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Abstract. Images now come in different forms – color, near-infrared,
depth, etc. – due to the development of special and powerful cameras
in computer vision and computational photography. Their cross-modal
correspondence establishment is however left behind. We address this
challenging dense matching problem considering structure variation pos-
sibly existing in these image sets and introduce new model and solution.
Our main contribution includes designing the descriptor named robust
selective normalized cross correlation (RSNCC) to establish dense pixel
correspondence in input images and proposing its mathematical param-
eterization to make optimization tractable. A computationally robust
framework including global and local matching phases is also established.
We build a multi-modal dataset including natural images with labeled
sparse correspondence. Our method will benefit image and vision appli-
cations that require accurate image alignment.

Keywords: multi-modal, multi-spectral, dense matching, variational
model.

1 Introduction

Data captured in various domains, such as RGB and near-infrared (NIR) im-
age pairs [35], flash and no-flash images [22,1], color and dark flash images [18],
depth and color images, noisy and blurred images [38], and images captured
under changing light [24], are used commonly now in computer vision and com-
putational photography research. They are multi-modal or multi-spectral data
generally involving natural images. Although there are rigid and nonrigid meth-
ods developed for multi-modal medical image registration [23,21,17,2]. In com-
puter vision, quite a few prior methods still assume already aligned input images,
making them readily usable in applications to generate new effects.

For example, the inputs in [18,22,1,38,26,8] are produced from the same or
calibrated cameras. The dynamic scene images used in [24] are aligned before
HDR construction. In [35], a multi-spectral image restoration method was de-
veloped based on correctly relating pixels. It is clear when alignment is not a
satisfied condition in prior, registering input images considering camera motion,
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(a) Different Exposure (b) RGB/Depth (c) RGB/NIR (d) Flash/No-flash

Fig. 1. Multi-modal images that need alignment. (a) Images from [24] captured under
different exposure settings in dynamic scene. (b) RGB and depth image pair. (c) RGB
and NIR images. (d) Flash and no-flash images captured at different time.

object deformation, and depth variation will be inevitable. It is challenging when
large intensity, color, and gradient variation presents.

For images taken continuously from nearby cameras, or containing similar
structure, state-of-the-art matching methods such as nonrigid image registration
[7,36,16,29], optical flow estimation [13,5,6,41,5,3], and stereo matching [11,27]
can help align them. But multi-modal images, like those in Fig. 1, cannot be eas-
ily dealt with. Color, gradient, and even structure similarity, which are commonly
considered to establish constraints, are not applicable anymore, as detailed later
in this paper. Moreover, the image pairs shown in Fig. 1 are with nonrigid dis-
placement due to depth variation and dynamic moving objects, which makes
matching very difficult.

In medical imaging, multi-modal registration methods are based on global or
local statistic information like mutual information to search for region corre-
spondence. They are mostly limited to gray level medical images and do not suit
rich-detail natural image matching. For general multi-spectral image matching,
Irani et al. [15] proposed a framework for multi-sensor image global alignment.
Cross correlation on the directional Laplacian energy map was used to measure
patch similarity. Variational frameworks ([12] and [37]) can estimate small dis-
placements in multi-modal images. These methods do not work similarly well on
heavy outlier images or those with large nonrigid displacement. General match-
ing tools, such as SIFT flow [19], also do not handle multi-spectral images and
lack sub-pixel accuracy in computation.

We aim to match general multi-modal and multi-spectral images with signifi-
cant displacement and obvious structure inconsistency. We analyze and compare
possible measures, and propose a new matching cost, named robust selective nor-
malized cross correlation (RSNCC), to handle gradient and color variation, and
possible structure divergence caused by noise, inconsistent shadow and reflection
from object surface. In solution establishment, we provide new parameterization
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to separate the original descriptor into a few mathematically meaningful terms
that explain optimality. Our method contains global and local phases to re-
move large displacements and estimates residual pixel-wise correspondence re-
spectively. To verify our system, we build a dataset containing different kinds of
image pairs with labeled point correspondence.

