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Abstract

We tackle a fundamental yet challenging problem to de-
tect and estimate just noticeable blur (JNB) caused by defo-
cus that spans a small number of pixels in images. This type
of blur is very common during photo taking. Although it is
not strong, the slight edge blurriness contains informative
clues related to depth. We found existing blur descriptors,
based on local information, cannot distinguish this type of
small blur reliably from unblurred structures. We propose
a simple yet effective blur feature via sparse representation
and image decomposition. It directly establishes correspon-
dence between sparse edge representation and blur strength
estimation. Extensive experiments manifest the generality
and robustness of this feature.

1. Introduction

Photos awaken our pictorial memories. A good photo
should have the property that the important objects and
scenes are clear and sharp. The range of clearness in an im-
age relates to the Depth of Field (DoF) of a camera lens set,
which is the distance from the nearest to farthest objects in a
scene that appear acceptably sharp. An ideal camera should
produce completely clear boundary for what we put in DoF
range. However, due to possible depth variation, many pix-
els are still blurry slightly.

With the prevalence of high-resolution imaging sensors
nowadays, blurriness and its spatial change become more
and more perceivable. Our experiments show that a typi-
cal 13 mega-pixel mobile phone camera could produce blur
spanning up to 5-8 pixels even we put these points in focus.
We name the commonly occurred small defocus blurriness
as just noticeable blur (JNB), which is formally defined as
blur spanning about 3-9 pixels and losing a quantitatively
insignificant level of structures.

JNB commonly exists in many images we captured. It
actually gives us useful information on understanding the
scene. A typical example is shown in Fig. 1, where sight
blurriness implies foreground and the salient object we
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(http://goo.gl/aijRh3) with aperture size {/5.6 and exposure time
1/500s. When a supposedly clear image is viewed in its original
resolution, slight blurriness can still be noticed. It is a general
phenomenon.

should notice.

Impact  These facts motivate us to study the new JNB
detection and estimation problem. It finds loads of poten-
tially interesting applications. For example, it could avail
computer-aided image quality assessment. It can be fur-
ther used to manipulate images and generate special effects,
including background blur magnification, partial image de-
blurring, etc.

With regard to blur estimation, our work is immediately
usable in spatially-varying blur strength estimation in the
pixel level. The example in Fig. 1 shows slight blurriness
commonly occurs. The relative blurriness estimation actu-
ally carries the scene depth estimation which avails many
tasks. Besides, depth itself forms vital data to help object
recognition and classification. Our work does not need to
capture extra depth data. As long as slight blur exists, a sin-
gle image is enough to infer usable depth. We will show
several results later.

Challenges Though valuable in research, this JNB prob-
lem faces its unique challenges compared to traditional blur
estimation. It is not feasible for existing methods to triv-
ially address it. We explain it with respect to two possible
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Figure 2. Natural image example. (a) Natural image with clear and blurry regions in red and blue respectively. (b) Close-ups. (c) Gradient
distributions for these regions. The clear region can have generally smaller gradients. (d) Spectrum map after Fourier transform on
logarithmic intensities. The JNB patch surprisingly has more high frequency components than the clear one.

solutions.

First, advanced deblurring algorithms [5, 17, 25, 12, 28,
I 3] can estimate blur kernels and deconvolve input images.
But it is still difficult to handle spatially varying blur, es-
pecially when it is not caused by camera motion. Exist-
ing non-uniform deblurring methods assume camera motion
models and are generally computationally expensive even
for a small-resolution image.

Second, there are a limited number of methods to handle
explicit blur detection [8, 14, 19, 24, 31, 30, 29, 22]. Nearly
all of them make use of local patch information. In the next
section, we discuss that with only local information, the blur
features may lack basic ability to differentiate between JNB
and clear pixels.

