowest star ratings or those mentioning technical issues

for responding [4]. However, ranking reviews for developers’

reply is out of the scope of this work, and the related studies

can be found in [7], [8]. We focus on alleviating the manual

labor in responding to feedback and aim at automating the

process. Moreover, since 97.5% of the app dialogues end after

one round [8], in this study, we concentrate on one iteration

of user review reply.

B. RNN Encoder-Decoder Model

The RNN Encoder-Decoder [14] model is an effective

and standard approach for neural machine translation and

sequence-to-sequence (seq2seq) [32] prediction. In general,

the RNN encoder-decoder models aim at generating a target

sequence y = (y1, y2, ..., yTy
) given a source sequence x =

(x1, x2, ..., xTx
), where Tx and Ty are sequence lengths of

the source and target respectively. Fig. 2 illustrates an overall

architecture of the RNN encoder-decoder model.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

February 11, 2019

February 11, 2019

Hey how do you put subtitles on videos? I get a hard time understanding English
without subtitles even if I know how to speak it. Thanks! Will give 5 stars if you
can help me.

To use subtitles on the Android app: -Open the talk ����� like to watch � Tap
the play arrow � Tap the �	
� �
���	�� icon at the bottom of the video page
� Choose your language � Return to the talk if ����	
 trying to add subtitles
to a download, follow the above steps first before you download the video. I
hope this helps!

Fig. 1: Example of TED developer’s response to one user review.
The red underlines highlight some topical words of the dialogue.

lot of ad !

sorry for the inconvenience </s>

���������	��
���

�����������
���
.

�� �� �� ��

�� �� �� ��

��� ��� ��� ��� ��	 ��

��� ��� ��� ��� ��	 ��

�

�

�

sorry for the inconvenience .<s>

Fig. 2: An overall architecture of RNN encoder-decoder model.

To do so, an encoder first converts the source sequence

x into a set of hidden vectors {h1,h2, ...,hTx
}, whose

size varies regarding the source sequence length. The con-

text representation c is generated using a Recurrent Neural

Network (RNN) [33]. The encoder RNN reads the source

sentences from the first token until the last one, where ht =
f(ht−1,wt), and c = hTx

. Here, wt is the word embedding

of the source token xt, where word embeddings [34] are

distributed representations of words in a continuous vector

space, and trained with a text corpus. The f is a non-linear

function that maps a the word embedding wt into a hidden

state ht by considering the previous hidden state ht−1.

Then, the decoder, which is also implemented as an RNN,

generates one word yt at each time stamp t based on the hidden

state h′

t as well as the previous predicted word yt−1:

Pr(yt|yt−1, ..., y1, c) = g(h′

t, yt−1, c), (1)

where g is a non-linear mapping function, and the context

vector c returned by the encoder is set as an initial hidden

state, i.e., h′

1
= c. The decoder stops when generating the

end-of-sequence word <\s>.

The two RNN encoder-decoder models are jointly trained

to maximize the conditional log-likelihood:

L(θ) = max
θ

1

N

N∑

i=1

log pθ(yi|xi), (2)

where θ is the set of the model parameters (e.g., weights in the

neural network) and each (xi,yi) is a (source sequence, target

sequence) pair from the training set. The pθ(yi|xi) denotes

the likelihood of generating the i-th target sequence yi given

the source sequence xi according to the model parameters

θ. Through optimizing the loss function using optimization

algorithms such as gradient descent, the optimum θ values

can be estimated.

C. Attention Mechanism

A potential issue with the RNN encoder-decoder model is

that a neural network needs to compress all the necessary

information of a source sequence into a fixed-length vector. To

alleviate this issue, Bahdanau et al. [28] proposed the attention

mechanism to focus on relevant parts of the source sequence

during decoding. We use the attention mechanism in our work

because previous studies [35]–[37] prove that attention-based

models can better capture the key information (e.g., topical

or emotional tokens) in the source sequence. Fig. 3 shows a

graphical illustration of the attentional RNN encoder-decoder

model.

During decoding, besides the hidden state h′

t and previous

predicted word yt−1, an attention vector at is also involved

for generating one word yt at each time stamp t:

Pr(yt|yt−1, ..., y1, c) = g(h′

t, yt−1, c,at). (3)

The attention vector at depends on the relevance between

the hidden state h′

t and the encoded source sequence

(h1, ...,hTx
):

at =

Tx∑

j=1

αtjhj , (4)

where Tx is the length of the source sequence, and the attention

weight αtj measures how helpful the j-th hidden state of the

source sequence hj is in predicting next word yt with respect

to the previous hidden state h′

t−1
. In this way, the decoder

decides parts of the source sentence to pay attention to.

�� �� �� �� ��� ���

��� ������

����������	�
���

��� ��� ���

��

�

Fig. 3: Graphical illustration of the attentional RNN encoder-decoder
model. The dotted line without arrow marks the division between the
encoder (left) and decoder (right), and the dotted lines with arrows
indicate that we simplify the RNN encoder-decoder [14] steps for
clearness.

III. RRGEN: APP REVIEW RESPONSE GENERATION

In this section, we present the design of RRGen that

extends the basic attentional RNN Encoder-Decoder model for

app review response generation. We regard user reviews as

the source sequence and developers’ response as the target

sequence. Fig. 2 shows an example of the RNN Encoder-

Decoder model for generating a sequence of tokens as a

developer’s response from a sequence of tokens that constitute

a user review “Lot of ad!”. For accurately capturing the topics

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

User Review
Repository

�
�
���
	���
Response

�

User
Reviews

Rating
Sentiment

Length
Category���
��
����

������������

���
��
����
�����
����

Keyword
lot of ad !

Encoder
<O> <O> <C> <O>

�� �� �� ��

�� �� �� ��

�� �� �� ��

�

�

sorry for<s>

sorry for the
Decoder

Attention Vector

� �
�

�

</s>

.

Model
Training

User Review

Review
Response

a. Data
preparation

b. Data parsing c. Model training d. Response
generation

�
�
�
�

�

�
�
�
�

�

(a) Overall architecture of RRGen

lot of ad !

Encoder
<O> <O> <C> <O>

�� �� �� ��

�� �� �� ��

�� �� �� ��

�

�

sorry for<s>

sorry for the
Decoder

����������	�
���

� �
�

�

</s>

.

���
��
����

�
�
�
�

��
��
��
��

�
�

��

���
��
����

�

��

�� �� �� ��

�
�

(b) Detailed structure of RRGen

Fig. 4: Structure of the review response generative model.

and sentiment embedded in the input review sequence, we

explicitly incorporate both high-level attributes (e.g., app cat-

egory, review length, user rating, and sentiment) and keywords

into the original RNN Encoder-Decoder model. We adopt the

keywords provided by Di Sorbo et al. [3] which were manually

curated to identify 12 topics (e.g., GUI, contents, pricing, etc.)

commonly covered in user reviews. We refer to the high-level

attributes and keywords extracted from a review as its A and

K components, respectively.

Figure 4 (a) shows the overall architecture of our RRGen

model. RRGen mainly consists of four stages: Data prepara-

tion, data parsing, model training, and response generation. We

first collect app reviews and their responses from Google Play,

and conduct preprocessing. The preprocessed data are parsed

into a parallel corpus of user reviews and their corresponding

responses, during which the two components of reviews are

also extracted and processed. Based on the parallel corpus of

app reviews and responses, we build and train a generative

neural model with the two pieces of extracted information

(high-level attributes and keywords) holistically considered.

The major challenge during the training process lies in the

effective consideration of both components of reviews for ef-

fective response generation. In the following, we will introduce

the details of the RRGen model and the approach we propose

to resolve the challenge.