2 Related Work

Surveys of image matching were provided in [42,28,33]. We review in this paper
related image registration methods and variational optical flow estimation.

The correspondence of images captured by different modalities is complex.
The difference between multi-spectral images was analyzed in [15,35]. We
coarsely categorize previous work into feature-based and patch-based methods.
The feature-based methods extract multi-spectral invariant sparse feature points
and then establish their correspondence for optimal transform. Hrkac et al. [14]
aligned visible and infrared images by extracting corner points and getting the
global correspondence via minimizing Hausdorff distance. Firmenichy et al. [9]
proposed a multi-spectral interest points detection algorithm for global registra-
tion. Han et al. [10] used hybrid visual features like lines and corners to align
visible and infrared images captured in controlled environment. These methods
do not aim at very accurate dense matching due to feature sparseness.

Several methods employed local patch similarity to find correspondence. The
effective measures include mutual information and cross correlation. Mutual in-
formation is robust for multi-modal medical image alignment, as surveyed in [23].
Hermosillo et al. [12] proposed a variational framework to match multi-modal
images based on this measure. Zhang et al. [40] and Palos et al. [21] further en-
hanced the variational framework to solve the multi-modal registration problem.
Yi et al. [37] adaptively considered global and local mutual information. As for
cross correlation methods, Irani et al. [15] proposed the Laplacian energy map
and computed cross correlation on it to measure multi-sensor image similarity.
Cross correlation of gradient magnitude was used by Kolar et al. [17] to regis-
ter autofluorescent and infrared retinal images. Recently, Andronache et al. [2]
combined mutual information and cross correlation to match the multi-modal
images. These measures are effective, but sometimes still suffer from outlier and
large displacement influence during dense matching.

Our framework is related to modern optical flow estimation [13]. In mod-
ern methods, the data term usually enforces brightness or gradient constancy
[5,6,41]. Robust functions, such as L1 norm and Charbonnier function, were used
by [5,3,31,39] in regularization. For large displacement handling, Xu et al. [34]
improved the coarse-to-fine strategy by supplementing feature- and patch-based
matching. We note optical flow methods cannot solve our problem since it relies
on the brightness and gradient constancy constraints, which no longer hold for
multi-spectral image matching. Based on the variational framework, Liu et al.
[19] achieved general scene image matching using SIFT features.
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Fig. 2. Matching cost comparison. (a) and (d) are the RGB and NIR images presented
in [4]. Points A, B and C are inconsistent on structure/gradient. A is with gradient
reverse; B has gradient magnitude variation; and C is with gradient loss. (b), (c) and
(e) are the matching costs under different descriptors along A, B and C’s scanlines.
(f) is the matching cost of A with added noise on (a) and (d). The arrows point to the
ground-truth matching points.

3 Problem Understanding

Images from different sensors are ubiquitous, as shown in Fig. 1. Their matching
is thus a fundamental problem. We in what follows take the RGB and NIR image
pairs as examples as they contain many different structures and intensity levels.
We analyze the difficulties in dense image matching.

Let I1 and I2 be the two multi-spectral or multi-modal images, p = (x, y)T

be pixel coordinates of the two images, and wp = (up, vp)
T be the displacement

of pixel p, which indicates p in I1 mapping to p+wp in I2. I1,p and I2,p are the
intensities (or color vectors) of I1 and I2 for pixel p respectively.

For dense image matching, the cost for pixel p between two input images can
be generally expressed as

ED(p, wp) = dist
(D1(p),D2(p+ wp)

)
, (1)

where D1(p) and D2(p+wp) are matching descriptors for pixels p and p+wp in
I1 and I2 respectively. dist(·) is a function to measure the descriptor distance.