Our Method  We show a new direction to understand
small image blur via sparse representation based on exter-
nal data. Specifically, we found that when decomposing lo-
cal image patches into dictionary atoms in an additive man-
ner, clear and JNB dictionaries show quantitatively and vi-
sually different results. The diverged effect manifests that
dictionary atoms can precisely characterize structure in just
noticeable blur images, thus amplifying the inherent differ-
ence between slight blur and clear regions. Based on it, we
propose our simple but expressive INB feature. It is veri-
fied on large data with consistent and conclusive accordance
with our finding.

Our main contributions are as follows. First, we intro-
duce a new framework for small blur identification. Second,
we propose a sparsity-based feature, which can produce us-
able results in blur strength estimation. Moreover, we verify
our approach on two image blur detection datasets with one
containing all JNB images. We also apply our results to ap-
plications of image deblurring, image refocus, and relative
depth estimation, to demonstrate its potential usage.

2. Existing Blur Descriptors

To know where and how strong the blur happens, a num-
ber of solutions were proposed in this field. Different from
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traditional camera motion blur estimation [5, 27, 9, 26, 18]
where blur is significant and anisotropic, just noticeable
blur mainly deals with slight defocus blur. Starting from
Elder and Zucker [8], who utilized the first and second or-
der gradient information for local blur estimation, various
methods have been proposed along this line to detect and
estimate defocus blur.

Defocus blur analysis can be generally categorized into
gradient based and frequency based. Gradient methods [8,
14, 19, 24, 31] exploit the fact that blur suppresses gradi-
ents. Thus the gradient distribution in a clear region should
have more heavy-tail components and be flat to avoid strong
peaks. In the frequency point of view [19, 30, 29], blur at-
tenuates high frequency components and increases low fre-
quency ones.

However, all above approaches were designed to esti-
mate defocus blur for narrow DoF images or images con-
taining large blur, where the difference of edge sharpness in
in-focus and out-of-focus regions are relatively significant.
They do not work similarly well at INB level. The reason is
that nearly all these descriptors collect local information for
each estimated location. On relatively small regions, local
information may not be stable enough for usable descriptor
construction. So the local statistics on sharp and JNB re-
gions are hardly distinguishable, making their classification
much more challenging.

A natural image example in Fig. 2 illustrates this prob-
lem. The red patch is clear and the blue one is blurred.
Although both patches contain edge information, their lo-
cal gradient distributions contradict the common sense that
clear patch should contain more large-magnitude gradients
shown in (c). The local Fourier spectra reveals similar am-
biguity in (d). It is due to the diverse complexity of la-
tent structures in the two patches, where the blurred region
here has more edges than the clear one. Since such ambi-
guity regions appear commonly in JNB images, traditional
blur features would fail easily in these images. Note local
gradient distribution features were used in [8, 19, 14, 31],
and local frequency based metrics include slope of average
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Figure 3. Visualizing the dictionary for natural image sparse rep-
resentation. (a) Clear Natural image dictionary. (b) Dictionary
trained on a JNB image set.

power spectrum [ 19, 22], wavelet response [29], Gabor fil-
ter, etc. For these methods, only using information within a
local region is not that powerful to differentiate JNB. Other
methods, e.g., matting [7, 6] and local appearance model
maximum saturation [19, 23], encounter similar issues.

To solve this problem, external data should be referred
to provide more possible JNB status. In our approach, we
extract a set of JNB templates containing rich structural and
statistical information from external data. Then the tem-
plates are used to evaluate the possibility of existence of
just noticeable blur. We provide more comparisons and
analysis in Section 4. Hardware solutions for defocus anal-
ysis [15, 11, 3] are out of the scope of this paper. Opti-
cal aberrations correction [21] is also related to estimating
small blur accurately. But it can only handle images within
restricted situations compared to ours.

3. Our Blur Detection Features

Our human visual system has the full ability to distin-
guish blur from clear regions. It implies a possible foun-
dation to construct an automatic system based on seeing a
plenty of natural image examples in clear or blurry states.
We thus follow the data-driven strategy via sparsity based
natural image decomposition on many extra data.

