
Agent-based Multimedia Data Sharing Platform

Anson Lee, Michael Lyu, Irwin King

Department of CSE

The Chinese University of Hong Kong

Shatin, New Territories, Hong Kong

Abstract This paper proposes an agent-

based platform which allows users to re-

ceive and exchange multimedia data from

distributed sources, e.g. digital libraries, im-

age databases and video databases. How-

ever, the multitude, diversity and the dy-

namic nature of multimedia data on the In-

ternet make it di�cult for us to access any

speci�c piece of multimedia data. Nonethe-

less, we use software agents to (1) identify

and collect audio and video �les from het-

erogeneous information sources over the In-

ternet, (2) accept queries from a client, (3)

process and present the query results to the

client and (4) index and maintain a cen-

tralized database for storing meta-data. An-

other important aspect of this platform is the

transmission plan. It can help us to reserve

enough bandwidth and to delivery multime-

dia data on the Internet.

With the agent paradigm in our system,

we are able (1) to increase system's robust-

ness, (2) to increase system modularity and

therefore make system maintenance easier,

(3) to take advantage of distributed com-

puting resources, (4) to make delegation of

tasks easier in a centralized control, and (5)

to make distributed control more feasible. In

this paper, we describe the system architec-

ture and the transmission plan for streaming

audio or video �les. Experimental results

show that (1) our transmission plan can re-

serve enough bandwidth for audio and video

delivery, (2) the platform can be extended

easily to support a large number of concur-

rent client connections.

Keywords: software agent, digital library, dis-

tributed information retrieval, transmission plan

1 Introduction

Distributed �le sharing system over the Inter-

net has recently been a very hot topic in the

academic as well as in the commercial and le-

gal arena. The huge success and popularity

of Napster's music sharing paradigm has taken

the world by storm. Nonetheless, there are

still interesting research issues surrounding the

multimedia data sharing platform that require

a more detailed examination.

The problem of distributed multimedia data

retrieval can be solved by using software agents

to identify the information sources. Hence, we

designed and implemented an agent platform

and a client application for multimedia data

sharing. Our platform can support a number of

information sources, e.g. digital libraries, data

repositories, news sites, etc. The main features

of our system are capable (1) to support the

streaming MPEG audio and video over the In-

ternet, (2) to make fast and accurate queries

with the use of an user-friendly interface, (3)

to scale up easily because the server is opti-

mized for parallel processing, and (4) to allow

e�cient communications between agents as our

inter-agent communication protocol is tailored

for our agents which can minimize the overhead

during communication.

There are other systems that are capable of

supporting multimedia information access and

retrieval [1, 2]. These systems use existing mo-

bile agent platforms like Grasshopper [3] to de-

velop a small-scale �le sharing system which

require users to install an agent execution en-

vironment on their computer. However, we do

not require users to install any agent execution



environment. Another distinguishing feature

of our system is that we are capable to develop

large-scale �le sharing system. All meta data is

stored in our server which make the workload

of the client computer relatively low.

In the next section, we will include a sur-

vey of mobile-agent system, and briey discuss

their similarities and di�erences. Section 3 will

introduce the system architecture and explain

the use of each system component. Section 4

will focus on an audio transmission plan that

we have designed and implemented. Section 5

will give some experimental results to demon-

strate our system's performance characteristics

under the multiple-client connection environ-

ment.

2 Survey of mobile agent sys-

tems

In this section, we will examine four represen-

tatives of mobile-agent system.

2.1 D'Agents

D'Agents, which was also known as Agent

Tcl[4], support agents written in Tcl, Java and

Scheme, as well as stationary agents written in

C and C++. Like Ara, D'Agents provides a go

instruction (Tcl and Java only), and automat-

ically captures and restores the complete state

of a migrating agent. Unlike Ara, only the

D'Agents server is multi-threaded; each agent

is executed in a separate process, which simpli-

�es the implementation considerably, but adds

the overhead of inter-process communication.

