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Figure 1: Local video upsampling. A magnifying effect is simulated by upsampling local regions using our algorithm.

Abstract
We propose a simple but effective upsampling method for auto-
matically enhancing the image/video resolution, while preserving
the essential structural information. The main advantage of our
method lies in a feedback-control framework which faithfully re-
covers the high-resolution image information from the input data,
without imposing additional local structure constraints learned from
other examples. This makes our method independent of the qual-
ity and number of the selected examples, which are issues typical
of learning-based algorithms, while producing high-quality results
without observable unsightly artifacts. Another advantage is that
our method naturally extends to video upsampling, where the tem-
poral coherence is maintained automatically. Finally, our method
runs very fast. We demonstrate the effectiveness of our algorithm
by experimenting with different image/video data.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; 1.4.3 [Image Processing and
Computer Vision]: Enhancement—Sharpening and deblurring

Keywords: image/video upsampling, image/video enhancement,
image deconvolution

1 Introduction
The operation which estimates a fine-resolution image/video from
a coarse-resolution input is often referred to as image/video upsam-
pling. This is a fundamentally important imaging research topic,
where the main purpose is to recover sharp edges and textures,
while suppressing pixel blocking (known as jaggies) and other vi-
sual artifacts. For videos, there is an additional requirement – that

is, to maintain the natural temporal coherence and to avoid flick-
ering among the upsampled frames during playback. Image/video
upsampling finds many applications in computer vision and graph-
ics, such as resizing, surveillance, and texture mapping. It is vital
for all image browsing and video play-back softwares, where the
zoom-in function is almost standard.
Single image/video upsampling corresponds well to the situation
where multiple inputs are not available. As the number of the un-
known pixels to be inferred is much more than the size of the input
data, this problem can be very challenging. For instance, if we up-
sample an image by a factor of 4, on average, one pixel in the input
image corresponds to 16 unknown pixels. The simplest techniques
for image/video resizing are those based on interpolation or linear
filtering, including the bilinear, bicubic, and Lanczos algorithms.
These methods run fast and are easy to implement. However, they
inevitably produce blurry results when applied to upsampling an
image/video with a large factor. Example-based methods [Freeman
et al. 2002] aim to learn appropriate high-frequency information
from a set of training images. These methods are usually much
more computationally expensive, and depend critically on the qual-
ity of the available examples.
In this paper, we describe a new single-image (or video frame) up-
sampling algorithm. Our algorithm is based on an image forma-
tion process [Baker and Kanade 2000] that models how a coarse-
level image is produced from its clear finer-resolution version. Our
goal is to simulate a reasonable inversion of this image formation
process to infer an upsampled image that is not only free of ob-
servable artifacts but also faithful to the low-resolution input. To
this end, we develop a feedback-control loop to automatically mea-
sure whether the output from the system satisfies the imaging model
through a de-convolution and re-convolution scheme. This scheme
provides an important clue on how the image estimate deviates from
the unknown ground-truth. We then refine our estimates by rein-
forcing the pixel information from the input image/video. Conse-
quently, this approach yields an image upsampling algorithm that is
simple and efficient, wherein the majority of the processing time is
spent only on a handful of Fast Fourier Transform (FFT) operations.
More importantly, when our method is applied to video in a frame-
by-frame manner, the temporal coherence can be naturally pre-
served without any additional or special treatment. This is because
our method provides a good natural-image estimate for the inverted
image formation process. It does not rely on imposing strong lo-
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cal constraints (such as using exemplar patches or gradient infor-
mation) that are widely employed in image upsampling for recon-
structing sharp edges. Figure 1 demonstrates one example that sim-
ulates the magnifying-glass effect during video playback. Readers
are referred to our supplementary video for the complete sequences.