Color and Gradient. As shown in Fig. 2(a) and (d), an RGB/NIR image
pair captured by visual and NIR cameras contains structure inconsistency. Ob-
viously, general color and gradient constancy between corresponding pixels that
was used in many alignment methods under the Euler or robust Euler distance
cannot be employed. Irani et al. [15] and Kolar et al. [17] computed similarity
on gradient magnitude. Although it relaxes the color constancy condition, it is
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still not enough in many cases. Matching accuracy could reduce when only using
the gradient correspondence.

SIFT Features. Another common type of matching costs are based on SIFT
descriptors [20] that work well for images captured under similar exposures. We
note SIFT may not be appropriate for multi-spectral matching with the follow-
ing two reasons. First, SIFT is not invariant to gradient reversal existing in input
images, as shown at point A in Fig. 2(a) and (d). Although Firmenichy et al.
[9] proposed gradient direction invariant SIFT, the performance is reduced com-
pared with traditional SIFT. In (c), the minimum of SIFT descriptor difference
does not correspond to the ground truth matching point. Second, SIFT descrip-
tor is not that powerful to differentiate between true and false correspondences
especially in featureless regions given its output scores.

Mutual Information. Mutual information (MI) is used popularly in medical
image registration. However, for natural image with rich details, MI has its
limitation. As shown in Fig. 2, the cost of MI in the 15× 15 patch fails to find
the correct correspondence. MI may also be sensitive to noise as shown in Fig.
2(f). The drawback of MI to measure small local patch similarity was explained
by Andronache et al. [2]. For the variational frameworks [12,37] using local patch
mutual information, only small displacements are computed.

4 Our Matching Cost

In order to handle structure inconsistency and notable gradient variation in
multi-spectral and multi-modal images, we propose a matching cost given by

ERSNCC(p, wp) = ρ
(
1− |ΦI(p, wp)|

)
+ τρ

(
1− |Φ∇I(p, wp)|

)
. (2)

This function is a robust selective normalized cross correlation (RSNCC) ad-
dressing a few of the concerns presented above. ρ(x) is a robust function and
weight τ is used to combine two terms defined respectively on color and gradient
domains. We present details as follows.

4.1 Φ Definition

ΦI(p, wp) is the normalized cross correlation between the patch centered at p
in I1 and patch p + wp in I2 in the intensity or color space. Φ∇I(p, wp) is the
one defined similarly in the gradient space. This definition is also extendible to
other definitions. By generalizing I and ∇I as feature F ∈ {I,∇I}, ΦF (p, wp)
in feature space F is given by

ΦF (p, wp) =
(F1,p − F 1,p) · (F2,p+wp − F 2,p+wp)

‖F1,p − F 1,p‖‖F2,p+wp − F 2,p+wp‖
, (3)

where F1,p and F2,p are pixels’ feature vectors in patch p in I1 and patch p+wp in
I2 respectively. F 1,p and F 2,p+wp are the means of F1,p and F2,p+wp respectively.
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The normalized cross correlation defined in Eq. (3) can represent structure
similarity of the two patches under feature F even if the two patches are trans-
formed in color and geometry locally.

Difference from Other Definitions. Our cost definition in Eq. (2) has a ro-
bust function ρ(x). It handles transform more complex than a linear one defined
only using Pearson’s distance 1− ΦI(p, wp).

In addition, our data cost models the absolute value of ΦF (p, wp) that min-
imizes the matching cost on either positive or negative correlation in Eq. (2),
which is the major difference compared to other matching methods only work-
ing on similar-appearance natural images. This definition is effective to handle
gradient reversal ubiquitous for NIR-RGB and positive-negative images, which
produce negative correlation. This is why we call it a selective model.

An example is shown in Fig. 2(b) where point A is with different gradient
directions in the input images. Even in this challenging local correspondence
problem that was seldom studied in previous work in natural image matching,
optimizing our function can lead to reasonable results.

