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1. Notations

In this supplementary material, we elaborate our derivations in our algorithm and analysis. Before going into the details,
we would like to review our notations in the paper to make the derivations more readable.

First of all, we denote the set of input low-res images as Ω = {IL−N , · · · , IL0 , · · · , ILN}. Multi-frame SR aims to esti-
mate a high-res image I corresponds to IL

0 . Here, I is a vector representing the latent high-res image. F = {F0→−N , · · · ,
F0→0, · · · , F0→N} is a set of warping matrices corresponding to the optical flow/homography from I to every other frame.
Matrices S andK = {K−N , · · · , K0, · · · ,KN} correspond to the down-sampling and filtering operations. Here, eachK i is
a composition of a motion blur kernel and an anti-aliasing kernel. We define a set of latent masksZ = {Z −N , · · · , Z0, · · · , ZN}
to indicate whether each pixel of each input image is useful (Z = 1) or useless (Z = 0) for SR. Each Z i has the same size as
the low-res image ILi . In the following derivations, we usually denote the p-th pixel of the i-th image J i as Ji,p.

2. Derivations of the EM steps in image reconstruction

In this section, we explicitly derive the EM steps for image reconstruction. First, according to our inference algorithm,
image reconstruction amounts to the following MAP problem:

I = argmax
I

P (I,K, F |Ω) = argmax
I

P (I)P (Ω|I,K, F ). (1)

Written as a marginalization over the latent variable Z , the above equation is equivalent to:

I = argmax
I

P (I)

N∏
i=−N

∑
Zi

P (ILi , Zi|I,K, F ). (2)

The likelihood can be pixel-wisely decomposed as:

P (ILi , Zi|I,K, F ) =
∏

p
P (ILi,p, Zi,p|I,K, F )

=
∏

p
P (ILi,p|Zi,p, I,K, F )P (Zi,p|I,K, F ).

(3)

In the paper, we have defined the pixel-wise likelihood of low-res image, I L
i,p, as:

P (ILi,p|Zi,p, I,K, F ) =

{
exp{−λ |Di,p|}/C if Zi,p = 1
1 otherwise,

(4)

Where C is a normalization constant, and the reconstruction error is denoted as D i = SKiF0→iI − ILi for simplification.
The prior for the latent variable Zi,p is:

P (Zi,p = 1|I,K, F ) =
{

exp{−γ/Wi,p}
exp{−γ/Wi,p}+exp{−γβ} if (SKiF0→iI)p ∈ [0, 1]

0 otherwise.
(5)
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E step: Now, in the E step, under the current estimate of the high-res image I 0, we calculate the expected value of the
complete-data log likelihood logP (Ω, Z|I,K, F ) with respect to the conditional distribution P (Z|I 0,K, F,Ω) as:

Q(I|I0) = EP (Z|I0,K,F,Ω)[logP (Ω|Z, I,K, F ) + logP (Z|I,K, F )]
= P (Z = 1|I0,K, F,Ω) logP (Ω|Z = 1, I,K, F )

+ P (Z = 0|I0,K, F,Ω) logP (Ω|Z = 0, I,K, F )

+ P (Z = 1|I0,K, F,Ω) logP (Z = 1|I,K, F )
+ P (Z = 0|I0,K, F,Ω) logP (Z = 0|I,K, F ).

(6)

We denote EP (Z|I0,K,F,Ω)[Z] = P (Z = 1|I0,K, F,Ω) by E[Z]. According to Eq. (4), we have:

P (Z = 1|I0,K, F,Ω) logP (Ω|Z = 1, I,K, F )

= E[Z] logP (Ω|Z = 1, I,K, F )

= −
N∑

i=−N

∑
p

E[Zi,p](λ |Di,p|+ logC),

(7)

and

P (Z = 0|I0,K, F,Ω) logP (Ω|Z = 0, I,K, F )

= P (Z = 0|I0,K, F,Ω) log 1 = 0.
(8)

Also, according to Eq. (5), we have:

P (Z = 1|I0,K, F,Ω) logP (Z = 1|I,K, F )

=

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=−N

∑
p
E[Zi,p] log

exp{−γ/Wi,p}
exp{−γ/Wi,p}+exp{−γβ} if (SKiF0→iI)p ∈ [0, 1]

N∑
i=−N

∑
p
E[Zi,p] log 0 = −∞ otherwise,

(9)

and

P (Z = 0|I0,K, F,Ω) logP (Z = 0|I,K, F )

=

⎧⎪⎪⎨
⎪⎪⎩

N∑
i=−N

∑
p
{1− E[Zi,p]} log exp{−γβ}

exp{−γ/Wi,p}+exp{−γβ} if (SKiF0→iI)p ∈ [0, 1]

N∑
i=−N

∑
p
{1− E[Zi,p]} log 1 = 0 otherwise.