The D'Agent server uses public-key cryptogra-

phy to authenticate the identity of an incoming

agent's owner. Stationary resource-manager

agents assign access rights to the agent based

on this authentication and the administrator's

preferences, and language-speci�c enforcement

modules enforce the access rights, either pre-

venting a violation from occurring or terminat-

ing the agent when a violation occurs. Each

resource manager is associated with a speci�c

resource such as the �le system. The resource

managers can be as complex as desired, but the

default managers simply associate a list of ac-

cess rights with each owner. Unlike Ara, most

resource managers are not consulted when the

agent arrives, but instead only when the agent

attempts to access the corresponding resource

or explicitly requests a speci�c access right. At

that point, the resource manager forwards all

relevant access rights to the enforcement mod-

ule, and D'Agents behaves in the same way

as Ara, enforcing the access rights with short

wrapper functions around the resource access

functions.

D'Agents has been used in several

information-retrieval applications, includ-

ing the 3DBase, a system for retrieving

three-dimensional drawings (CAD drawings)

of mechanical parts based on their similarity

to a query drawing.

2.2 Java-Based systems

Aglets. Aglets [5]was one of the �rst Java-

based systems. Like all commercial systems,

including Concordia, Jumping Beans and Voy-

ager, Aglets does not capture an agent's thread

state during migration, since thread capture

requires modi�cations to the standard Java vir-

tual machine. In other words, thread cap-

ture means that the system could be used only

with one speci�c virtual machine, signi�cantly

reducing market acceptance. Thus, rather

than providing the go primitive of D'Agents

and Ara, Aglets and the other commercial

systems instead use variants of the Tacoma

model, where agent execution is restarted from

a known entry point after each migration. In

particular, Aglets uses an event-driven model.

When an agent wants to migrate, it calls the

dispatchmethod. The Aglets system calls the

agent's onDispatching method, which per-

forms application-speci�c cleanup, kills the

agent's threads, serializes the agent's code and

object state, and sends the code and object

state to the new machine. On the new ma-

chine, the system calls the agent's onArrival

method, which performs application-speci�c

initialization, and then calls the agent's run



method to restart agent execution.

Aglets includes a simple persistence facility,

which allows an agent to write its code and ob-

ject state to secondary storage and temporarily

\deactivate" itself; proxies, which act as repre-

sentatives for Aglets, and among other things,

provide location transparency; lookup service

for �nding moving Aglets; and a range of

message-passing facilities for inter-agent com-

munication. The Aglet security model is simi-

lar to both the D'Agent and Ara security mod-

els, and to the security models for the other

Java-based systems below. An Aglet has both

an owner and a manufacturer. When the agent

enters a context (i.e., a virtual place) on a par-

ticular machine, the context assigns a set of

permissions to the agent based on its authen-

ticated owner and manufacturer. These per-

missions are enforced with standard Java secu-

rity mechanisms, such as a customized security

manager.

Concordia. Concordia is a Java-based mobile

agent system that has a strong focus on secu-

rity and reliability. Like most other mobile-

Java agent systems, they move the agent ob-

jects code and data, but not thread state, from

one machine to another. Like many other sys-

tems, Concordia agents are bundled with an

itinerary of places to visit, which can be ad-

justed by the agent. If the remote site is not

currently reachable, agents, events and mes-

sages can be queued. Agents are carefully

saved to a persistent store, before departing

a site and after arriving at a new site, to

avoid agent loss in the event of a machine

crash. Agents are protected from tampering

through encryption while they are in transmis-

sion or stored on disk; agent hosts are pro-

tected from malicious agents through crypto-

graphic authentication of the agent's owner,

and access control lists that guard each re-

source.

Jumping Beans. Jumping Beans is a Java-

based framework for mobile agents. Comput-

ers wishing to host mobile agents run a Jump-

ing Beans agency, which is associated with

some Jumping Beans domain. Each domain

has a central server, which authenticates the

agencies joining the domain. Mobile agents

move from agency to agency, and agents can

send messages to other agents; both mech-

anisms are implemented by passing through

the server. Thus the server becomes a cen-

tral point for tracking, managing, and au-

thenticating agents. It also becomes a cen-

tral point of failure or a performance bottle-

neck, although they intend to develop scalable

servers to run on parallel machines. Another

approach to scalability is to create many small

domains, each with its own server. In the cur-

rent version, agents cannot migrate between

domains, but they intend to support that ca-

pability in future versions. Security and re-

liability appear to be important concerns of

their system; public-key cryptography is used

to authenticate agencies to the server, and vice

versa; access-control lists are used to control an

agent's access to resources, based on the per-

missions given to the agent's owning user.