Color and Gradient. The combination of ΦI(p, wp) and Φ∇I(p, wp) is helpful
to improve the stability in matching especially when intensity or color of the
two patches differs a lot. For instance, point B in Fig. 2(a) and (d) is with
different edge magnitudes in the corresponding patches. Our method can find
the correspondence while zero-mean normalized cross-correlation (ZNCC), SIFT
and MI fail, as shown in (c). In addition, the combination makes matching
more robust to noise, which is shown in Fig. 2(f) with more explanations in
our experiment section.

However, the matching cost we defined is complex with respect to wp. We
linearize it by a two-order approximation. To achieve this, a robust function is
carefully chosen and per-pixel Taylor expansion is employed.

4.2 Robust Function

ρ(x) in Eq. (2) is a robust function to help reject outliers. The outliers include
structure divergence caused by shadow, highlight, dynamic objects, to name a
few. We show one example in Fig. 3.
ρ(x) should also be robust to errors generated in 1 − |ΦF (p, wp)|, which is

not continuous. This makes general robust functions, such as Charbonnier, not
differentiable. To address this issue, we propose ρ(x) as

ρ(x) = − 1

β
log(e−β|x| + e−β(2−|x|)), (4)

where β is a parameter. To understand this function, we plot ρ(x) and ρ′(x)
by varying β in Fig. 4. A large x does not cause an excessive penalty in ρ(x).
Note when β → ∞, ρ(x) becomes a nice approximation of the robust L1 norm.
Besides, it makes RSNCC continuous and solvable by continuous optimization.

This robust function is effective in image matching. For the inconsistent
shadow structure in Fig. 3, our model handles it better than direct matching.
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Fig. 3. Outlier example. The left two patches contain shadow only in one input. It
should be regarded as an outlier in matching. The plots of matching costs in a scanline
show that our method can safely ignore this outlier.
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Fig. 4. Robust function with different β.

4.3 Matching Cost and Derivation

After setting ρ(x) as Eq. (4), the matching cost (2) is written as

ERSNCC(p, wp) = − 1

β
log

(
e−β(1−ΦI(p,wp)) + e−β(1+ΦI(p,wp))

)

− τ

β
log

(
e−β(1−Φ∇I(p,wp)) + e−β(1+Φ∇I(p,wp))

)
. (5)

In addition, the term ΦF (p, wp), which is the patch normalized cross correlation
between I1 and I2 according to the feature space F ∈ {I,∇I}, is highly non-
convex. We decompose it by linearization in Taylor expansion, which yields

ΦF (p, wp + δwp) ≈ ΦF (p, wp) + (AF
p )

T δwp +
1

2
δwT

p B
F
p δwp, (6)

where δwp is the vector form of all δwp of patch p. AF
p is the first-order approx-

imation coefficient matrix and BF
p is the second-order matrix that only includes

diagonal elements. In this expansion and Eq. (5), local displacement field up-
dated in iterations for patch p is expressed as

min

(
(ωI

pA
I
p + ω∇I

p A∇I
p )T δwp +

1

2
δwT

p (ω
I
pB

I
p + ω∇I

p B∇I
p )δwp

)
, (7)
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where ωI
p and ω∇I

p are weights coming from the derivative robust function. That

is, ωI
p = ρ′(1− |ΦI(p, wp)|) and ω∇I

p = τρ′(1− |Φ∇I(p, wp)|). AF
p is given by

AF
p =

[
S1
p ◦ ∇xF2,p+wp

S1
p ◦ ∇yF2,p+wp

]
1, (8)

and BF
p = diag(B̂p). B̂p is in the following form:

B̂p =

[
S1
p ◦ ∇2

xF2,p+wp + S2
p ◦ (∇xF2,p+wp)

2

S1
p ◦ ∇2

yF2,p+wp + S2
p ◦ (∇yF2,p+wp)

2

]
1, (9)

where ◦ represents element-wise multiplication, F1,p is the updated F1,p denoted
in Eq. (3), with each row being a feature vector for the pixel in patch p. F2,p+wp

is defined similarly. 1 is an all-one vector whose length is the dimension of feature
space F . ∇x is an element-wise difference operator in x-direction and ∇2

x is the
second order one. ∇y and ∇2

y are corresponding operators in y-direction.
We denote S1

p as the first-order normalized similarity and S2
p as the second-

order one. We explain their construction and effect.