3.1. Sparse Dictionary

Sparse representation [I, 20] commonly works as fol-
lows. Given a set of n signals Y = {y1,...,y,} € R¥",
each signal y; can be represented by a sparse number of
dictionary atoms as

min|ly; — Daill; st [lzillo < , (1)
where D € R4X™ is an over-complete dictionary capturing
all atomic information lying in Y'; z; is the coefficient to
reconstruct y;. The £2 norm in the objective function makes
representation error small, so that the sparsely recovered
signal Dz; is close to the original one. The £° norm for x; in

the constraint induces sparsity, which allows a small num-
ber of dictionary atoms in D to reconstruct y;. Basically,
sparse representation is to use dictionary atoms to capture
elementary information in the input domain.

In natural image decomposition, we collect overlapped
image patches as input. Each image patch is vectorized as
y; in Eq. (1). A dictionary D is trained on the entire im-
age patch set. Based on the constructed dictionary, each
image patch is decomposed into a few atoms together with
their non-zero coefficients, forming the reconstructed fea-
ture Dx; via Eq. (1).

3.2. Clear and JNB Dictionaries

As sparse representation can decompose each image
patch into several elementary dictionary atoms, do these
atoms represent clear and JNB input differently? We con-
duct experiments to verify it. Our method extract image
patches each with size 8 x 8, forming a 64D vector. Then
we train a natural image dictionary with 128 atoms using
clear images following the procedure of [1]. The result-
ing dictionary is illustrated in Fig. 3(a). Each atom is an
edge-like component, reasonably representing natural im-
age structure.

In the meantime, we use the same procedure to train
a dictionary on images blurred slightly by Gaussian with
o = 2. The corresponding image dictionary is shown in
Fig. 3(b), which presents obviously different structures con-
taining nearly no sharp patterns.

The contrast between dictionaries shows how blur, even
slightly, influences the fundamental atoms in image decom-
position. It also manifests that JNB and clear dictionaries
are not interchangeable when performing sparse patch re-
construction.

A Naive Method So a straightforward strategy is to
learn the dictionary for each set of patches. If it contains
smooth elements, the patches are possibly blurred ones.
This scheme has a few blatant limitations. It assumes all
patches in an image are either blurred or clear in order to
learn dictionaries correctly. It is also costly to learn dic-
tionaries again and again for different input data. Finally, it
may be possible to tell whether the set of patches are blurred
or not; but it is difficult to estimate blur size in terms of blur-
ring strength.

Our proposed method is different from this naive
scheme. It only needs to construct one dictionary via offline
training. It is then used afterwards to classify new patches
individually without assuming that all or a group of patches
are in the same class. Blur degree estimation is achievable
as well in this simple framework.



(a) Clear input, 59 atoms

(d) Gaussian blur 0=1.2, 24 atoms

(b) Gaussian blur 0=0.6, 46 atoms
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(e) Gaussian blur 0=1.5, 20 atoms

(c) Gaussian blur 0=1, 33 atoms
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(f) Gaussian blur 0=2, 19 atoms

Figure 4. Sparsity features for different blur degrees. As blurriness gets severe, variation of patches decreases. Thus the number of atoms

used to represent images correspondingly drops.

3.3. Sparsity JNB Feature

Considering inherent discrepancy between the two types
of dictionaries, we propose a new blur metric. We first learn
a blur dictionary D following Eq. (1). The dictionary D is
trained over 100,000 patches randomly cropped from 1,000
natural images blurred by the Gaussian kernel of o = 2. We
have tried other choices, including increasing and decreas-
ing Gaussian variance, and replacing Gaussian with other
types of blur. It is found that this configuration is suffi-
ciently workable for our feature construction. The maxi-
mum number k corresponding to the used dictionary atoms
is set to 5 in patch decomposition and the total dictionary
size is 128.