2 Related Work
Multi-image super-resolution methods attempt to reconstruct a sin-
gle high-resolution image from several low-resolution inputs with
sub-pixel displacements. Typical approaches [Baker and Kanade
2000; Tipping and Bishop 2002] formulate the reconstruction
process with an image formation model. Our method is also de-
signed using this model. But it only takes a single image input and
allows for upsampling with a large factor.
Single-image upsampling includes a wide spectrum of work. The
simplest methods are those based on interpolations, such as the bi-
linear, bicubic, and cubic spline algorithms [Keys 1981]. These
methods usually run very fast, but generate excessively blurred re-
sults. Learning- or example-based approaches are also in the main
stream of single image upsampling. Hertzmann et al. [2001] pro-
posed a general “image analogies” framework to synthesize the de-
tailed structures from the exemplar image pairs. This framework
was improved in [Freeman et al. 2002], where an “example-based”
image super-resolution strategy is used to learn patch priors and
store them in a database. The inference of high-resolution informa-
tion is achieved using a recognition approach. Example-based ap-
proaches are often time-consuming, because finding all compatible
patches usually requires expensive computation, such as optimizing
a Bayesian network. Tappen et al. [2003] proposed training a group
of linear interpolators from examples. These interpolators are used
to compute high resolution patches. An algorithm that resembles
belief-propagation is then employed to select one high resolution
patch from the candidates for each low resolution pixel.
Different from the above methods that utilize the patch information,
Fattal [2007] and Sun et al. [2008] employed the statistical edge in-
formation to help constraining the image upsampling problem. An-
other notable upsampling work includes the “solution upsampling”
proposed by Kopf et al. [2007], which aims to upsample a solution
obtained in an image plane. The solution is first calculated at a low
resolution, which is then upsampled using joint bilateral filtering.
In [Avidan and Shamir 2007], a “content-aware” image resizing al-
gorithm was proposed. Rather than resizing an image by scaling,
this method carves out or inserts to the image “seams”, that is, the
pixels of less importance.
For video upsampling, reconstruction based methods [Schultz and
Stevenson 1996; Patti et al. 1997; Zhao and Sawhney 2002] require
computing the motion between neighboring frames when applied to
video. The accuracy of motion estimation at each pixel, which de-
termines the pixel displacement, significantly influences the qual-
ity of the results. In [Irani and Peleg 1993], a back-projection
method was proposed to iteratively minimize the reconstruction
error. It has been observed that grid and ringing artifacts, espe-
cially along sharp edges, can be produced. Example-based image
super-resolution cannot be directly extended to video due to the
unacceptable “flicker” artifact. To handle this problem, two types
of temporal priors were introduced in [Bishop et al. 2003] to en-
force inter-frame smoothness. Kong et al. [2006] proposed using
still pictures captured by an auxiliary high-resolution camera to
guide the upsampling. All these methods largely depend on the
number and quality of the examples for a specific factor. Bhat et
al. [2007] proposed a framework using a certain number of static
high-quality images of the same scene to facilitate various video
enhancement applications, including video super-resolution. This
method uses a multi-view stereo algorithm for depth estimation.
Different from these methods, our upsampling framework can han-

Figure 2: The image formation process can be separated into two
steps: linear filtering and pixel decimation.

dle natural videos without any camera or object motion assump-
tions, as our method is designed in tandem with the image forma-
tion model and considers natural image statistics. The input videos
to our system can contain different types of moving objects, and be
taken in different lighting conditions.

3 The Image Formation Process
The imaging process can be modeled as an integral over the spa-
tial lighting field. Considering a continuous spatial domain S and
denoting the received light at location x as S(x), the captured im-
age I can be regarded as a degradation process of S subject to the
camera’s Point Spread Function (PSF), which is modeled as

I(y) =

∫
x∈C(y)

ω(y − x)S(x) dx, (1)

where I(y) is the pixel value at y in the captured image. ω denotes
a PSF which is commonly approximated by a Gaussian filter, and
C(y) is the corresponding region of the PSF at y.
As shown in [Baker and Kanade 2000], by discretizing S into a
high-resolution image H and letting f denote the discretized PSF
ω, the discrete version of the low-resolution image I(y), denoted
by L(y), can be computed as a weighted sum of pixel values in the
corresponding region in the high-resolution image H . L(y) is thus
expressed as