A. Component Incorporation

Here, we elaborate on how we incorporate the two com-

ponents, including high-level attributes (or A Component)

and keywords (or K Component), into RRGen. The detailed

structure of RRGen is displayed in Fig. 4 (b).

1) A Component: The A component contains four attributes

of one user review: App category, review length, user rating,

and sentiment. We choose app category considering that apps

of different categories generally contain different functional-

ities, and major topics delivered by their reviews would be

different. Review length is involved because it is an important

index of whether the review is informative or not, i.e., longer

reviews usually convey richer information [8], [38]. We take

user rating into account since it can directly impact the

response style of developers, e.g., expressing an apology for

negative feedback or thanks for the positive feedback. As user

ratings may not be consistent with the sentiment described

by the reviews [39], we also regard the predicted actual user

sentiment as one attribute.

Review attributes such as app category, review length, and

user rating are easy to acquire. For predicting user sentiment,

we exploit SentiStrength [40], a lexical sentiment extraction

tool specialized in handling short and low-quality texts. We

first divide review text into sentences, and then assigns a pos-

itive integer value (in the range [+1, +5]) and a negative integer

value (within the range [-5, -1]) based on StentiStrength to

each sentence because users may express both positive and

negative sentiments in the same sentence. A higher absolute

sentiment score indicates that the corresponding sentiment is

stronger. Following Guzman and Maalej’s work [39], when

the sentence’s negative score multiplied by 1.5 is less than the

positive score, we assign the sentence a negative sentiment

score; Otherwise, the sentence is assigned a positive sentiment

score [39]. The sentiment of an entire review is computed

based on the rounded average sentiment scores of all sentences

in the review.

We denote the app category, review length, user rating, and

sentiment score of the source sequence x as τ , l, r, and

s, respectively. To incorporate these attributes into RRGen,

we first represent the attribute values into continuous vectors

via multilayer perceptions (MLPs), i.e., the conventional fully

connected layer [41]. We call the vector representations of

the attributes as attribute embeddings. The embedding of app

category τ is defined as:

hτ = tanh(W Γ Emb(τ)), ∀τ = 1, 2, ..., NΓ, (5)

where W Γ is the matrix of trainable parameters in the MLP,

and hτ , g = 1, ..., NΓ are the embedding vectors of all individ-

ual categories. Emb(τ) ∈ R
NΓ is the vector representation of

τ , and Emb(·) indicates one general embedding layer to obtain

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

the latent features of τ . Similarly, we obtain the embedding

vectors for user rating r and sentiment score s:

hr = tanh(WR Emb(r)), ∀r = 1, 2, ..., NR, (6)

hs = tanh(W S Emb(s)), ∀s = 1, 2, ..., NS , (7)

where hr and hs are embeddings for the attribute values r and

s, respectively. For review length l, we convert the continuous

variable into its categorical form l′ using the pandas package2

before feeding into MLP.

hl = tanh(WL Emb(l′), ∀l′ = 1, 2, ..., NL. (8)

We integrate the embedded attribute values at review level

by concatenating together with the last hidden state c of the

encoder, i.e.,

c′ = tanh(WH [c;hτ ;hl;hr;hs]), (9)

where [a; b] is the concatenation of these two vectors. WH is

the matrix of trainable parameters in the MLP, and H is the

number of hidden units. The output vector c′ indicates the final

hidden state (or context vector) of the encoder. For simplicity,

we assume that the dimensions of all attribute embeddings,

i.e., hτ , hl, hr, and hs, are the same.

2) K Component: K component specifically refers to key-

words in the input review sequence, since the keywords

generally relate to the review topic or sentiment, and are

potentially helpful to learn which word to attend to during

response generation.

TABLE I: One example of topic-keywords pair in the keyword
dictionary provided by Di Sorbo et al. [3].

Topic Keywords

GUI

screen, trajectory, button, white, background, interface,
usability, tap, switch, icon, orientation, picture, show, list,
category, cover, scroll, touch, clink, snap, underside, backside,
witness, rotation, ui, gui,...

We adopt the keyword dictionary provided by Di Sorbo

et al. [3]. Di Sorbo et al. summarize 12 topics3 commonly

covered by user reviews based on manual analysis, and build

a keyword dictionary based on WordNet [42] to extract related

words for each topic. One topic-keywords pair can be seen

in Table I. Di Sorbo et al. utilized the dictionary to predict

topics of user reviews and achieved >90% classification ac-

curacy; this indicates the semantic representativeness of these

keywords for each topic. This motivates us to use the keywords

too in our work.

To explicitly integrate the keyword information into RRGen,

we establish a keyword sequence κ = (κ1, κ2, ..., κTx
) for

each input review sequence x. Specifically, for the token

xt in x, we check the keyword dictionary to determine its

subordinate topic, i.e., κt. For example, as shown in Fig. 4 (b),

the keyword sequence corresponding to the source sequence

2https://pandas.pydata.org/pandas-docs/stable/
3The 12 topics are app, GUI, contents, pricing, feature, improvement,

updates/versions, resources, security, download, model, and company.

“lot of ad !” is “<O><O><C><O>”, where we denote the

keyword symbol for the token “ad” as “<C>” since “ad” is

one keyword for topic contents. The keyword symbols of non-

topical words (e.g., “of ”) are labeled as “<O>”. We finally

integrate the embedded keyword sequence and the source

sequence at token level via MLP:

kι = tanh(WK Emb(κι)), ∀ι = 1, 2, ..., NK

vt = tanh(W V [kt;wt])
(10)

where kι, ι = 1, ..., NK are the embedding vectors of all

individual keyword symbols, WK and W V are the matrices

of trainable parameters in the MLPs, and vt is the keyword-

enhanced embedding for the t-th token xt in the source

sequence. The dimension of kι is similar to the attribute

embeddings in the A component, e.g, hτ .

B. Model Training and Testing

1) Training: We adopt the attention mechanism, described

in Section II-C, for review response generation. The RNN has

various implementations, we use bidirectional Gated Recurrent

Units (GRUs) [14] which is a popular RNN encoder-decoder

model and performs well in many tasks [43], [44]. All GRUs

have 200 hidden units in each direction. Each attribute in the

two components is encoded into an embedding with dimension

at 90, i.e., the embedding size of hτ ,hl,hr,hs, and kι. Word

embeddings are initiated with pre-trained 100-dimensional

GloVe vectors [45]. We set the maximum sequence length at

200 and save the model every 200 batches. We discuss the

details of parameter tuning in Section V-C. The training goal

is cross-entropy minimization based on Equ. (11):

L(θ) = max
θ

1

N

N∑

i=1

log pθ(yi|xi, τ, l, r, s,κi), (11)

where τ, l, r, s,κi correspond to the app category, review

length, user rating, sentiment score, and keyword sequence of

the i-th source sequence xi, respectively. The whole model is

trained using the minibatch Adam [46], a stochastic optimiza-

tion approach and automatically adjusting the learning rate. We

set the batch size (i.e., number of review instances per batch)

as 32. For training the neural networks, we limit the source

and target vocabulary to the top 10,000 words that are most

frequently used in user reviews and developers’ responses.

For implementation, we use PyTorch [47], an open-source

deep learning framework. We train our model in a server with

one Nvidia TITAN V GPU with 12GB memory. The training

lasts ∼80 hours with two epochs.

2) Testing: We evaluate on the test set when the trained

model after one batch shows an improvement on the validation

set regarding BLEU score [27]. We take the highest test score

and corresponding generated response as the evaluation result.