(10)

From Eq. (7) to Eq. (10), we have that, up to a constant (which is independent of I):

Q(I|I0) =
⎧⎨
⎩ −λ

N∑
i=−N

∑
p
E[Zi,p] |Di,p| if (SKiF0→iI)p ∈ [0, 1]

−∞ otherwise.
(11)

The expectationE[Zi,p] ≡ P (Zi,p = 1|I0,K, F,Ω) can be calculated via the Bayes’ theorem:

P (Zi,p = 1|I0,K, F,Ω) = P (Ω|Zi,p = 1, I0,K, F )P (Zi,p = 1|I0,K, F )
P (Ω|I0,K, F ) , (12)

where

P (Ω|I0,K, F ) =
1∑

Zi,p=0

P (Ω|Zi,p, I
0,K, F )P (Zi,p|I0,K, F ). (13)



Substituting Eq. (4) and Eq. (5) into the above two equations, we get:

E[Zi,p]

=

⎧⎨
⎩

exp{−λ|(SKiF0→iI
0−IL

i )
p|} exp{−γ/Wi,p}

exp{−λ|(SKiF0→iI0−IL
i )

p|} exp{−γ/Wi,p}+C exp{−γβ} if (SKiF0→iI
0)p ∈ [0, 1]

0 otherwise.

(14)

M step: GivenE[Zi,p] from the E step, this step updates the estimate I 0 to be the minimum of the negative log complete-data
posterior, i.e.,

I0 = argmin
I

N∑
i=−N

λ
∥∥E[Zi](SKiF0→iI − ILi )

∥∥
1
+ η · φδ(∇I). (15)

where φδ(∇I) is defined as a sum over all single-pixel penalties:

φδ(∇I) =
∑

p
ψ(∇Ip). (16)

ψ(∇Ip) is set as:

ψ(∇Ip) =
{ ‖∇Ip‖2/δ if ‖∇Ip‖2 < δ

1 otherwise.
(17)

We first prove the following theorem:

Theorem 1. The following equality holds:

φδ(∇I) = min
g

1

δ
‖∇I − g‖2 + ‖g‖0. (18)

and the minimum is achieved when g = ∇I ·max(sign(‖∇I‖2 − δ), 0).

Proof. If ‖∇I‖2 < δ, we consider two cases: (i). If g = 0, then the objective value equals to ‖∇I‖ 2/δ < 1. (ii). if g �= 0,
the objective value is: ‖∇I − g‖2/δ + 1 ≥ 1. Hence g = 0 is favored.

In contrast, if ‖∇I‖2 ≥ δ, the optimal g would be ∇I , and the objective value is 1. This is because (i). if g = 0, the
objective value will be ‖∇I‖2 /δ ≥ 1. (ii). if g �= 0, the objective value will also be greater than 1 due to the L 0 term.

In summary, the minimum is obtained when g = ∇I ·max(sign(‖∇I‖2 − δ), 0).

Based on the above theorem, we can rewrite Eq. (15) as:

I0 = argmin
I

N∑
i=−N

λ
∥∥E[Zi](SKiF0→iI − ILi )

∥∥
1
+ η(min

g
(
1

δ
‖∇I − g‖2 + ‖g‖0))

= argmin
I,g

N∑
i=−N

λ
∥∥E[Zi](SKiF0→iI − ILi )

∥∥
1
+ η(

1

δ
‖∇I − g‖2 + ‖g‖0).

(19)

For each penalty obtained from a δ, we solve for image I via alternatively updating I and g as follows.
Fix g and estimate I: Assume g = (gx, gy) and denote Ei � E[Zi], μ � η

λδ . We perform iterative reweighted least squares
(IRLS), which iterates between solving the following linear system:

(
N∑

i=−N

FT
0→iK

T
i S

TET
i WdiEiSKiF0→i + μ(DT

xWsDx +DT
yWsDy))I =

N∑
i=−N

FT
0→iK

T
i S

TET
i WdiEiI

L
i + μ(DT

xWsgx +DT
yWsgy).