L(y) =
∑

x∈C′(y)

f(y − x)H(x),

where C ′(y) is a set of pixels in the high-resolution image that
correspond to L(y). This degradation process from H to L can be
further expressed as

L = (f ⊗ H) ↓d
, (2)

where ↓d is a decimating (subsampling) operator with factor d. This
equation can be split into two steps, describing a convolution fol-
lowed by a decimation process:

H̃ = f ⊗ H, L = H̃ ↓d
, (3)

where H̃ is the linearly filtered high-resolution image. If these two
steps can be approximately inverted, that is, by first upsampling
the image and then deconvolving it using the linear filter, a reliable
upsampling process can be yielded. The non-blind deconvolution
problem has been studied in [Yuan et al. 2008; Shan et al. 2008],
where robust solvers using optimization are available and can be
directly deployed in our system. The remaining decimation process
accounts for most information loss, because only one pixel is kept
for every n = d×d pixels in the fine-resolution image. This results
in a severely ill-posed problem to recover H̃ from L.
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Figure 3: The system framework. The input image L is initially upsampled as illustrated in the pink box. The green and gray boxes in the
middle respectively represent the steps for deconvolution and the feedback-control upsampling. The output is a finer-resolution image H ∗.

(a) (b) (c)

(d) (e) (f) (g)

Figure 4: The effect of deconvolution. (a) The input images. (b)
The blurred images generated from (a) by convolving a Gaussian
kernel of size 11×11 and with variance 4. (c) The deconvolved im-
age using our method. Their PSNRs with respect to the ground truth
images in (a) are as high as 35.6166 (upper image) and 36.2453
(lower image). (d)–(g) Close-ups of (b) and (c).

4 Feedback-Control Upsampling
Our image upsampling framework is shown in Figure 3. It adopts
an iterative scheme, consisting of an image deconvolution step
(shown in light green) to remove the effect of linear filtering, and
a feedback-control process (shown in light gray with red-frame) to
constrain the image upsampling. The input to our system is a low-
resolution image or video frame L, which is initially upsampled
to the desired resolution by a fast bicubic interpolation (shown in
pink). This initially upsampled H̃(0) is iteratively improved in the
feedback-control loops, which progressively reduces image blurri-
ness and recovers natural structures.
One important step in our framework is to compute H̃ from the in-
put L in Eq. (3). The challenge underlying this step is that much
pixel information is lost in a regular-grid basis during decimation.
However, we observe that although the pixels discarded during
downsampling are unknown, it is still possible to measure whether
the replenished pixel values in H̃ are reasonable, which is instru-
mental in refining our estimates. The feedback-control upsampling
consists of three steps: deconvolution, re-convolution, and pixel
substitution. They are detailed as follows.

[Deconvolution] Given a H̃(k) that is obtained in iteration k,
where k ≥ 0, the deconvolution process estimates a H (k) in Eq.
(3) given a linearly-filtered image H̃ . This step is illustrated in the
green box in Figure 3. ‖f ⊗H− H̃‖ can be written as a multiplica-
tion of two matrices: a convolution matrix W representing ⊗, and
an image vector. Then, minimizing ‖f⊗H−H̃‖2

2 becomes solving
WH = L. As W does not always have an exact inverse and is eas-
ily influenced by noise, the direct minimization of ‖f ⊗ H − H̃‖2

2

is not well-conditioned. In this paper, we adopt a non-blind decon-
volution method similar to that described in [Shan et al. 2008] to
estimate the deconvolved image. This process is described in our
supplementary file. We briefly explain the main steps here.
We first add a prior term to make the deconvolution well-posed.
Recent research [Huang and Mumford 1999; Fergus et al. 2006]
has shown that natural image gradients generally follow a heavy-
tailed distribution, indicating that most pixels have small gradient
magnitudes whereas salient structures are present. For image/video
upsampling, as we have a coarse-resolution image/video, the global
gradient density distribution can be approximated. We thus intro-
duce a gradient density distribution prior, Φ(x), defined in the same
form as the global prior proposed in [Shan et al. 2008] to make the
solution unique. Basically, Φ(x) uses two piece-wise continuous
functions to fit the gradient density distribution from the input im-
age/video frames.
By incorporating such a prior into the deconvolution process, we
are subject to minimize the following energy function:

E(H) ∝ ‖f ⊗ H − H̃‖2
2 + λ1(‖Φ(∂xH)‖1 + ‖Φ(∂yH)‖1), (4)

where ∂xH and ∂yH respectively denote the values of the x- and
y-direction gradients, and λ1 is a weight. It can be rapidly esti-
mated through a variable-substitution scheme, where the main step
is to apply Fast Fourier Transforms (FFTs) to compute the opti-
mal values. As each FFT operation can be executed rapidly, the
overall deconvolution process is efficient. Note that directly mini-
mizing E(H) using gradient descent, or matrix manipulations such
as computing the inverses, can be much more time-consuming. We
will analyze our running time in the next section.
To verify the effectiveness of the deconvolution, we show two ex-
amples in Figure 4 which compare our deconvolved image with the
ground truth. The Peak Signal-to-Noise Ratios (PSNRs) are very
high, showing that this method faithfully deconvolves the images
without introducing other ringing artifacts.

[Re-convolution] Based on the above analysis, we observe that
if the reconstructed filtered image H̃(k) is similar to the ground
truth, the convolution model is satisfied. More specifically, if we
re-filter image H(k) output from the above deconvolution process,
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we should be able to get an image pretty close to H̃(k):

H
s = (H̃ ⊗−1

f) ⊗ f ≈ H̃,

where ⊗−1 denotes the deconvolution operator. Otherwise, H̃ must
contain incorrectly-filled pixel values, as it does not satisfy the im-
age formation model. In this case, we need to refine H̃ by reinforc-
ing the information obtained from L.

[Pixel substitution] In the pixel decimation process, a high-
resolution image H is subsampled by a factor of d to get L, mean-
ing that only one pixel is kept in L for every d × d samples. Based
on it, in our control loop, we replace the values of the correspond-
ing pixels in Hs(k) by those from L, in order to reinforce the low-
resolution image information to be preserved in the upsampled re-
sult. The detail of this process is as follows. If the upsampling
factor is n, we replace pixel (n× i + 1, n× j + 1) in the high res-
olution image Hs with those in image L with coordinate (i, j) for
each i and j. When n = 3, about one-ninth of the image pixels are
replaced. We show one illustration of the pixel substitution process
with the upsampling factor of 3 in Figure 5.

Before Pixel Substitution After Pixel Substitution

(i,j)

(3i+1,3j+1)

H
s

L

Figure 5: Illustration of the pixel substitution process.

The benefit of using pixel substitution is twofold – that is, to achieve
the inverse of the decimating process (Eq. (3)), and to approximate
Hs as a Gaussian-filtered image with the feedback loop. More
specifically, (i) pixel substitution simulates a uniform pixel deci-
mation process in the imaging model to form L, where one pixel
is sampled for every n × n pixels in Hs; (ii) in iterations, the sub-
stituted color information is propagated to the neighboring missing
pixels in Hs with the deconvolution and re-convolution loop, which
eventually makes Hs a Gaussian-filtered image.

Then the pixel-substituted image H̃ is passed to the next iteration
for deconvolution and re-convolution, where the filled-in pixel val-
ues from L are propagated to others to refine the high-resolution
estimate. In Figure 6, we plot a set of error curves for the nat-
ural image examples shown in this paper. They are used to il-
lustrate how the reconstruction errors are reduced iteratively in
our algorithm. The error of the k-th iteration is computed as
err

(k) = ‖(f ⊗ H(k)) ↓d −L‖2
2 normalized by the initial er-

ror err
(0). So all curves start from 1. This figure shows that our

feedback-control loop effectively reduces the estimation errors and
converges in only a few (less than 5) iterations. In the result section,
we show that our method can upsample an image with a factor as
large as 4 or 8, and meanwhile preserving natural structures.
Although our feedback-control loop looks somewhat similar to the
back-projection mechanism in [Irani and Peleg 1993], where the
enforcement of the reconstruction constraint using the input image
is achieved via an iterative refinement scheme, there are two ma-
jor differences. First, the back-projection algorithm deconvolves
an error map that may contain unpredictable structures. In con-
trast, our algorithm substitutes the pixel values in H̃ by the low-
resolution counterparts. So our algorithm only deals with natural
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Figure 6: The reconstruction error curves for the images shown in
Figures 7 and 8.