S1
p and S2

p. The matching cost defined in Eq. (3) comprises two parts. The
similarity measure is given by

Sp = (F1,p − F 1,p) · (F2,p+wp − F 2,p+wp), (10)

and the confidence term contains

C1,p = ‖F1,p − F 1,p‖, C2,p = ‖F2,p+wp − F 2,p+wp‖. (11)

Now coming to the definition of normalized similarity in two orders, S1
p describes

the confidence of matching for each pixel under the normalized cross correlation
descriptor. It is normalized by the similarity and confidence as

S1
p =

1

C1,pC2,p
(
F1,p − F 1,p − Sp

C2
2,p

(F2,p+wp − F 2,p+wp)
)
. (12)

To get S2
p, we first denote normalized cross similarity as

Cp =
1

C1,pC2,p
(F1,p − F 1,p) ◦ (F2,p+wp − F 2,p+wp)

C2
2,p

, (13)

which describes correlation of the two patches. Given the two-order normalized
descriptor of F2,p+wp as

Dp,2 =
1

C1,pC2,p
Sp(F2,p+wp − F 2,p+wp)

2

C4
2,p

, (14)

S2
p becomes the linear combination of Cp and Dp,2 as

S2
p = 3Dp,2 − 2Cp − 1

C1,pC2,p
Sp(N − 1)2

C2
2,pN

2 , (15)
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where N is the number of pixels in the patch. The last (third) term is a bias
imposed by the different similarity of the two patches.

Note that our two-order approximation is different from the form in [32],
where the latter handles similar-exposure natural images for motion estimation
and assumes that the displacement field is constant locally. Our approximation
is pixel-wise with new expressions, thus modeling complex correspondence in
multi-spectral and multi-modal images.

5 Matching Framework

To produce matching on challenging images, our solver contains phases for global
transform and local dense matching respectively. Global matching estimates
large position transform caused by camera position variation or scene motion.
Then the local phase estimates residual errors and compensates them considering
pixel-wise correspondence.

5.1 Global Matching

The global phase estimates a homography matrix H for image-wise translation,
rotation and scaling. The corresponding function is written as

E(H) =
∑

p

ERSNCC(p, wp), (16)

where wp = (up, vp) is under the homography constraint for every pixel. It is
further expressed as

[up, vp, 1]
T = [xp, yp, 1]

T (H − I)T , (17)

where I is the identity matrix. We apply gradient decent to get optimal H . The
first and second order derivatives of E(H) are obtained following the chain rule.
For quick and robust computation, we employ the coarse-to-fine scheme and
estimate H increment in each layer.

The RSNCC matching cost used here can robustly find similar structures and
reject outliers. As shown in Fig. 5, our method estimates background transform
despite large structure inconsistency in shadow and noise. Due to depth varia-
tion, a few pixels in Fig. 5(d) still contain errors. They are further refined in
what follows.

5.2 Local Dense Matching

After global transform, we perform pixel-wise residual displacement estimation
incorporating regularization terms. The function is written as

E(w) =
∑

p

ERSNCC(p, wp) + λ1
∑

p

ψ(‖∇wp‖2) + λ2
∑

q∈N(p)

‖wp − wq‖, (18)
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(a) RGB Input (b) NIR Input (c) Blending of (a) and (b)

(d) Global Transform (e) Local Transform (f) Final Displacement

Fig. 5.Two-phase matching. (a) and (b) RGB/NIR pair. (c) Blending result. (d) Blend-
ing result of (a) and the globally transformed (b). (e) Blending result of (a) and locally
transformed (b). (f) Final displacement estimate from (b) to (a) coded in color. Struc-
tures are aligned.

where w = (uT ,vT )T is the vector form of wp. u and v are vectors of up and vp
respectively. For simplicity’s sake, we denote the three terms as ED(w), ES(w),
and ENL(w). λ1 and λ2 are two parameters.