We use the same GPU as we used in training. The testing

process took around 25 minutes.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

IV. EXPERIMENTAL SETUP

A. Data Preparation

1) Data Collection: We select the subject apps for collect-

ing the user-developer dialogues from Google Play based on

app popularity. We focus on popular apps since they contain

more reviews than unpopular apps [48], which should facilitate

enough data for studying user-developer dialogues. We select

the top 100 free apps in 2016 according to App Annie [49],

an app analytics platform, as these apps were top apps two

years prior to the start of our study. The decision was made

to ensure the studied apps had enough reviews to collect and

also avoid the influence of an app’s price on developers’ review

response behavior [8]. We further remove the apps that are no

longer available in Google Play on April 2018 and those with

fewer than 100 user reviews, which leaves us with 72 apps

that match our selection criteria.

For each selected app, we created a Google Play crawler to

collect user-developer dialogues from Google Play, specifically

including review title, review text, review post time, user name,

rating, developer response time, and the text in the developer

response. We run our crawler from April 2016 to April 2018.

During that period, we collected 15,963,612 reviews for the 72

apps. We find that 58/72 apps and 318,973 collected reviews

have received a response from the app developer. Table II

describes the statistics of the 58 subject apps which belong to

15 app categories.

2) Data Preprocessing: Since app reviews are generally

submitted via mobile terminals and written using limited

keyboards, they contain massive noisy words, such as repet-

itive words and misspelled words [2]. We first convert all

the words in the reviews and their response into lowercase,

and adopt the method in [50] for lemmatization. We then

replace all digits with “<digit>”. We also detect email address

and URL with regular expressions, and substitute them into

“<email>” and “<url>” respectively. Besides, we build an

app list containing all the app names, and a user list with

all the user names. For the app names and user names

mentioned in the dialogue corpus, we replace them with

“<app>” and “<user>” respectively. We finally adopt the

rule-based methods based on [50], [51] to rectify repetitive

words and misspelled words. After removing empty review

texts or review texts with only one single alphabet, we obtained

309,246 review-response pairs. We randomly split the dataset

by 8:1:1, as the training, validation, and test sets, i.e., there are

279,792, 14,727, and 14,727 pairs in the training, validation,

and test sets, respectively.

TABLE II: Mean and five-number summary of collected data for
every studied app.

Avg. Min. 1st Qu. Med. 3rd Qu. Max.

#reviews per app 203,025 5,582 83,317 179,457 287,286 665,203
#reviews with

5,406 2 181 1,149 4,290 55,165
responses per app

B. Similarity Measure - BLEU

BLEU [27] is a standard automatic metric for evaluating

dialogue response generation systems. It analyzes the co-

occurrences of n-grams in the ground truth y and the generated

responses ŷ, where n can be 1, 2, 3, or 4. BLEU-N , where

N is the maximum length of n-grams considered, measures

the proportion of co-occurrences of n consecutive tokens

between the ground truth y and generated response ŷ. The

most commonly used version of BLEU uses N = 4 [19],

[23], i.e., BLEU-4. Also, BLEU-4 is usually calculated at the

corpus-level, which is demonstrated to be more correlated with

human judgments than other evaluation metrics [52]. Thus, we

use corpus-level BLEU-4 as our evaluation metric.

C. Baseline Approaches

We compare the performance of our model with a random

selection approach, the basic attentional RNN encoder-decoder

(NMT) model [28] (as introduced in Section II-C), and a state-

of-the-art approach for code commit message generation [23],

namely NNGen. In the following, we elaborate on the first and

last baselines:

Random Selection: This is a strawman baseline. This

baseline randomly picks a response in the training set and

uses it as a response to a review in the test set.

NNGen: We choose NNGen as one comparing approach

since it is demonstrated to perform better than the basic NMT

model [19] in producing code commit message based on

code changes. NNGen leverages the nearest neighbor (NN)

algorithm to retrieve the most relevant developer response.

Based on the training set and the new user review, NNGen first

represents them as vectors in the form of “bags of words” [26],

and then selects the top five training user reviews which

present highest cosine similarities to the new review. After

that, the BLEU-4 score between the new review and each

of the top five training reviews is computed. NNGen finally

regards the response of the training review with the highest

BLEU-4 score as the result.

V. EVALUATION USING AN AUTOMATIC METRIC

In this section, we conduct quantitative analysis to evaluate

the effectiveness of RRGen. In particular, we intend to answer

the following research questions.

RQ1: What is the accuracy of RRGen?

RQ2: What is the impact of different component attributes

on the performance of RRGen?

RQ3: How accurate is RRGen under different parameter

settings?

A. RQ1: What is the accuracy of RRGen?

The comparison results with baseline approaches are shown

in Table III. We can see that our RRGen approach outperforms

all the three baselines. Specifically, the result that random se-

lection approach achieves the lowest BLEU-4 score (6.55), in-

dicates that learning knowledge from existing review-response

pairs can facilitate generating the response for a newly-arrived

review. Also, we find that the NMT model performs better than

the non-deep-learning-based NNGen model, which shows an

increasing rate of 53.48% in terms of BLEU-4 score. This

is opposite to the conclusion achieved by Liu et al. [23].

One possible reason is that the tasks between ours and Liu

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

et al.’s [23] are different, i.e., Liu et al. aim at producing

texts based on code, while we focus on generating texts

for dialogues and modeling code is different from modeling

dialogue texts [53], [54]. The higher BLEU-4 score of the

proposed RRGen model than that of the NMT model explains

that the response generated by the RRGen model is more

similar to developers’ response than the response generated by

the NMT model. We then use Wilcoxon signed-rank test [55]

for statistical significance test, and Cliff’s Delta (or d) to

measure the effect size [56]. The significance test result

(p − value < 0.01) and large effect size on BLEU-4 scores

(d = 0.74) of RRGen and NMT confirm the superiority of

RRGen over NMT.

TABLE III: Comparison results with baseline approaches. The pn
indicates the n-gram precision when comparing the ground truth and
generated responses. Statistical significance results are indicated with
*(p− value < 0.01).

Approach BLEU-4 p1 p2 p3 p4

Random 6.55 27.64 6.90 3.55 2.78
NNGen [23] 14.08 34.47 13.85 9.77 8.59
NMT [28] 21.61 40.55 20.75 16.78 15.47

RRGen 36.17* 53.24* 35.83* 31.73* 30.04*

B. RQ2: What is the impact of different component attributes

on the performance of RRGen?

To evaluate the effectiveness of different component at-

tributes in response generation, we perform contrastive exper-

iments in which only a single component attribute is added to

the basic NMT model [28]. Table IV shows the results.

Unsurprisingly, the combination of all component attributes

gives the highest improvements, and all the attributes are

beneficial on their own. User sentiment gives the lowest

improvement (+0.58 in terms of BLEU-4 score) comparing

to the NMT model, while the app category yields highest

improvement (+9.92 in terms of BLEU-4 score). Also, the

result that user rating contributed more on the BLEU-4 score

than user sentiment indicates that user ratings would be more

helpful in review response generation. Moreover, the gain

from different component attributes is not fully cumulative

since the information encoded in these component attributes

overlaps. For instance, both the user sentiment and user rating

attributes encode the user emotion expressed by user reviews.

Also, the keywords in the K component highlights the words

belonging to the same topics, and such information may be

already captured by the word embeddings [34].

TABLE IV: Contrastive experiments with individual component
attributes.