After D is learned, it is applied to all image patches, both
JNB and clear, for blur identification. For each new patch
input y;, we use another spare representation to decompose
it into basic atoms. It is expressed as

min [[z;f[1 st [lyi = Dri|2 <e, 2

where € is a constant (0.07 in our experiment). Different
from traditional form that selects a relatively large € to re-
sist noise and outliers, we set this value small to make the
resulting averaged PSNR between the original and recon-
structed patches over 50. This special setting is because
detail-level structural information is central to image blur
assessment in human perception.

The output atoms and corresponding coefficients reflect
if the input is blurred and how strong it is. We build our
sparsity feature f, for any input y; as the number of non-
zero elements in x;, expressed as

fa = ||zillo- 3

Note these patches should not be flat in color in order to
avoid classification ambiguity. Actually it does no matter
if we determine one flat patch as blur or clear for most of
the subsequent applications such as deblurring, blur mag-
nification, etc. Also we choose the blurred image to create
dictionary but not blurring the clear dictionary, since the
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Figure 5. Major atom difference when using the blur dictionary
to represent inputs in 1D. The first-row clear input needs many
blurred atoms in representation due to structure divergence. The
bottom blurred signal, contrarily, can be reconstructed sparsely.

clear-image dictionary in Fig. 3(a) contains many edge-like
structures with three or more major colors, while most blur
dictionary atoms are smooth boundaries with two colors in
(b). The atoms generated by blurring the clear dictionary
are still different from those in (b) and do not work simi-
larly well in our experiments. We believe it is because our
current blur dictionary captures more elementary informa-
tion to represent JNB images.

Understanding and Verification Why is the number
of atoms to decompose each patch essential in blur identi-
fication? The rationale is that sharp edges have more high-
frequency sharp components than the JNB regions. In fre-
quency decomposition, to fully encode a high-frequency
edge, many small low-frequency components need to be
recorded. They are added with their respective weights.

Taking a 1D signal as example, to represent the clear
box signal well, many smoothed atoms need to be added
together with their respective coefficients, as illustrated in
the first row of Fig. 5. Contrarily, a blurred signal requires
much less atoms for optimal reconstruction, illustrated in
the second row of Fig. 5.

We choose to use the blurry-image dictionary but not the
clear one for image reconstruction. It is because in the
blurry-image dictionary, there is barely sharp component
because it is established from blurry training data. So to
represent a clear patch using blurry bases, a large number
of atoms must be used, which differ greatly from represent-
ing a blur patch.



It is notable using the clear-image dictionary does not
achieve similar effect, as there inevitably exist flat or
smooth regions in clear images. They make the dictionary
yield similar ability to reconstruct blurry and clear images
using similar numbers of atoms.

Our blurry-image dictionary D is shown in Fig. 3(b). A
clear image patch and those blurred by 5 different kernels,
are decomposed into atoms contained in Fig. 4. Since the
blurred dictionary mainly contains various smooth struc-
tures, to represent a clear input, the used dictionary atoms
are almost as many as the patch dimension. With blur de-
gree increasing, edges become less sharp. Thus a small
number of elements can already form the basis. The trend
can be statistically obtained: more atoms generally corre-
spond to less blurry patches. We thus use this clue as our
small blur indicator.

Final Blur Strength Measure We extensively verify the
generality of the phenomenon that less used dictionary
atoms correspond to stronger blurriness. We capture about
200 images with different defocus blur, where their blurri-
ness can be roughly matched with the Gaussian kernel of
variance ranging from 0.3 to 2, in a controlled laboratory
environment. Along with natural images blurred by Gaus-
sian defocus kernels, in total we collect 5,000,000 sampled
patches variously smoothed in different degrees. We re-
move flat regions to avoid ambiguous.