Although they claim to move all agent code,

data, and state, it is not clear from their docu-

mentation whether they actually move thread

state, as in Agent Java. They require that the

agent be a serializable object, so it seems likely

that they implement the weaker form of mobil-

ity common to other Java-based agent systems.

2.3 Similarities and di�erences

All mobile-agent systems have the same gen-

eral architecture: a server on each machine

accepts incoming agents, and for each agent,

starts up an appropriate execution environ-

ment, loads the agent's state information into

the environment, and resumes agent execution.

Some systems, such as the Java-only systems

above, have multi-threaded servers and run

each agent in a thread of the server process it-

self; other systems have multi-process servers

and run each agent in a separate interpreter

process; and the rest use some combination

of these two extremes. D'Agents, for exam-

ple, has a multi-threaded server to increase ef-

�ciency, but separate interpreter processes to

simplify its implementation. Jumping Beans

is of particular note since it uses a centralized



server architecture (in which agents must pass

through a central server on their way from one

machine to another). rather than a peer-to-

peer server architecture (in which agents move

directly from one machine to another). Al-

though this centralized server easily can be-

come a performance bottleneck, it greatly sim-

pli�es, tracking, administration and other is-

sues, perhaps increasing initial market accep-

tance.

Currently, for reasons of portability and se-

curity, nearly all mobile-agent systems either

interpret their languages directly, or compile

their languages into bytecodes and then inter-

pret the bytecodes. Java, which is compiled

into bytecodes for the Java virtual machine, is

the most popular agent language, since (1) it

is portable but reasonably e�cient, (2) its ex-

isting security mechanisms allow the safe ex-

ecution of untrusted code, and (3) it enjoys

widespread market penetration. Java is used

in all commercial systems and in several re-

search systems. Due to the recognition that

agents must execute at near-native speed to be

competitive with traditional techniques in cer-

tain applications, however, several researchers

are experimenting with \on-the-y" compila-

tion. The agent initially is compiled into byte-

codes, but compiled into native code on each

machine that it visits, either as soon as it ar-

rives or while it is executing. The most recent

Java virtual machines use on-the-y compila-

tion, and the Java-only mobile-agent systems,

which are not tied to a speci�c virtual machine,

can take immediate advantages of the execu-

tion speedup.

Mobile-agent systems generally provide one

of two kinds of migration: (1) go, which cap-

tures an agent's object state, code, and control

state, allowing it to continue execution from

the exact point at which it left o�; and (2)

entry point, which captures only the agent's

object state and code, and then calls a known

entry point inside its code to restart the agent

on the new machine. The go model is more

convenient for the end programmer, but more

work for the system developer since routines

to capture control state must be added to ex-

isting interpreters. All commercial Java-based

systems use entry-point migration, since mar-

ket concerns demand that these systems run on

top of unmodi�ed Java virtual machines. Re-

search systems use both migration techniques.

Finally, existing mobile-agent systems focus

on protecting an individual machine against

malicious agents. Aside from encrypting an

agent in transit and allowing an agent to au-

thenticate the destination machine before mi-

grating, most existing systems do not provide

any protection for the agent or for a group of

machines that is not under single administra-

tive control.

Other di�erences exist among the mobile-

agent systems, such as the granularity of their

communication mechanisms, whether they are

built on top of or can interact with CORBA,

and whether they conform to the emerging

mobile-agent standards. Despite these di�er-

ences, however, all of the systems discussed

above (with the exception ofMessengers, which

is a lighter-weight mobile-agent system) are in-

tended for the same applications, such as work-

ow, network management, and automated

software installation. All of the systems are

suitable for distributed information retrieval,

and the decision of which one to use must be

based on the desired implementation language,

the needed level of security, and the needed

performance.

3 System architecture

Our platform is a multi-agent system in which

three semi-autonomous agents interact or work

together to perform a user's goal. They are

the Server Agent(SA), Query Agent(QA) and

Database Agent(DA). Figure 1 shows the com-

plete system architecture and the relationships

between the platform and client computers.