(20)

and updating the weights: Ws
Δ
= diag([(DxI − gx)

2 + (DyI − gy)
2 + ε]−

1
2 ),Wdi

Δ
= diag([(Ei(SKiF0→iI − ILi ))

2 + ε]−
1
2 ),

where Dx and Dy are matrix form of the x- and y- derivative filters. The linear system is solved through conjugate gradient
(CG) algorithm.



Fix I and solve for g: According to Theorem 1, the optimal solution is:

g = ∇I ·max(sign(‖∇I‖2 − δ), 0), (21)

which is called the shrinkage formula.
Intuitively, from Eq. (21), the gradients with small magnitude are gradually suppressed as δ → 0, but the main image

structural information is preserved due to the data term in Eq. (19). In the extreme case, as δ → 0, g → ∇I , it is equivalent
to solve the following L0 regularized problem:

I0 = argmin
I

N∑
i=−N

λ
∥∥E[Zi](SKiF0→iI − ILi )

∥∥
1
+ η‖∇I‖0. (22)

A very simple form of the above equation has also been studied in the image filtering literature to smooth an image without
deteriorating the main structures [4].

3. Derivations of the mask in the MAP point of view

In this section, we would like to show that, in the MAP point of view, solving the optimal latent variable Z i,p for each
pixel is equivalent to minimize a temporal L0 regularized problem. To see that, we first note, the intermediate selection of
pixels can be determined by:

Zi,p = argmax
Zi,p

P (Ω|Zi,p, I
0,K, F )P (Zi,p|I0,K, F )

= argmax
Zi,p

P (ILi,p|Zi,p, I
0,K, F )P (Zi,p|I0,K, F ). (23)

According to Eq. (4) and Eq. (5), we discuss two cases:
(i). If (SKiF0→iI

0)p ∈ [0, 1], then the right-hand-side value of Eq. (23) is proportional to:{
exp{−γβ} if Zi,p = 0
exp{−λ ∣∣(SKiF0→iI

0 − ILi )p
∣∣} exp{−γ/Wi,p} if Zi,p = 1.

(24)

The above equation tells us that the optimal Z i,p depends on the relationship between γβ and λ
∣∣(SKiF0→iI

0 − ILi )p
∣∣ +

γ/Wi,p, i.e.,

Zi,p =

{
0 if λ

∣∣(SKiF0→iI
0 − ILi )p

∣∣+ γ/Wi,p ≥ γβ
1 otherwise.

(25)

(ii). If (SKiF0→iI
0)p /∈ [0, 1], then the right-hand-side value of Eq. (23) is:{

0 if Zi,p = 1
1 if Zi,p = 0.

(26)

Hence the optimal Zi,p = 0 in this case.
In summary, the solution to Eq. (23) is:

Zi,p =

{
0 if λ |Di,p|+ γ/Wi,p ≥ γβ or (SKiF0→iI

0)p /∈ [0, 1]
1 otherwise.

(27)

Where Di = SKiF0→iI
0 − ILi .

We next prove the relationship between Eq. (27) and the temporal L 0 regularized problem through the following theorem:

Theorem 2. When (SKiF0→iI
0)p ∈ [0, 1], Eq. (27) is also the optimal solution to the following problem:

Zi,p = argmin
Zi,p∈[0,1]

λ

γ

∥∥∥Zi,p(SKiF0→iI
0 − ILi )p

∥∥∥
1
+ β‖1− Zi,p‖0 + Z2

i,p/Wi,p. (28)



Proof. The objective function value in Eq. (28) is:⎧⎪⎨
⎪⎩

≥ β if Zi,p �= 1
β if Zi,p = 0
λ
γ

∥∥∥(SKiF0→iI
0 − ILi )p

∥∥∥
1
+ 1/Wi,p if Zi,p = 1.

(29)

Hence the optimal Zi,p will be 0 if λ
∥∥∥(SKiF0→iI

0 − ILi )p

∥∥∥
1
+ γ/Wi,p ≥ γβ, and 1 otherwise.