Approach BLEU-4 p1 p2 p3 p4

NMT [28] 21.61 40.55 20.75 16.78 15.47

A Component

+App Category 31.53 47.49 30.64 26.84 25.30
+Review Length 24.22 41.96 22.30 18.16 16.76
+Rating 26.90 46.19 26.06 21.69 20.12
+Sentiment 22.19 40.42 20.95 16.99 15.69

K Component +Keyword 24.34 43.41 23.66 19.27 17.74

RRGen 36.17 53.24 35.83 31.73 30.04

Dimension of
Word Embedding BLEU-4 p1 p2 p3 p4

50 35.80 52.78 35.09 30.67 28.91
100 36.17 53.24 35.83 31.73 30.04
200 35.61 51.77 33.77 29.63 28.00
300 35.54 51.25 33.18 29.09 27.39

(a) Different dimensions of word embedding.

Hidden Units

BL
EU

-4
 (%

)

(b) Different numbers of hidden
units.

BL
EU

-4
 (%

)

Attribute Dimension

(c) Different dimensions of com-
ponent attribute embedding.

Fig. 5: BLEU-4 scores of different parameter settings.

C. RQ3: How accurate is RRGen under different parameter

settings?

We also quantitatively compare the accuracy of RRGen

in different parameter settings. We analyze three parameters,

that is, the dimension of word embeddings, the number of

hidden units, and also the dimension of component attribute

embeddings. We vary the values of these three parameters and

evaluate their impact on the BLEU-4 scores.

Figure 5 shows the influence of different parameter settings

on the test set. We choose the four different dimensions

of word embeddings provided by GloVe [45], i.e., 50, 100,

200, and 300, and the result in Fig. 5 (a) indicates that the

RRGen model achieves the best BLEU-4 score when the word

embedding size equals to 100. For the number of hidden units,

we can see that more hidden units may not be helpful for

improving accuracy, as shown in Fig. 5 (b). RRGen generates

the best result when we define the number of hidden units as

200. Fig. 5 (c) shows that the accuracy of RRGen also changes

along with the variations of attribute embedding dimension.

The optimum dimension of attribute embedding is around 90.

VI. HUMAN EVALUATION

In this section, we conduct a human evaluation to comple-

ment the evaluation in Section V that uses BLEU, since BLEU

only measures the textual similarity between the generated

responses and ground truth while the human study can evaluate

users’ general satisfaction on the responses.

A. Survey Procedure

We conduct a human evaluation to evaluate the outputs of

RRGen and compare RRGen with NMT and NNGen. We

invite 20 participants, including 14 PhD students, two master

students, one bachelor, and three senior researchers, all of

whom are not co-authors and major in computer science.

Among the participants, 15 of them have industrial experience

in software development for at least a year, and eight of them

have developed one or two mobile apps. Each participant

is asked to read 25 user reviews, and assess the responses

generated by NNGen, NMT, RRGen, and the app developers.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

B. Survey Design

We randomly selected 100 review-response pairs in total,

divide them evenly into four groups, and make a questionnaire

for each group. We ensure that each review-response pair is

evaluated by five different participants. In our questionnaire,

each question presents the information of one review-response

pair, i.e., its user review, the developer’s response, its output

from NNGen, and its responses generated by NMT and

RRGen. The order of the responses from NNGen, NMT,

RRGen, and official developers is randomly decided for each

question.

Inspired by [11], [57], all the response types are evalu-

ated considering three aspects - “grammatical fluency”, “rel-

evance”, and “accuracy”. We provided the following instruc-

tions at the beginning of each questionnaire to guide partic-

ipants: The “grammatical fluency” (or readability) measures

the degree of whether a text is easy to understand; The metric

“relevance” relates to the extent of topical relevance between

the user review and response; And the metric “accuracy”

estimates the degree of the response accurately answering a

user review.

All the three metrics are rated on a 1-5 scale (5 for fully sat-

isfying the rating scheme, 1 for completely not satisfying the

rating scheme, and 3 for the borderline cases), since a 5-point

scale is widely used in prior software engineering studies [3],

[23], [58]. Besides the three metrics, each participant is asked

to rank responses generated by the three tools and those from

developers based on their preference. The “preference rank”

score is rated on a 1-4 scale (1 for the most preferred). Fig. 6

shows one question in our survey. Participants do not know

which response is generated by which approach or whether it

is written by developers, and they are asked to enter to score

each response separately.

C. Results

We obtained 500 sets of scores from the human evaluation.

Each set contains scores for the three metrics regarding the

response of NNGen, NMT, RRGen, and official developers

respectively, and also a ranking score of the four types

of responses. The median time cost for one participant to

complete his/her questionnaire is 0.94 hour, with an average

value of 2.72 hours. We compute the agreement rate on the the

preference ranks given by the participants, and find that 81%

of the total 100 review-response pairs received at least three

identical preference ranks from the participants. Specifically,

31%, 36%, and 14% were given the same preference ranks by

three, four, and five participants respectively. This indicates

that the participants achieved reasonable agreement on the

performance of the generated responses.

Table V shows the results of human evaluation. Bold

indicates top scores. As expected, we can see that the response

from official developers is preferred over the three approaches’

outputs, which can be observed given the example in Fig. 6.

Specifically, the developers’ response (Response 1) is more

relevant to the user review and provides more accurate solution

to the app issue (e.g., reduced picture clarity) complained

User Review: Pic clarity is reduced ������ why give only <digit> star.
Response 1: Hello <user>, thanks for your honest review! You can easily solve
this issue by going to your ����	�� setting max image size and clicking on the

preferable image size. If the problem still continues, please email us at <email>.

Response 2: Hey <user>, thanks for your review. We apologize for the issue you
are facing and we are here to help. Please send our team your device model <app>

version and <app> os version to <email>. Our support team will further assist you

on the matter.

Response 3: Hi,
�� Diana from <app>. Could you tell <app> what kind of ads
you do not like? What are the locations of them?

Response 4: Hi <user>, thanks for your review. We are really sorry that you feel
this way about the app.

Note: This is a photography app, and the user rating is one star. In the sentences, the
symbols <digit>, <user>, <email>, and <app> denote one digit, user name, email
address, and app name, respectively.

Very Dissatisfied Very Satisfied
���������	
��������
���������	
�����������
���������	
���������

Your Preference Rank of the Four Responses:

..

Fig. 6: A question in our survey. Response 1, 2, 3, and 4 correspond
to the developer’s response, the outputs of our RRGen model, and the
responses produced by NNGen and NMT, respectively. Participants
do not know the order of the four types of response during the survey,
and are asked to score the three metrics for each response type. The
two-dot symbols indicate the simplified grading schemes of Response
2, 3, and 4. The words highlighted in yellow are topical words in the
descriptions, and the double-underlined words mean they are topically
irrelevant to the user review.

by the user. In terms of grammatical fluency, however, the

RRGen model does quite well, achieving scores that are

rather close to those of developers’ responses, as shown in

Table V. In addition, we see that our RRGen model performs

significantly better across all the metrics in comparison to the

baseline approaches, which further indicates the effectiveness

of RRGen in review response generation.

TABLE V: Human evaluation results for review response generation.
Bold indicates top scores. Two-tailed t-test results are shown for
our RRGen approach compared to NNGen and NMT (Statistical
significance is indicated with *(p− value < 0.01).).

Grammatical
Fluency

Relevance Accuracy
Preference

Rank

NNGen [23] 4.520 3.160 3.104 3.339
NMT [28] 4.609 3.273 3.017 2.680

RRGen 4.626* 3.536* 3.458* 2.244*

Developer 4.644 3.804 3.712 1.736

VII. DISCUSSION

A. Why does Our Model Work?

We have identified three advantages of RRGen that may

explain its effectiveness in review response generation.