Fig. 6 lists our sparsity values f, and their corresponding
standard derivation under different blurriness levels. The
sparsity decreases as blur increases. Moreover, the sparsity
feature values for each particular blur level are rather con-
sistent under a small standard variation. This manifests the
effectiveness and usability of the sparsity blur feature.

The statistically stable correspondence between blur
standard deviation ¢ and sparsity feature values f enables
us to fit a logistic regression function as

a

/= 1+ exp(bo + ¢)

+d, “4)

where a, b, ¢ and d are the fitted variables with correspond-
ing values 39.49, 4.535, —3.538, and 18.53 respectively.
Eq. (4) allows our system to even estimate the degree of
blurriness for each patch even if it is small, and empowers
spatial-varying blur strength estimation.

4. Experiments and Comparisons

Our method does not handle flat regions due to their in-
herent ambiguity. As aforementioned, it does no matter to
determine them as sharp or blur. We simply mask them out
to indicate uncertain pixels. We fill in these holes using
closed form matting [16]. The final blur map is bilateral
filtered to remove noise and preserve sharp boundaries.
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Figure 6. Sparsity values v.s. blur strength. Height of each bar
indicates the average sparsity value corresponding to a particular
blur strength measured by blur standard deviation. The short gray
lines represent the standard deviation. It statistically proves that
our sparsity measure is strongly and stably correlated with blur
strength.
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We provide an example in Fig. 7. (a) is the input image,
and (b) is its corresponding ground-truth mask to indicate
the clear region with respect to the just noticeable blur re-
gion. Our raw feature in (j) is already powerful enough to
classify the background toy as blurry. The final map in (k)
is perceptually more reasonable. Given the color input and
the blur map, we apply a graph-cut algorithm to label the
blur region in (1). It is close to the ground-truth.

The JNB detection task is actually not easy. We com-
pare our sparsity based method with other blur estimation
approaches including [2, 19, 4, 31, 30, 23, 22] in (c)-(i).
We either implement their methods or directly use public
codes for fair comparison. Our method outperforms oth-
ers significantly. All the results are normalized to [0, 1]
for better comparison. In particular, the result of [4] in (c)
is directional blur via local Fourier transform from a set of
candidates. It shows directly applying local FFT is not dis-
criminative for small blur.

The methods of (d) and (e) estimate blur at strong edge
regions, and then propagate them to get final results [2, 31].
These methods rely on accurate estimate of edge blur. The
Gaussian kernel and noise-free assumptions could be un-
suitable when dealing with our problem. The background
toy in (d) and the star region in (e) are not correctly labeled.
The result of [30] is shown in (f). It provides more accurate
estimate but computation is time consuming. Also graph-
cut optimization makes the final result only have a few dis-
crete values.

Finally, the methods of [19, 22] with results shown in (g)
and (h) generate local blur estimates based on local gradient
or frequency statistics. They do not produce significant dif-
ference between clear and JNB regions. So there are clear
errors in the results. A decomposition based approach is
also employed via local SVD in [23] with the result shown
in (i). Without additional training data, this method does not
perform similarly well on textured regions such as the head



(j) Our raw feature

(k) Our final blur map

(1) Our binary map

Figure 7. Blur map comparison.

of the front toy. Our method is specially designed to detect
JNB. The final result after filtering in (k) is visually com-
pelling. The generated binary map in (1) can be regarded as
direct foreground segmentation.

To further evaluate our approach, we collect 8§ JNB im-
ages, where blurry regions are masked out as ground-truth.
On these data, we compare our sparsity based feature with
other blur estimation approaches including [2, 19, 4, 31
30, 23, 22]. Other blur analysis methods do not generate
blur maps and thus are not included. We show quantita-
tively comparison on our data via precision-recall (PR) in
Fig. 8. The final maps to calculate the PR curve are chosen
as binary at possible thresholds within range [0, 255]. Our
method achieves the highest precision in the entire recall
range from [0, 1].