The robust regularization termES(w) is common for enforcing spatial smooth-
ing. ψ(x) is the robust penalty function in the Charbonnier form ψ(x2) =√
x2 + ε2 with ε setting to 1E − 4 in all our experiments. This function is a

differentiable variant of L1 norm, availing optimization. ENL(w) is a nonlocal
median filter. It can efficiently remove noise, as described in [25].

Optimization. Local dense matching is performed in a coarse-to-fine manner
for high accuracy to optimize E(w). In each level, E(w) is updated and prop-
agated to the next level for variable initialization. To handle the non-convex
E(w) in each level, we decompose it into two sub-functions both finding optimal
solutions by the scheme of variable-splitting [30]. The two functions are

E(w, ŵ) = ED(w) + λ1ES(w) +
1

θ
‖w− ŵ‖2, (19)

E(ŵ,w) =
1

θ
‖ŵ−w‖2 + λ2ENL(ŵ), (20)

where ŵ is an auxiliary variable. When θ → 0, the decomposition approaches
the original E(w).

Our method minimizes Eqs. (19) and (20) respectively. The minimum of Eq.
(20) can be obtained by the method of [25]. We solve Eq. (19) based on the
variational configuration using iterative reweighted least squares. In each step,
we update the result by a small δw after optimizing E(w+ δw, ŵ). It is done by

setting ∂E(w+δw,ŵ)
∂δw = 0. Details are provided in the our project website (link in
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the title page). Our local matching improves pixel-wise alignment, as illustrated
in Fig. 5(e) and (f).

6 Experiments and Evaluation

We implement our algorithm in MATLAB. The processing time of a 1200× 800
image is less than three minutes on a 3.2GHz Core i7 PC. In our experiments,
we set β = 1.0 in the robust function and patch size 9× 9 to compute RSNCC.
The weight τ is set to 1.0 in all our experiments. In local dense matching, λ1
ranges from 0.1 to 0.5 and λ2 is set to 0.01. In both the global and local matching
phases, we employ five scales with down-sampling rate 0.8 during the coarse-to-
fine optimization. More details are provided in our project website.

6.1 Evaluation

We build a dataset including four typical kinds of image pairs – RGB/NIR,
RGB/Depth, different exposure, and flash/no-flash. The RGB/NIR images are
captured by RGB and NIR cameras while the RGB/Depth images are captured
by Microsoft Kinect. The different exposure image pairs and the flash/no-flash
pairs are captured by the same camera with exposure and camera pose variation.
These images contain depth variation or dynamic moving objects, needing rigid
and nonrigid transformation estimation. To get the ground truth displacement,
we select 100 corner points and label their correspondence. The images are shown
in our website (link in the title page). In total, these images provide 2K ground
truth correspondences and we employ them to evaluate our method.

Evaluation of our method and other state-of-the-arts is reported in Table
1. We compare the general scene matching SIFT Flow [19] and the modified
SIFT Flow using the gradient direction invariant SIFT [9]. We implement the
variational mutual information method [12]. SIFT Flow does not handle gradient
reversal. The gradient invariant SIFT produces a level of errors for matching as
well. Variational mutual information does not handle large displacement and
correspondingly yields relatively large errors. Our method does not have these
problems. As our matching cost is flexible to incorporate other features, we
evaluate employing features proposed in [15] and of color, gradient, and the

Table 1. Evaluation of methods on our dataset. The quantities in each column are the
mean errors on one labeled image pair. ∗ denotes the SIFT implementation in [9].