Observation 1: RRGen can better capture salient top-

ics of user reviews. Unlike bag-of-words-based techniques,

RRGen learns review and response representations with atten-

tional deep learning. Characteristics of reviews, such as topical

words and word orders, are naturally considered in these

models [16]. Moreover, keywords that are indicative of review

topics are explicitly incorporated into the deep learning model,

which would be helpful to better recognize the semantics of

review and response. For example, it can learn that the review

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

User Review: Too many ads and slow.
���������
� Response: Dear user, thanks for supporting uc. If you mean the ads
in website then pls make sure you've enabled the ad block powerful ad block

from menu ad block. If no use, pls send the specific link and screenshot of ads

and other question via menu feedback page open in uc to help you. We really

appreciate your <digit> star vote! Nice day.

NNGen: Sorry about that. Could you please email us <email>? Tell more
information relate to your problem when do you notice app is making your

system slow. Also try check out our FAQ <url>. Thank you very much.

NMT: Hi, thanks for using <app> and sorry for the ads. <app> is free we need
support from ads to develop new product and to improve exist product. We are

strive to balance user satisfaction and ads. Thus if you feel there are any

inappropriate ads or any ads you hate please contact us <email> much

appreciate.

RRGen: Hi, dear friend sorry to hear that. You can also send us ad's link and
screenshot to u3 menu feedback page open in uc? Here we can help you solve

the problem faster ok? Wait for your information and <digit> star vote! Nice day!

(a) First example.
User Review: It sucks so much that my phone almost over heat. This battery
saver is stupid and dumb. ���� waste ur time.

���������
� Response: Hi <user>. Thanks for your feedback and now we are
working on the cooler to improve this issue. Could you please send your detail

problem to our email <email> so when we figure out the solution we can contact

you immediately?

NNGen: Hi thanks for trying clean master. We hope you have a good
experience with our app if you have any problem or suggestion you can contact

me via <email>.
�� ready to help.

NMT: Dear user we are sorry for ads. However <app> is a free application. To
keep it free while offer a great service, we need to publish ads as an alternative

source of income. If you see any ads that are inappropriate, please take a

screenshot of them and send through the feedback option find in the application.

RRGen: Dear user sorry for the inconvenience. We notice you have some
concerns about battery. Could you tell us what happened and provide some

information including screen contrast screenshots of battery status of your phone

setting gt. battery gt.? Please send us via email <email> much appreciated.

(b) Second example.

Fig. 7: Two sample review-response pairs where RRGen can generate
responses with more related topic. The meanings of the highlighted
words and double-underlined words are the same as Fig. 6.

“Too many ads and slow” is talking about the ad issue, and

generate response related to the in-app ads, as shown in Fig. 7

(a). In the example in Fig. 7 (b), RRGen can well learn that the

review is discussing about the battery issue, while NMT infers

the topic wrongly. For the bag-of-words approach, NNGen, it

may be easily confused by non-topical words. For the example

in Fig. 6, NNGen (i.e., Response 3) focuses more on the words

“give”, “<digit>”, and “star”, and selects the closest review

“If it has no advertising, I will give <digit> star” which has

totally different topics comparing to the given review.

Observation 2: RRGen can generate responses with

more accurate sentiment. User sentiment can be explicitly

(e.g., the “horrible” word in Fig. 8 (a)) or implicitly (e.g., the

“slow” word in Fig. 7 (a)) reflected in user reviews. For the

bag-of-words approach, the effect of sentiment words may be

weakened by other words since their occurrence frequencies

are similar. As can be seen in Fig. 8 (a), NNGen fails to

infer the negative sentiment expressed by the review, and

considers it as an endorsement message; while RRGen can

accurately capture the negative information embedded in the

review. Another example can be found in Fig. 8 (b), where both

NNGen and NMT do not recognize that the positive sentiment

of the given review. Without review attributes such as user

User Review: What happened to the launcher? All my app names got vanished
and there is no setting to show the name as well. Kindly help or else.
��� a

horrible app.

���������
� Response: Dear <user>, you can set app name by following step
launcher-> set icon, then you can find the right option to show your app names

up. Best regard.

NNGen: Hi <user>, thanks for your awesome support and endorsement. Let us
know if you have suggestions for us to improve the app for you by email

<email>.

NMT: Dear user, sorry for the inconvenience cause for you. Please send us a
note <url> contact so we can follow up.

RRGen: Dear <user>, sorry for your inconvenience. Thank you for your
description and I'll forward your feedback to our team. We'll check the problem

which you mentioned as soon as possible. Please keep using <app> for the best

for you. Thank you for your support. Best regard.

(a) First example.

User Review: Nice browser with great speed and so many shortcuts which save
mine time. Thank you team uc. The only thing I want you to do is just adding

read mode. I have to make my note from Internet only and read too much

causing pain in my eyes, so its my humble request to you. Plz add read mode in

next update. Thank you.

���������
� Response: Dear friend, we are so happy to get your approval!
Would you please give us <digit> star! It means a lot to us. We are waiting for

your <digit> star. Thanks for support.

NNGen: Sorry for the problem. We need your cooperation. Could you give us
the details, thanks!

NMT: Dear friend, we apologize for the inconvenience you meet. Would you
please tell us more information about the error code?

RRGen: Hi dear friend thanks for supporting our browser! Your satisfaction is
what we be care most. We are very eager for your <digit> star rating. Thanks for

support.

(b) Second example.

Fig. 8: Two sample review-response pairs where RRGen can generate
responses with more accurate sentiment. The words underlined in red
are indicative of the description sentiments, and the meanings of the
highlighted and double-underlined words are the same as Fig. 6.

ratings involved, NMT also fails to ask the user to increase

his/her given rating.

Observation 3: RRGen can effectively capture knowl-

edge relations between reviews and their corresponding

responses. RRGen learns the correspondence between reviews

and response mainly through the high-dimensional hidden

units and attention layer. The topical words in reviews tend

to produce hidden states of semantically similar words in

the RNN decoder. Fig. 9 visualizes the latent alignment over

the user review to help generate the response based on the

attention weights αtj from Equ. (4). Each column indicates the

weight distribution over the user review for generating each

word. From this we can see which words in the user review

were considered more important when generating the target

word in the response. We can observe the obvious correlations

between the word “save” (in the review) and “save” (in the

response), “hd” (in the review) and “max” (in the response),

and “pixel” (in the review) and “image” (in the response), as

shown in Fig. 9. This illustrates that RRGen is able to build

implicit relations between the topical words in reviews and

corresponding responses, which can help generate relevant and

accurate response given a review.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

B. Post-Processing Steps

RRGen generates responses with placeholders, e.g.,

“<email>”, “<url>”, etc. Moreover, RRGen may not gen-

erate perfect responses and developers may want to ver-

ify RRGen responses for some more “sensitive” cases.

To partially address the above-mentioned limitations, we

propose several post-processing steps. First, we build a

placeholder-value dictionary for automatically replacing place-

holders (e.g., “<url>”) with corresponding values (e.g.,

“https://www.facebook.com/groups/vivavideoapp/”) for each

app. Second, we design a quality assurance filter to automati-

cally detect the generated responses that require further check.

The placeholder-value dictionary for each app is saved dur-

ing preprocessing, and for simplicity, only the most common

value for each placeholder is saved. We define a generated

response requiring further check based on its token length

l, the overlapped keyword ratio ω with the corresponding

review, and also the review rating r. Specifically, we define

responses that satisfy the following constraint, i.e., ω < 0.05
or (l < 38andr ≤ 2) to require further check. The thresholds

are determined as follows: 0.05 is determined by following the

keyword overlapping threshold in [3], 38 is the first quartile of

response token lengths in the whole dataset, and the constraint

for review rating is set as such as reviews with lower ratings

(e.g., 1, 2) tend to express users’ strong dissatisfaction with

certain aspects of apps [38], [59].