Server side agents such as the SA, the QA and

the DA are running in Agent Tcl [4] which is

built on top of the server machine. In addition,

a database is installed for storing meta-data.

This design allows us to develop a thin client

application. The advantage of using thin client



Development platform : Agent Tcl

Client
Agent

Client
Agent

Human
User

Server
Agent

Client
Application

Multimedia
 meta-data

Agent registry

Database
Agent

Client
Application

Human
User

Human
User

Client
Application

Client
Agent

Query
Agent

Figure 1: The system architecture.

application is to reduce the CPU consumption

in user's computer.

In the client application, there is a Client

Agent(CA) for communicating with the SA.

User request will be received from the CA's

user interface and forwarded it to SA. The CA

is also responsible for presenting the query re-

sults to the user.

3.1 System Components

MySQL. MySQL is a database management

system. A database is a structured collection of

data. We stores data in separate tables rather

than putting all the data in one big storeroom.

This adds speed and exibility. The tables are

linked by de�ned relations making it possible

to combine data from several tables on request.

The reason of choosing MySQL is that MySQL

is very fast, reliable, and easy to use. MySQL

also has a very practical set of features devel-

oped in very close cooperation with our users.

The most important, it is open source and free

of charge. Open source means that it is pos-

sible for anyone to use and modify. Anybody

can download MySQL from the Internet and

use it without paying anything. Anybody so

inclined can study the source code and change

it to �t their needs.

Agent Tcl. As we have mentioned be-

fore, Agent Tcl is an agent development plat-

form. The reasons of using it are (1) easy to

scale up, (2) allow an agent to choose the best

migration strategy given the current network

and (3) support for mobile-computing environ-

ments, where applications must deal with low-

bandwidth, high-latency and unreliable net-

work links.

3.2 Roles of the Agents

An user initiates the query for multimedia data

by issuing a request to the CA. The CA re-

quests for multimedia data speci�cations from

the user. The speci�cation must include a de-

scription of the multimedia content. For au-

dio �le like songs, it should include the name

of the song, the singer's name, and the music

category. For video �le like news, it should in-

clude the news category, the reporter's name

and the date of that news. At the same time,

the CA will register itself to the agent registry

database and submit a list of multimedia data

available in the user's computer to the SA. The

SA is responsible for dispatching client's re-

quests to the QA or the DA. If the client's

request is a query, it will be forwarded to the

QA. The QA is responsible for making query to

�nd out the site containing the requested mul-

timedia data. If the client's request is a list

of multimedia data, it will be forwarded to the

DA for indexing and updating the multimedia

meta-data database. Moreover, the DA will be

asked to update the database if a multimedia

data is removed from a particular site.

3.3 Client Application

The client application supports agents with

the following missions: (1) search MPEG au-

dio �les and MPEG video �les by user's spec-

i�cation, (2) stream and play audio �les and

video �les on a remote location. It can decode

two types of multimedia �le formats including

MPEG I layer III audio and MPEG I video.

However, we face problems in e�ciently trans-

fer audio and video �les over the Internet. The

bursty, variable-bit-rate tra�c complicates the

e�ort to allocate network resources to ensure

continuous playback at client sites. Our ap-

proach for smoothing compressed video or au-



128kbps

bits transferred
(bits)

sleep interval

ideal transmission plan

Figure 2: Transmission plan.

dio �le is try to achieve a constant transmission

rate for the entire delivery sequence.

4 Transmission Plan

The transfer of multimedia data on the Inter-

net requires server to support large uctua-

tions in bandwidth requirements. The bursty,

variable-bit-rate tra�c complicates the e�ort

to allocate server and network resources to en-

sure continuous playback at client sites. Some

of the famous transmission plans are Criti-

cal Bandwidth Allocation, Minimum Changes

Bandwidth Allocation, Minimum Variability

Bandwidth Allocation and Piecewise Constant

Rate Transmission and Transport Algorithm.

All of them require an intensive CPU consump-

tion and they have di�erent performance to-

wards the peak rate requirements, the num-

ber of bandwidth changes, the variability of

the bandwidth allocations and the variability

of the time between bandwidth changes. How-

ever, the distinguishing feature of our plan is

that we are capable to reserve enough band-

width for the transmission but still have a low

CPU consumption.