images, whose statistical properties have been well studied and un-
derstood. Second, we use a state-of-the-art deconvolution operator
in lieu of the “back-projection” filter. It is known that the latter can
produce ringing artifacts along strong edges. These two improve-
ments in our algorithm together lead to the fast convergence and
visually-appealing upsampled results, even with a large factor.

5 Analysis
Image formation model Our algorithm is based on the image
formation model. But it is not restricted to only upsampling a
coarse-resolution images obtained from such a process (through fil-
tering and decimation). In experiments, our method works well for
images/frames obtained by other methods such as Lanczos filtering
and bicubic interpolation. Our method is also robust against addi-
tive image/video noise, which is handled in the deconvolution step
as the deconvolution errors.

Video temporal coherence Although we do not explicitly im-
pose any temporal coherence constraint, when we apply our upsam-
pling algorithm to video clips by processing them frame-by-frame,
the upsampled video results do not suffer from any observable tem-
poral artifacts such as flickering. This is because, in our feedback-
control loop, the pixel values in the high-resolution frame H̃ are
evenly substituted by the corresponding pixel values in the input
image L. So the upsampled video frames faithfully preserve the
details observed in the input video. Moreover, the deconvolution
process evenly distributes the remaining errors to the entire image,
therefore causing less biases in reconstructing video structures lo-
cally. We tested a variety of video clips captured with different
camera and object motions, and show our upsampled video results
in the supplementary video.

Analysis of computation time The computation time required
to produce a single high-resolution image is dependent of the image
size and the iterations included in the feedback loop. In our algo-
rithm, most computational effort is put in computing Fast Fourier
Transforms (FFTs). In each iteration, for the deconvolution step,
we perform FFTs 3∗4+1 times as described in our supplementary
file. In the re-convolution step, we perform another 2 FFT opera-
tions. Finally, considering that our algorithm iterates 3 times to get
H∗ = H(3) using the feedback-control loop, we need to perform
deconvolution and re-convolution 4 times and 3 times respectively.
Therefore, a total of 58 FFT operations is performed. In our non-
parallel implementation, we employ the library “fftw” [Frigo and
Johnson 2006]. With the frame size fixed for a given video, it is
initialized with flag “FFTW EXHAUSTIVE”.
If the input to the library only contains real numbers, such as the
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(a) Input Image (b) QE Super Resolution (c) [Fattal 2007] (d) Our Result

(e) (f) (g) (h)

Figure 7: Image upsampled with a factor of 4. (a) An input image from [Fattal 2007] magnified with a factor of 4 using the nearest-
neighbor interpolation. (b) The result generated by a software named “QE Super Resolution” [QELabs 2005]. (c) The result generated by
Fattal [2007]. (d) Our result. (e)-(h) Close-ups of (a)-(d).

pixel values in an image, each FFT operation takes about 4–6 mil-
liseconds. However, in this case, only half of the DFT spectrum
of the data is computed. In our implementation, we use the input
with complex numbers, each of which is expand from a real pixel
value. The FFT operation takes about 10–20 milliseconds for an
image of resolution 800 × 600. Taking account of other computa-
tional overhead, it takes in total about 700 milliseconds to generate
a high-quality upsampled frame. Obviously, there is much room for
acceleration, such as making use of programmable graphics hard-
ware to speed up FFTs. For video upsampling, because we can dis-
tribute the upsampling tasks of different frames to multiple CPUs,
much higher processing rate can be achieved.