RGB/NIR RGB/Depth Flash/No-flash Different Exposure All

SIFT Flow [19] 10.11 18.32 8.76 10.03 11.47
SIFT Flow∗ 8.03 16.17 8.90 11.67 10.56

Method by [12] 12.03 15.19 16.57 13.24 13.81
Ours with [15] 2.34 4.57 6.87 3.68 3.96
Ours with color 2.55 4.83 6.64 3.43 4.00

Ours with gradient 2.28 4.46 6.03 3.02 3.61
Ours 1.89 4.17 4.56 2.25 2.95
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(a) RGB Image (b) NIR Image (c) Variational MI [12]

(d)Sift Flow [19] (e) Our Global Matching (f) Our Final Result

(g) Close-ups from (a) to (f)

Fig. 6. Matching of RGB and NIR images with structure variation and nonrigid trans-
form by different methods. (c)-(f) Blending result by warping (b) to (a). (g) Close-ups.

combination of color and gradient. The result in Table 1 proves that our current
feature is the best among the four for this matching task.

Examples in Figs. 6 and 7 compare our method to others. The inputs in Fig.
6 are the RGB and NIR images with significant gradient, noise and shadow
variation. Fig. 7 is an example to match a series of different exposure images.
Both examples are with nonrigid transform and large displacements. Our results
are with good quality thanks to the new matching cost and robust two-phase
matching framework.

6.2 Applications

Our framework benefits computer vision and computational photography appli-
cations that need to align multi-spectral and multi-modal images. We apply it
to HDR construction and multi-modal image restoration.

HDR Image Construction. Our method can match different exposure images
for restoration of high dynamic range images. As shown in Fig. 7, Our results
are with high quality. We employ the method proposed in [24] to merge low
dynamic range images into a HDR one, where the tone mapping result is shown
in (i). Our method yields rich details compared to that of [24].
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(a) Input Images indexed from 1-5

(b)Blending of Inputs (c) Method of [15] (d) Method of [9] (e) Variational MI [12]

(f) Sift Flow [19] (g) Ours (h) HDR by [24] (i) Our HDR

Fig. 7. Different exposure images matching and HDR construction example. (a) Inputs
from [24]. (b) Blending result of the inputs. (c)-(g) Blending results by warping all
images to image 3 by different methods. (h) HDR Tone mapping result of [24]. (i)
Our tone mapping result using the matched (g). More results and complete images are
contained in our website.

Multi-Modal Image Restoration. We show an example of depth and RGB
image matching in Fig. 8. Depth images captured by Kinect or other equipments
are not accurately aligned with the corresponding RGB images as shown in Fig.
8(c). The depth image is also with noise and missing values. Simple smoothing
by filter might damage original structures. Our method matches the smoothed
depth image to the RGB one. It not only aligns structure but also helps restore
it damaged by filtering as shown in Fig. 8(d) and (e).

(a) (b) (c) (d) (e)

Fig. 8. RGB and depth matching and restoration. (a)-(b) are the RGB and depth raw
data captured by Microsoft Kinect. (c) shows the blending result. (d) is the result using
the framework of [35] but applying our matching method. (e) shows the blending of
our depth and RGB images, which are aligned well.
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(a) (b) (c) (d)

Fig. 9. Multi-spectral image restoration. (a) and (b) are input noisy RGB image and
NIR image with displacements. (c) and (d) are the restoration results without and with
matching respectively.

NIR image is also a good guidance to restore noisy RGB image as described in
[35]. Since RGB and NIR images are often captured by different cameras, they
need to be aligned before restoration. The alignment is very challenging due to
their nonrigid transformation. Our method handles this problem, and produces
the result shown in Fig. 9.

Our matching framework can also be employed to enhance flash/no-flash
images that require alignment. Several examples are contained in the project
website.

7 Conclusion and Limitation

We have presented an effective dense matching framework for multi-spectral
and multi-modal images. Unlike other methods working on natural or medical
images under various constraints, we address more challenging issues, including
structure inconsistency and existence of strong outliers caused by shadow and
highlight. We proposed a robust matching scheme, optimized in two phases.

Our method inevitably has several limitations. First, if the two images con-
tain quite different structures, the estimated displacement field could be wrong
completely. Second, our method may cause large errors on regions that do not
contain necessarily informative edges or textures for credible structure matching.
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