For the audio delivery, we try to use the fol-

lowing transmission plan to approximate the

bit rate requirement of streaming MPEG au-

dio which is 128kbps [6][7].

The bit rate requirement of streaming

MPEG audio can be approximated by adding

some sleeping intervals before we transmit a

Fover

Funder

Fover

Funder

Decrease BandwidthIncrease Bandwidth

Figure 3: Valid transmission plan.

new audio packet. The use of this transmis-

sion plan is to ensure the sender must always

transmit quickly enough to avoid bu�er under-

ow in the client side. Similarly, it should not

allow a client to receive too much data to pre-

vent overow of the playback bu�er.

Suppose time slot i requires fi bytes of stor-

age, the lower bound and the upper bound of

the transmission rate are approximated by:

Funder(k) =
kX

i=0

fi

and

Fover(k) = b+
kX

i=0

fi

where k = 0; 1; :::; n� 1 and b is the size of the

playback bu�er.

Experimental results show that our trans-

mission plan is valid because it satis�es the

following inequality:

Funder(k) �
kX

i=0

ci � Fover(k)

where ci is the transmission rate during time

slot i of the smoothed audio stream. The above

inequality is shown in Figure 3.

5 Experimental Results

Given a query to search for an audio �le by

keyword matching, we are able to measure the

query time and time delay in delivering the �le

to the user. This experiment was done on a PC



with a 300MHz PII Intel CPU, 128Mb mem-

ory and a 12Gb harddisk. Our platform was

built on top of Redhat Linux 6.2 with kernel-

2.2.16. In this experiment, we want to show

that our system can support a large number of

concurrent connections without too much per-

formance degradation. The result is summa-

rized in Table 1. In this experiment, we try

Table 1: Measurement of Average Query Time

Number of Average

concurrent connection query time

1 0.76sec

10 0.96sec

20 1.07sec

40 1.12sec

to run all client applications on a single com-

puter. We �nd that the query time is a�ected

by number of concurrent connections. They

have a linear relationship. We believe that if

we run client applications in separate comput-

ers, the query time can be shorten even fur-

ther. However, the delay is still acceptable in

this experiment. It can be shown that the use

of agent paradigm allows us to scale up the sys-

tem easily, increase the its robustness, and to

minimize the query time.

6 Conclusion

In this paper, we have introduced our agent

platform for sharing multimedia data. We dis-

cussed the system architecture and the role

of agents. Moreover, we implemented a sim-

ple transmission plan to deliver audio or video

�les over the Internet. Experimental results

show that the transmission plan not only uti-

lizes the bandwidth e�ciently but also pre-

serves the quality of the multimedia data con-

tent. Moreover, results show that our system

can be scaled up easily but still keep a short

query time.

7 Acknowledgments

The work described in this paper was fully

supported by the Research Grants Council of

the Hong Kong Special Administrative Re-

gion, with Project Numbers CUHK4193/00

and CUHK4407/99E.

References

[1] A. Karmouch F. Ziade. A multimedia

transportable agent system. In Proc. of

IEEE Canadian Conf. Elec. and Computer

Engineering, 1997.

[2] B. Falchuk and A. Karmouch. A mobile

agent prototype for autonomous multime-

dia information access, interaction and re-

trieval. In Proceedings of Multimedia Mod-

eling, 1997.

[3] M. Breugst, I. Busse, S. Covaci, and

T. Magedanz. Grasshopper - a mobile agent

platform for in based service environments.

In IEEE IN Workshop 1998, May 1998.

[4] Gray R.S. Agent tcl: A exible and secure

mobile-agent system. In Proc. of the Fourth

Annual Tcl/Tk Workshop, Monteray CA,

1996.

[5] Lange D. and Chang D.T. Aglets work-

bench - programming mobile agents in java.

White Paper, IBM Corporation, Japan,

1996.

[6] Peter Noll. Mpeg digital audio coding.

IEEE Signal Processing Magazine, pages

59{81, 1997.

[7] Davis Pan. A tutorial on mpeg/audio com-

pression. IEEE Multimedia, pages 60{74,

1995.