We evaluate our solution after the above mentioned post-

processing strategy using a similar experiment setting used to

produce results presented in Section V-A. We find that the

BLEU-4 score is 34.63. It is only slightly lower than the

BLEU-4 score (36.17) reported in our earlier experiment using

ground truths with placeholders rather than actual values.

C. Limitations

Although our proposed RRGen model aims at producing

accurate responses to user reviews, not all the reviews require

responses, some reviews require carefully crafted replies, and

some other reviews can be delegated to an automated bot.

We have tried to address this issue partially by adding some

preliminary post-processing steps (see Section VII-B).

Admittedly, our post-processing steps are not perfect.

First, our preliminary post-processing steps may generate

responses with inappropriate values due to the coarsely-defined

placeholder-value dictionary. This issue can be improved by

creating a context-sensitive dictionary for each app. Also, our

simple rule-based detection of responses that require further

check can be improved further. For this, we can learn the

thresholds of the rule conditions or design new detection cri-

teria. We leave the design, implementation, and evaluation of

a full-fledged system that can route reviews to do not respond,

require human careful response, and can be responded by an

automated bot queues for future work. As our work is the first

to automate app review generation, although it is not perfect,

it opens up way for future research to continue our study and

improve it further.

D. Threats to Validity

One of the threats to validity is about the limited number

of studied apps. We studied developer responses for reviews

of free apps only. One of the main reasons for removing non-

free apps is that the pricing of an app is likely to impact

developers’ response behavior [8]. Also, we only consider

Google Play apps in this work, because Apple’s App Store

started to support review response from 2017 while the feature

has been standard in Google Play since 2013 [60]. Although

our study is based on apps from various categories and large

numbers of review-response pairs, future work can be extended

to multiple app stores and paid apps.

The second threat to validity is about the component at-

tributes incorporated into our proposed model. Although we

involve both high-level attributes and keywords, some other

characteristics such as review title length and post date, which

would be helpful for response generation, are not considered.

Besides, the review sentiment predicted by SentiStrength [40]

might not be reliable [61], and could influence the generated

response. However, accurate sentiment prediction based on re-

views is out of the scope of this paper, and the effectiveness of

StentiStrength in detecting user sentiment about app features

has been demonstrated in [39]. In the future, we will explore

the impact of more review characteristics on automatic review

response generation.

Another threat to validity is about manual inspection in

Section VI. The results of the human evaluation are impacted

by the experience of the participants and their intuition of the

evaluation metrics. To reduce the errors in the manual analysis,

we ensure that each review-response pair was evaluated by five

different participants. As our participants are mainly students,

they may not be representative of (CRM) professionals who

are likely to benefit from our tools in practice [62], [63]. We

try to mitigate this threat by inviting the students with at least

one year of software development experience. In addition, we

randomly disrupt the order of the three types of response

for each question, so that the results are not influenced by

participants’ prior knowledge about the response orders.

VIII. RELATED WORK

A. User Review Mining

Identifying the complaint topics expressed by user reviews

is the basis for user review mining [64]–[66]. Iacob et al. [67]

manually label 3,278 reviews, and discover the most recurring

issues users report through reviews. To alleviate the labor

in manual labeling, many studies focus on automating the

process. For example, Iacob and Harrison [68] design MARA

for retrieving app feature requests based on linguistic rules.

Maalej and Nabil [31] adopt probabilistic techniques to clas-

sify reviews. Di Sorbo et al. [3] separately categorize user

intentions and topics delivered by app reviews. Understanding

user sentiment about specific app aspects is another typical

direction of review mining. Guzman and Maalej [39] use

topic modeling approach and StentiStrength [40] (a lexical

sentiment extraction tool) to predict sentiment of app features.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

U
se

r R
ev

ie
w

Generated Response by RRGen

Fig. 9: A heatmap representing the alignment between the user review (left) and generated response by RRGen (top). The columns represent
the distribution over the user review after generating each word. Each pixel shows the weight αtj of the annotation of the j-th source word
for the t-th target word (see Equ. (4)). A higher attention weight (indicated in darker color) manifests a stronger correlation between the
target word and source word. The red dotted rectangles highlight partial topical words in corresponding descriptions.

Gu and Kim [69] propose SUR-Miner to exploit grammatical

structures for aspect-opinion identification. More research of

mobile review analysis can be found in [70]. Different from

these existing review analysis research, we contribute to facili-

tating the bidirectional dialogue between users and developers

instead of analyzing only the feedback from user side.

B. Analysis of User-Developer Dialogues in App Stores

Oh et al. [6] conduct a survey on 100 smartphone users

to understand how developers and users interact. They find

that most users (69%) tend to take a passive action such as

uninstalling apps, and the main reason for such behavior is

that these users think that their inquiries (e.g., user reviews)

would take long time to be responded or receive no response.

McIlroy et al. [7] analyze reviews of 10,000+ free Google

Play apps and find that 13.8% of the apps respond to at least

one review. They also observe that users would change their

ratings 38.7% of the time following a response. Such positive

impact of developers’ response is also confirmed by Hassan et

al. [8]. Although these studies do highlight the importance of

responding to user reviews, they do not provide an explicit

method to alleviate the burden in the responding process,

which is the focus of this work.

C. Short Text Dialogue Analysis

Short text dialogue analysis is one popular topic in the field

of natural language processing, in which given a message

from human, the computer returns a reasonable response to

the message [24], [71]. Short text dialogue can be formalized

as a search or a generation problem. The former formalization

is based on a knowledge base consisting of a large number of

message-response pairs. Information retrieval techniques [26]

are generally utilized to select the most suitable response to

the current message from the knowledge base. The major

bottleneck for search-based approaches is the creation of

the knowledge base [72]. Ritter et al. [73] and Vinyals and

Le [74] are the first to treat generation of conversational dialog

as a data-driven statistical machine translation (SMT) [75]

problem. Their results show that the machine translation-

based approach works better than one IR approach, vector

space model (VSM) [76], in terms of BLEU score [27].

However, generation-based approaches cannot guarantee that

the response is a legitimate natural language text. In this work,

we propose to integrate app reviews’ unique characteristics for

accurate response generation.

IX. CONCLUSION AND FUTURE WORK

Replying to user reviews can help app developers create

a better user experience and improve apps’ ratings. Due to

the large numbers of reviews received for popular apps each

day, automating the review response process is useful for app

developers. In this work, we propose a novel approach named

RRGen by explicitly incorporating review attributes and oc-

currences of specific keywords into the basic NMT model.

Analysis using automated metric and human evaluation shows

that our proposed model outperforms baseline approaches. In

future, we will conduct evaluation using a larger dataset and

deploy the model with our industry partners.

ACKNOWLEDGEMENT

The work described in this paper was supported by the

Research Grants Council of the Hong Kong Special Adminis-

trative Region, China (No. CUHK 14210717 and No. CUHK

14208815 of the General Research Fund), and Microsoft

Research Asia (2018 Microsoft Research Asia Collaborative

Research Award).

REFERENCES

[1] “Survey on user ratings and reviews,” https://www.apptentive.com/blog/
2015/05/05/app-store-ratings-reviews-guide/.