We also test our method on images proposed in [22
where the input image are not restricted to just noticable
blur. Based on the results in Fig. 9, our method surprisingly
outperforms others [19, 4, 23, 22] in the full range, which
indicates that our method is also able to handle general blur
in most cases. To further investigate the latent informa-
tion, we manually select 62 images out of the 1000. All
images contain not-so-obvious out-of-focus blur and back-
ground still has visible structures. These data are difficult
to handle in general. Our results are shown in Fig. 10.
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Figure 8. Precision-recall comparison on the JNB data.

5. Applications

In what follows, we apply our blur map results to sev-
eral applications including deblurring, refocus, and depth
estimation.

5.1. Deblurring Using the Blur Estimate

We handle spatially varying blur in this section. The
input JNB image is shown in Fig. 11(a) with ground-truth



(a) Input

(c) Ground truth mask

(d) Feature map

(b) Deblurring result
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(e) Blur mask

Figure 11. Deblurring using our blur estimate.
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Figure 9. Precision-recall comparison on the blur dataset [22
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Figure 10. Precision-recall comparison on small blur data in [22

clear mask in (c). We create the blur region mask by crop-
ping our blur feature map with values over 45. The obtained

mask is shown in Fig. 11(d). It is close to the ground truth
mask. Then we deconvolve it [10]. The deblurring result
is shown in Fig. 11(b), which manifests that our estimated
blurriness is usable to recover a clear image.

5.2. Refocus Using Blur Estimate

The estimated blur maps can be regarded as a coarse rep-
resentation for depth maps, which are used to produce the
refocus effect. We first generate 20 different blurred ver-
sions for an image, and quantize the blur map into 20 dif-
ferent levels. For each pixel, according to the distance be-
tween its blur feature value and the referenced blur feature
in the current round, we choose one result from previous
20 blurred images. An input image with its corresponding
feature map are shown in Fig. 12(a) and (b). Two different
refocus effects are shown in (c) and (d).

5.3. Depth Estimation

A set of images taken under the same aperture size but
with different distances are used to verify how blur esti-
mate relates to depth. Fig. 13 shows our 6 reference im-
ages with their corresponding blur feature values in differ-
ent distances. As distance increases, feature values for the
central object decreases. We use the median feature value
on the toy region as reference to describe the image, which
excludes the influence from the confusing totally blurred
background. The six images have corresponding feature
values 55, 48, 41, 32, 20 and 16. For the test image, we
also select a reasonable region to calculate the feature value.
Three test cases are shown in Fig. 14(a), (c), and (e). The
feature values in (b), (d), and (f) are 44, 55, and 36 respec-
tively, which are consistent with the feature values in their



(a) Input and feature map (b) Refocus result

(c) Refocus result

Figure 12. Refocusing using our blur map. (a) is the input image. (b) is our learned feature map. (c) shows different refocusing result given

our blur feature map. The arrow highlights the focus point.
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oS ” - - ~ - - . ‘. .

-

() 0.9m

(d) 0.8m (f) 1.0m

Figure 13. Calibrated image with their corresponding blur features. The set of images are taken using aperture size /5.0 in different

distances.

(b)

Figure 14. (a), (c), and (e) are three test examples with distances 0.8m, 0.5m, and 0.7m. (b), (d), and (f) are their corresponding features.

reference distances.

6. Conclusion and Discussion

We have explored a challenging topic to estimate just
noticeable blur. We first analyzed previous local feature
methods. Then, a new sparse feature was developed for
just noticeable blur detection. We showed that this feature
directly corresponds to blur strength. The learned blur fea-
tures can benefit various applications, including image de-
blurring, image refocus, depth estimation, etc.

Our current framework does not consider strong noise

as it could be taken similarly as details in clear regions.
Our possible future work includes developing a more robust
propagation method adaptive to blur feature applications, as
well as using the blur map to assist high level vision appli-
cations, such as image classification and detection.
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