Other implementation details The size of the Gaussian kernel
used in our algorithm for the deconvolution step is fixed at 13×13.
We found that a reasonable variation from 11×11 to 19×19 in this
value does not significantly influence the results, although we also
note that a large kernel would lead to loss of high-frequency infor-
mation, whereas an exceedingly small kernel does not sufficiently
suppress the aliasing problem. The deviation of the Gaussian kernel
is set empirically, depending on the value of the upsampling factor:
1.05 for a factor of 2, 1.5 for a factor of 4, and 2.02 for a factor of
8.
Our iterative image-upsampling algorithm accepts a grayscale im-
age as an input. For color images, we first convert the RGB to
YUV color space, and then upsample only the Y channel. The UV
channels are then upsampled to a higher resolution simply by a fast
bicubic interpolation: here, our method exploits the human’s rela-
tive insensitivity to small disagreement in chromaticity.

6 Results
Image upsampling While one main focus of this paper is to de-
ploy our algorithm in video upsampling, we first show several im-
age upsampling results. In Figure 7, we show one image example
where the input appeared in [Fattal 2007]. We show our upsampling
result with a factor of 4. It is comparable in quality to the results
from other state-of-the-art image upsampling algorithms, such as
a software named “QE Super Resolution” [QELabs 2005] and the

edge-statistics-based method [Fattal 2007]. Two additional image
examples are shown in Figure 8, for which we set the upsampling
factors respectively as 8 and 4. Our results also exhibit natural
structures. The small characters in the watch example are recon-
structed correctly.

Video upsampling We show two video examples in this paper.
Readers are referred to our supplementary video for additional ex-
amples and evaluating their quality, in particular the temporal co-
herence maintained by our method. In Figure 9, we show three
frames extracted from a “bird” sequence. They are upsampled with
a factor of 4. We compare our results with those generated by
other methods. Observe the difference in edge sharpness and tex-
ture clearness. In Figure 10, we show a local upsampling result
focusing on a swimming fish. The user can modify the upsampling
factor and the interested region on-the-fly.

7 Concluding Remarks
High-definition (HD) display devices, such as HDTV, is getting
more popular and eventually more affordable. However, to obtain
HD contents, special capture devices are generally required. With
numerous videos captured and movies made before any HD stan-
dard ever coming into existence, an efficient upsampling algorithm
is in great demand for enhancing these image/video contents.
In this paper, we have proposed a simple and yet effective im-
age/video upsampling algorithm to reconstruct images/frames of
a higher resolution. Our algorithm consists of a feedback loop to
control the upsampled image quality, by enforcing the relevant in-
formation propagated from the input low-resolution images. The
main operation in our algorithm consists of a handful of FFT oper-
ations, which makes our algorithm easy to be encoded in an embed-
ded system. We have demonstrated that our algorithm can be used
to upsample a video in a frame-by-frame manner while automati-
cally preserving temporal consistency. This makes our algorithm
amenable to parallel computation, where different frames can be
upsampled concurrently at multiple CPUs or programmable graph-
ics hardware to further accelerate the upsampling process.
Because our method does not introduce new information except that
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(a) Input Images (b) Our Results (c) Close ups of (a) (d) Close ups of (b)

Figure 8: More image results with the upsampling factors of 8 (the first row) and 4 (the lower two rows). (a) Input images. (b) Our results.
(c) Close-ups of (a). (d) Close-ups of (b).

(a) Frame 1 (b) Frame 10 (c) Frame 20

(d) Bilinear vs our algorithm (e) Bicubic vs our algorithm (f) “Video enhancer” vs our algorithm

Figure 9: Video upsampling results. We show three frames from an input video in (a)–(c) respectively. For comparison, we juxtaposed our
results with the results produced by (d) bilinear interpolation, (e) bicubic interpolation, and (f) “video enhancer” [Mon 2006].
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(a) (b)

(c) (d)

Figure 10: On-the-fly local upsampling. Two input frames from a
“sea world” sequence are shown in (a) and (b). (c) and (d) respec-
tively show the locally upsampled frames.

in the input low-resolution image, missing edges or textures dur-
ing the decimation process cannot be recovered. We believe that
if example-based methods are appropriately combined and work in
tandem with our method, more relevant structural information can
be injected into the upsampled results. This is one potential re-
search direction for further pursuit.
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