[2] C. Gao, J. Zeng, M. R. Lyu, and I. King, “Online app review analysis for
identifying emerging issues,” in Proceedings of the 40th International

Conference on Software Engineering (ICSE). ACM, 2018, pp. 48–58.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

[3] A. Di Sorbo, S. Panichella, C. V. Alexandru, J. Shimagaki, C. A.
Visaggio, G. Canfora, and H. C. Gall, “What would users change in my
app? summarizing app reviews for recommending software changes,”
in Proceedings of the 24th SIGSOFT International Symposium on

Foundations of Software Engineering (FSE). ACM, 2016, pp. 499–
510.

[4] “Ratings, reviews, and responses in app store,” https://developer.apple.
com/app-store/ratings-and-reviews/.

[5] “View and analyze your app’s ratings and reviews,” https://support.
google.com/googleplay/android-developer/answer/138230?hl=en.

[6] J. Oh, D. Kim, U. Lee, J. Lee, and J. Song, “Facilitating developer-user
interactions with mobile app review digests,” in 2013 ACM SIGCHI

Conference on Human Factors in Computing Systems, CHI ’13, Paris,

France, April 27 - May 2, 2013, Extended Abstracts, 2013, pp. 1809–
1814.

[7] S. McIlroy, W. Shang, N. Ali, and A. E. Hassan, “Is it worth responding
to reviews? studying the top free apps in google play,” IEEE Software,
vol. 34, no. 3, pp. 64–71, 2017.

[8] S. Hassan, C. Tantithamthavorn, C. Bezemer, and A. E. Hassan, “Study-
ing the dialogue between users and developers of free apps in the google
play store,” Empirical Software Engineering, vol. 23, no. 3, pp. 1275–
1312, 2018.

[9] M. Nayebi, L. Dicke, R. Ittyipe, C. Carlson, and G. Ruhe, “Essmart way
to manage user requests,” CoRR, vol. abs/1808.03796, 2018.

[10] D. Wang, N. Jojic, C. Brockett, and E. Nyberg, “Steering output style and
topic in neural response generation,” in Proceedings of the Conference

on Empirical Methods in Natural Language Processing, EMNLP 2017,

Copenhagen, Denmark, September 9-11, 2017, 2017, pp. 2140–2150.

[11] J. Li and X. Sun, “A syntactically constrained bidirectional-
asynchronous approach for emotional conversation generation,” in Pro-

ceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, Brussels, Belgium, October 31 - November 4,

2018, 2018, pp. 678–683.

[12] A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell,
J. Nie, J. Gao, and B. Dolan, “A neural network approach to context-
sensitive generation of conversational responses,” in NAACL HLT 2015,

The Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Denver,

Colorado, USA, May 31 - June 5, 2015, pp. 196–205.

[13] L. Zhou, J. Gao, D. Li, and H. Shum, “The design and implementation
of xiaoice, an empathetic social chatbot,” CoRR, vol. abs/1812.08989,
2018.

[14] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” in Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language

Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting

of SIGDAT, a Special Interest Group of the ACL, 2014, pp. 1724–1734.

[15] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014.

[16] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proceedings of the 24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, FSE 2016, Seattle, WA, USA,

November 13-18, 2016, 2016, pp. 631–642.

[17] L. Dong and M. Lapata, “Language to logical form with neural atten-
tion,” in Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,

Germany, Volume 1: Long Papers, 2016.

[18] S. Jiang and C. McMillan, “Towards automatic generation of short sum-
maries of commits,” in Proceedings of the 25th International Conference

on Program Comprehension, ICPC 2017, Buenos Aires, Argentina, May

22-23, 2017, 2017, pp. 320–323.

[19] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -

November 03, 2017, 2017, pp. 135–146.

[20] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep learning
type inference,” in Proceedings of the 2018 ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake

Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 152–162.

[21] M. R. Islam, “Numeric rating of apps on google play store by senti-
ment analysis on user reviews,” in 2014 International Conference on

Electrical Engineering and Information & Communication Technology.
IEEE, 2014, pp. 1–4.

[22] K. Sharma and K. Lin, “Review spam detector with rating consistency
check,” in ACM Southeast Regional Conference 2013, ACM SE’13,

Savannah, GA, USA, April 4-6, 2013, 2013, pp. 34:1–34:6.

[23] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang, “Neural-
machine-translation-based commit message generation: how far are
we?” in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, ASE 2018, Montpellier, France,

September 3-7, 2018, 2018, pp. 373–384.

[24] Z. Ji, Z. Lu, and H. Li, “An information retrieval approach to short text
conversation,” CoRR, vol. abs/1408.6988, 2014.

[25] Y. Song, C. Li, J. Nie, M. Zhang, D. Zhao, and R. Yan, “An ensemble
of retrieval-based and generation-based human-computer conversation
systems,” in Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,

Stockholm, Sweden., 2018, pp. 4382–4388.

[26] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-

tion retrieval. Cambridge University Press, 2008.

[27] K. Papineni, S. Roukos, T. Ward, and W. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th

Annual Meeting of the Association for Computational Linguistics, July

6-12, 2002, Philadelphia, PA, USA., 2002, pp. 311–318.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” CoRR, vol. abs/1409.0473, 2014.

[29] R. Collobert and S. Bengio, “Links between perceptrons, mlps and
svms,” in Machine Learning, Proceedings of the Twenty-first Interna-

tional Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004,
2004.

[30] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing,

EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, 2015, pp.
1412–1421.

[31] W. Maalej and H. Nabil, “Bug report, feature request, or simply praise?
on automatically classifying app reviews,” in 23rd IEEE International

Requirements Engineering Conference, RE, Ottawa, ON, Canada, Au-

gust 24-28, 2015, 2015, pp. 116–125.

[32] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing

Systems 27: Annual Conference on Neural Information Processing

Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, 2014,
pp. 3104–3112.

[33] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur,
“Recurrent neural network based language model,” in INTERSPEECH

2010, 11th Annual Conference of the International Speech Communi-

cation Association, Makuhari, Chiba, Japan, September 26-30, 2010,
2010, pp. 1045–1048.

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems 26:

27th Annual Conference on Neural Information Processing Systems

2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,

Nevada, United States., 2013, pp. 3111–3119.

[35] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” in Proceedings of the Conference

on Empirical Methods in Natural Language Processing, EMNLP 2015,

Lisbon, Portugal, September 17-21, 2015, 2015, pp. 379–389.

[36] Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” CoRR, vol.
abs/1703.03130, 2017.

[37] J. Zeng, J. Li, Y. Song, C. Gao, M. R. Lyu, and I. King, “Topic memory
networks for short text classification,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing,

Brussels, Belgium, October 31 - November 4, 2018, pp. 3120–3131.

[38] N. Chen, J. Lin, S. C. Hoi, X. Xiao, and B. Zhang, “Ar-miner: mining
informative reviews for developers from mobile app marketplace,” in
Proceedings of the 36th International Conference on Software Engi-

neering (ICSE). ACM, 2014, pp. 767–778.

[39] E. Guzman and W. Maalej, “How do users like this feature? a fine
grained sentiment analysis of app reviews,” in Proceedings of the 22nd

International Conference on Requirements Engineering (RE). IEEE,
2014, pp. 153–162.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

[40] M. Thelwall, K. Buckley, G. Paltoglou, D. Cai, and A. Kappas, “Senti-
ment in short strength detection informal text,” JASIST, vol. 61, no. 12,
pp. 2544–2558, 2010.

[41] D. J. Montana and L. Davis, “Training feedforward neural networks
using genetic algorithms,” in Proceedings of the 11th International Joint

Conference on Artificial Intelligence. Detroit, MI, USA, August 1989,
1989, pp. 762–767.

[42] G. A. Miller, “Wordnet: A lexical database for english,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, 1995.