4. Derivations of the Cramer-Rao bounds

Now we turn to analyzing the relationship between the estimation error of high-res signals and motion blur kernels, as
well as the impact factors of motion blur estimation.

We first assume that the perfect estimation of optical flow has already been obtained. That means, for upsampling rateM ,
we could register back M 2 low-res images with their corresponding optical flows and concatenate them to form a high-res
observation J . Therefore, under this ideal setting, the SR problem is equivalent to a deblurring problem as:

J = Ḟ ⊗ Ġ⊗ I + E. (30)

where ⊗ denotes the convolution operation, J is the observed image, Ḟ is the motion blur kernel, Ġ is the anti-aliasing kernel
and E is the additive Gaussian noise with variance σ2

n. Though the notations here are slightly abused, it would not cause
difficulties in understanding since this section is relatively independent with previous ones.

To simplify the derivation, we focus on 1D latent signal and its single component in frequency domain after decomposition,

i.e., in the time domain, the signal takes the form I(n) = A
NL
e

i2πω0n

NH . Here NL and NH are lengths of the observed and
latent signals respectively. Due to the ideal setting aforementioned, M = NH/NL = 1. A is the complex amplitude. We
then conduct discrete Fourier transform to both sides of the Eq. (30) to get:

J̃(ω) = FGĨ(ω) + Ẽ(ω). (31)

Here Ĩ(ω) = MAδ(ω − ω0). F , G are the DFTs of Ḟ , Ġ respectively. We assume Ġ takes the form of Gaussian blur, i.e.,

G(ω) = e−ω2σ2
k/2, σ2

k is the corresponding variance. Then we can write down the negative log likelihood function for the
observed signal as:

− logP (J̃ |A ) =
1

2σ2
n

∥∥∥J̃(ω0)− FGA
∥∥∥2. (32)

We first analyze the relationship between estimation error of I and motion blur kernel F . The parameters of the likelihood
are thus the complex amplitude of signal, θ = [Re{A}, Im{A}], thus we can derive the Fisher information matrix I(θ).
According to the definition, the (i, j)-th element in I(θ) is:

(I(θ))i,j = E

[(
∂

∂θi
logP (J̃ |A )

)(
∂

∂θj
logP (J̃ |A )

)
|θ
]
. (33)

Hence, we could explicitly derive the expression of I(θ) as:

Iθ =
F ∗FG2

σ2
n

[
1 0
0 1

]
, (34)

where ∗ denotes the complex conjugate. Now we could exploit the Cramer-Rao bound [1] to give a lower bound on the
variance of estimator of parameter, i.e., A in our model. Specifically,

var
(
Â
)
≥ I−1

θ (1, 1) + I−1
θ (2, 2) =

2σ2
n

F ∗F
eω

2σ2
k , (35)

where Â is the unbiased estimator of A. This bound indicates that, if a frequency component in the motion blur kernel F has
small magnitude, the estimation error of the corresponding frequency component in the high-res image will be large.

If we fix A and take the motion blur kernel F as the parameter of the likelihood function, following the above procedures,
we can derive a similar bound for the unbiased estimator F̂ as:

var
(
F̂
)
≥ 2σ2

n

A∗A
eω

2σ2
k . (36)

This indicates that the error of the blur kernel estimation will increase if the image becomes more blurry, i.e., σ k increases.



5. More results and comparisons

In this section, we show more results as well as compare our algorithm with other methods (including: Single-image de-
blurring [5], Multi-image deblurring [7], Video upsampling [3], Multi-frame super-resolution [2] and Multi-shot imaging [6])
on some challenging real sequences in the following figures.
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Figure 1. Comparison 1. (a) Some of the input frames (nearest ×4). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 2. Comparison 2. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 3. Comparison 3. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 4. Comparison 4. (a) Some of the input frames (nearest ×4). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.
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Figure 5. Comparison 5. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 6. Comparison 6. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 7. Comparison 7. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 8. Comparison 8. (a) Some of the input frames (nearest ×2). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 9. Comparison 9. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16. (b) Some comparisons with
close-ups.



Figure 10. Our result on general natural sequence. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16.
(b) Some comparisons.



Figure 11. Our result on general natural sequence. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16.
(b) Some comparisons.



Figure 12. Our result on general natural sequence. (a) Some of the input frames (nearest ×3). The image to super-resolve is Frame #16.
(b) Our results.


