Two-Phase Kernel Estimation for Robust Motion Deblurring

Results and Comparison (all with captured images)

Blurred Image

Fergus et al. [2]

Ours [1]

Running Time: < 2mins

Blurred Image

Fergus *et al.*

Shan *et al.*

Blurred Image

Fergus *et al.* [2]

Ours

Running Time: < 1min

Blurred Image

Fergus *et al.*

Blurred Image

Fergus *et al.* [2]

Ours (kernel size 95x95)

Input

Fergus *et al.* [2]

Ours

Running Time: < 1min

Blurred image

Fergus et al.

Shan *et al.*

Input

Ours

Running Time: < 1min

Challenging Examples

comparison for selective edge maps (Denoted by M in the paper)

Blurred Patch

Patch cropped from L. Yuan, J. Sun, L. Quan and H.Y. Shum. "Image Deblurring with Blurred/Noisy Image Pairs", SIGGRAPH 2007

Without Selective Edge Map

With Selective Edge Map

ksize	115x55
gamma	2.2
wtscale	0.2
wtdeconv	2e-2
wtderinging	2
denoise	0

Without M

With M

Blurred Patch

Without Selective Edge Map

With Selective Edge Map

ksize	55x95
gamma	2.2
wtscale	0.55
wtdeconv	2e-2
wtderinging	0
denoise	0

Without M

With M

Blurred Patch

Without Selective Edge Map

With Selective Edge Map

ksize	55x95
gamma	2.2
wtscale	0.3
wtdeconv	2e-2
wtderinging	1
denoise	0

Without M

With M

Blurred Patch

Without Selective Edge Map

With Selective Edge Map

ksize	55x55
gamma	1
wtscale	0.2
wtdeconv	1e-2
wtderinging	0
denoise	0

Without M

With M

Other Examples

ksize	31x31
gamma	2.2
wtscale	0.7
wtdeconv	4e-2
wtderinging	0
denoise	1

Fergus et al. [2]

ksize	49x49
gamma	2.2
wtscale	0.7
wtdeconv	2e-2
wtderinging	1
denoise	0

Fergus et al. [2]

ksize	31x31
gamma	1
wtscale	0.7
wtdeconv	1e-2
wtderinging	1
denoise	0

ksize	31x31
gamma	1
wtscale	0.7
wtdeconv	1.7e-3
wtderinging	1
denoise	0

ksize	31x31
gamma	2.2
wtscale	0.7
wtdeconv	2e-2
wtderinging	5
denoise	0

ksize	47x47
gamma	2.2
wtscale	0.7
wtdeconv	4e-2
wtderinging	0
denoise	1

Cho and Lee [4]

ksize	61x43
gamma	2.2
wtscale	0.7
wtdeconv	1e-2
wtderinging	1
denoise	0

Cho and Lee [4]

ksize	35x35
gamma	1
wtscale	0.7
wtdeconv	3e-2
wtderinging	0
denoise	1

Comparison on the dataset of Levin et al.

http://www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.rar

The top right parameters are used for all examples Our results are even sharper than the given ground truth images

input

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al.*

input

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al*.

input

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al.*

input

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al*.

input

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al.*

Ground truth

Fergus et al.

Shan *et al.*

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al.*

Ground truth kernel

Fergus et al.

Shan *et al.*

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al.*

input

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al.*

input

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al*.

Ground truth

Ground truth kernel

Fergus et al.

Shan *et al*.

input

Ground truth latent image

Ground truth kernel

Fergus *et al.*

Shan *et al*.

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al*.

input

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al*.

input

Ground truth

Ground truth kernel

Fergus *et al.*

Shan *et al.*

Reference

 [1] L. Xu and J. Jia "Two-Phase Kernel Estimation for Robust Motion Deblurring", ECCV 2010.
(http://www.cse.cuhk.edu.hk/~leojia/projects/robust_deblur/index.html)

[2] R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, and W.T. Freeman, "Removing camera shake from a single photograph", SIGGRAPH 2006.

[3] Q. Shan, J. Jia, and A. Agarwala "High-quality motion deblurring from a single image", SIGGRAPH 2008.

[4] S. Cho and S. Lee, "Fast motion deblurring", SIGGRAPH ASIA 2009.

The End