[43] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” CoRR, vol.
abs/1412.3555, 2014.

[44] Z. Wu and S. King, “Investigating gated recurrent networks for speech
synthesis,” in IEEE International Conference on Acoustics, Speech and

Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016,
2016, pp. 5140–5144.

[45] “Glove: Global vectors for word representation,” https://nlp.stanford.edu/
projects/glove/.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
[47] “Pytorch,” https://pytorch.org/.
[48] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: MSR

for app stores,” in 9th IEEE Working Conference of Mining Software

Repositories, MSR, June 2-3, 2012, Zurich, Switzerland, 2012, pp. 108–
111.

[49] “App annie,” https://www.appannie.com/.
[50] Y. Man, C. Gao, M. R. Lyu, and J. Jiang, “Experience report: Under-

standing cross-platform app issues from user reviews,” in 27th IEEE

International Symposium on Software Reliability Engineering, ISSRE

2016, Ottawa, ON, Canada, October 23-27, 2016, 2016, pp. 138–149.
[51] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen, “Mining

user opinions in mobile app reviews: A keyword-based approach (T),”
in 30th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, 2015,
pp. 749–759.

[52] C. Liu, R. Lowe, I. Serban, M. Noseworthy, L. Charlin, and J. Pineau,
“How NOT to evaluate your dialogue system: An empirical study of
unsupervised evaluation metrics for dialogue response generation,” in
Proceedings of the 2016 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4,

2016, 2016, pp. 2122–2132.
[53] P. Yin and G. Neubig, “A syntactic neural model for general-purpose

code generation,” in Proceedings of the 55th Annual Meeting of the As-

sociation for Computational Linguistics, ACL 2017, Vancouver, Canada,

July 30 - August 4, Volume 1: Long Papers, 2017, pp. 440–450.
[54] S. Liu, H. Chen, Z. Ren, Y. Feng, Q. Liu, and D. Yin, “Knowledge

diffusion for neural dialogue generation,” in Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics, ACL

2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers,
2018, pp. 1489–1498.

[55] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics

bulletin, vol. 1, no. 6, pp. 80–83, 1945.
[56] S. E. Ahmed, “Effect sizes for research: A broad application approach,”

Technometrics, vol. 48, no. 4, p. 573, 2006.
[57] X. Du and C. Cardie, “Harvesting paragraph-level question-answer

pairs from wikipedia,” in Proceedings of the 56th Annual Meeting of

the Association for Computational Linguistics, ACL 2018, Melbourne,

Australia, July 15-20, 2018, Volume 1: Long Papers, 2018, pp. 1907–
1917.

[58] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International

Symposium on Software Testing and Analysis, ISSTA 2016, Saarbrücken,

Germany, July 18-20, 2016, 2016, pp. 165–176.
[59] C. Gao, H. Xu, J. Hu, and Y. Zhou, “Ar-tracker: Track the dynamics

of mobile apps via user review mining,” in 2015 IEEE Symposium on

Service-Oriented System Engineering, SOSE 2015, San Francisco Bay,

CA, USA, March 30 - April 3, 2015, 2015, pp. 284–290.
[61] N. Novielli, D. Girardi, and F. Lanubile, “A benchmark study on

sentiment analysis for software engineering research,” in Proceedings

[60] “Developers can finally respond to app
store reviews,” https://techcrunch.com/2017/03/28/
developers-can-finally-respond-to-app-store-reviews-heres-how-it-works/.
of the 15th International Conference on Mining Software Repositories,

MSR 2018, Gothenburg, Sweden, May 28-29, 2018, 2018, pp. 364–375.

[62] I. Salman, A. T. Misirli, and N. J. Juzgado, “Are students represen-
tatives of professionals in software engineering experiments?” in 37th

IEEE/ACM International Conference on Software Engineering, ICSE

2015, Florence, Italy, May 16-24, 2015, Volume 1, 2015, pp. 666–676.

[63] R. Feldt, T. Zimmermann, G. R. Bergersen, D. Falessi, A. Jedlitschka,
N. Juristo, J. Münch, M. Oivo, P. Runeson, M. J. Shepperd, D. I. K.
Sjøberg, and B. Turhan, “Four commentaries on the use of students and
professionals in empirical software engineering experiments,” Empirical

Software Engineering, vol. 23, no. 6, pp. 3801–3820, 2018.

[64] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci,
and A. D. Lucia, “Recommending and localizing change requests for
mobile apps based on user reviews,” in IEEE/ACM 39th International

Conference on Software Engineering (ICSE’17), 2017, pp. 106–117.

[65] G. Grano, A. Ciurumelea, S. Panichella, F. Palomba, and H. C. Gall,
“Exploring the integration of user feedback in automated testing of an-
droid applications,” in IEEE 25th International Conference on Software

Analysis, Evolution and Reengineering (SANER’18), 2018, pp. 72–83.

[66] C. Gao, W. Zheng, Y. Deng, D. Lo, J. Zeng, M. R. Lyu, and I. King,
“Emerging app issue identification from user feedback: experience
on wechat,” in Proceedings of the 41st International Conference on

Software Engineering: Software Engineering in Practice, ICSE (SEIP),

Montreal, QC, Canada, May 25-31, 2019, pp. 279–288.

[67] C. Iacob, V. Veerappa, and R. Harrison, “What are you complaining
about?: a study of online reviews of mobile applications,” in BCS-

HCI ’13 Proceedings of the 27th International BCS Human Computer

Interaction Conference, Brunel University, London, UK, 9-13 September

2013, 2013, p. 29.

[68] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature
requests from online reviews,” in Proceedings of the 10th Working

Conference on Mining Software Repositories, MSR ’13, San Francisco,

CA, USA, May 18-19, 2013, 2013, pp. 41–44.

[69] X. Gu and S. Kim, “”what parts of your apps are loved by users?” (T),”
in 30th IEEE/ACM International Conference on Automated Software

Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015, 2015,
pp. 760–770.

[70] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app
store analysis for software engineering,” IEEE Trans. Software Eng.,
vol. 43, no. 9, pp. 817–847, 2017.

[71] J. Zeng, J. Li, Y. He, C. Gao, M. R. Lyu, and I. King, “What you say
and how you say it: Joint modeling of topics and discourse in microblog
conversations,” TACL, vol. 7, pp. 267–281, 2019.

[72] G. Chen, E. Tosch, R. Artstein, A. Leuski, and D. R. Traum, “Evalu-
ating conversational characters created through question generation,” in
Proceedings of the Twenty-Fourth International Florida Artificial Intel-

ligence Research Society Conference, May 18-20, 2011, Palm Beach,

Florida, USA, 2011.

[73] A. Ritter, C. Cherry, and W. B. Dolan, “Data-driven response generation
in social media,” in Proceedings of the 2011 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2011, 27-31 July

2011, John McIntyre Conference Centre, Edinburgh, UK, A meeting of

SIGDAT, a Special Interest Group of the ACL, 2011, pp. 583–593.

[74] O. Vinyals and Q. V. Le, “A neural conversational model,” CoRR, vol.
abs/1506.05869, 2015. [Online]. Available: http://arxiv.org/abs/1506.
05869

[75] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar,
A. Constantin, and E. Herbst, “Moses: Open source toolkit for statistical
machine translation,” in ACL 2007, Proceedings of the 45th Annual

Meeting of the Association for Computational Linguistics, June 23-30,

2007, Prague, Czech Republic, 2007.

[76] G. Salton, A. Wong, and C. Yang, “A vector space model for automatic
indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620, 1975.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on December 01,2020 at 06:35:38 UTC from IEEE Xplore. Restrictions apply.

