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A. Technical details

A.1. Scale Estimation for Layer Extraction

We introduced a new metric in Sec. 3.1 of our paper, which is defined by the encompassment relation, to measure region

scale. The metric is used to merge small-size regions. Since direct computing encompassment is relatively costly, we resort

to a fast method by spatial convolution. Given a map M with each pixel labeled by its region index in the region list R, we

apply a box filter kt of size t× t, which produces a blurred map kt ◦M (◦ denotes 2D convolution).

With computation of absolute difference Dt = |M − kt ◦M |, we screen out regions inR with their scales smaller than t.

The scale for a region Ri is smaller than t if and only if

(
min
y
{Dt(y)|y ∈ Ri}

)
> 0, (1)

where y indexes pixels in the image. It is based the observation that if all the label values for region Ri in M are altered after

the convolution, Ri cannot encompass kt. Thus, the scale of the region is smaller than t.

We present the scale estimation process in Algorithm 1. After obtaining regions whose scales are smaller than t, we merge

each of them to its closest neighboring region in CIELUV color space. The merging process is shown in Algorithm 2.

Algorithm 1 Scale Estimation

1: input: Region listR, scale threshold t

2: Create a map M with each pixel labeled by its region index inR;

3: Create a box filter kt of size t× t;

4: Dt ← |M − kt ◦M |;
5: Rt ← ∅;
6: for each region Ri in R do

7: x← miny{Dt(y)|y ∈ Ri};
8: If x > 0 thenRt ←Rt

⋃
{Ri};

9: end for

10: output: Region listRt

A.2. Optimization in the Hierarchical Inference

The hierarchical inference model defined in our paper is

E(S) =
∑

l

∑

i

ED(sli) +
∑

l

∑

i,Rl
i
⊆R

l+1

j

ES(s
l
i, s

l+1

j ), (2)
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Algorithm 2 Region Merge

1: input: Region listR, scale threshold t

2: repeat

3: Get region listRt by Algorithm 1;

4: for each region Ri inRt do

5: Find the neighboring region Rj ∈ R with the minimum Euclidian distance to Ri in CIELUV color space;

6: Merge Ri to Rj ;

7: Set the color of Rj to the average of Ri and Rj ;

8: end for

9: untilRt = ∅
10: output: Region listR

where S is the set of all saliency variables {sli} we aim to estimate. Variable sli denotes the saliency value for region i in

layer Ll. The data term ED(sli) is defined as

ED(sli) = βl||sli − s̄li||
2
2 (3)

for each region Rl
i. The hierarchical term ES(s

l
i, s

l+1

j ) is

ES(s
l
i, s

l+1

j ) = λl||sli − sl+1

j ||
2
2 (4)

for each pair of corresponding regions Rl
i, R

l+1

j in layers Ll and Ll+1 respectively. They satisfy Rl
i ⊆ Rl+1

j .

By definition, energy function E(S) forms a tree structure, whose nodes store unary energy ED(sli) and edges are with

the hierarchical energy ES(s
l
i, s

l+1

j ). Both of them are convex functions, thus the objective function can be efficiently solved

using belief propagation. Two steps, i.e., bottom-up energy update and top-down optimization, are involved.

Bottom-up energy update In this step, we propagate local energies between connected nodes in the tree in a bottom-up

way. For each node j in layer Ll+1, energy is updated via

Ẽ(sl+1

j ) = ED(sl+1

j ) +
∑

i∈Chj

min
sl
i

[ES(s
l
i, s

l+1

j ) + Ẽ(sli)], (5)

where Chj denotes all children of node j in the tree. For nodes in the bottom layer, we have Ẽ(s1j ) = ED(s1j). In

Eq. (5), ED(sl+1

j ) is pre-computed according to its definition in Eq. (3). Term minsl
i
[ES(s

l
i, s

l+1

j ) + Ẽ(sli)] is easy to solve

since ES(s
l
i, s

l+1

j ) is a quadratic term according to Eq. (4) and Ẽ(sli) is also quadratic according to its definition. Solving

the minimum expression plays the role of optimizing the energy configuration for child node sli and obtaining its optimal

expression w.r.t. its parent node sl+1

j . By denoting the expression as f l
i (s

l+1

j ), Eq. (5) becomes

Ẽ(sl+1

j ) = ED(sl+1

j ) +
∑

i∈Chj

[ES(f
l
i (s

l+1

j ), sl+1

j ) + Ẽ(f l
i (s

l+1

j ))]. (6)

The whole energy update in this step is therefore simple and efficient. After all energies are updated, we have the total energy

represented using only saliency variables in the top layer.

Top-down optimization In this step, we propagate energies from top layers to the lower ones. First, for each node s3i in

the top layer, because Ẽ(s3i ) solely depends on s3i only, we directly optimize it to get optimal s3i . Denote the optimal solution

as (s3i )
∗. Then for each node i in layer Ll, given the optimum calculated in the upper layer Ll+1, we need to solve

min
sl
i

[ES(s
l
i, (s

l+1

j )∗) + Ẽ(sli)], (7)
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where the first term is to bring down energy from upper layers, and the second term expresses the self-energy. Observing

that it shares the similar form as the second term in Eq. (5), we directly use the optimal expression of sli with respect to sl+1

j

derived in the previous step to calculate the optimal solution, i.e.

(sli)
∗ = f l

i ((s
l+1

j )∗). (8)

After this step, we can obtain the global optimal value sli for all nodes in the tree, guaranteed by the tree structure of our

inference model.

B. More Results

We show in Fig. 1 more comparisons on the MSRA-1000 dataset [1] with several recent methods, including MZ [6], LC

[8], GB [4], RC [2] and SF [7]. Abbreviations are the same as those in the paper. Our method shows advantages on handling

objects with small structures or background containing fine texture patterns.

In Fig. 2, we show more comparisons on our new CSSD dataset with several recent methods, of which the implementations

are public available. They include IT [5], FT [1], CA [3], HC [2] and RC [2]. Abbreviations follow those in the paper.
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(a) Input (b) GT (c) MZ (d) LC (e) GB (f) RC (g) SF (h) Ours

Figure 1. More visual comparisons on MSRA-1000 dataset.
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(a) Input (b) GT (c) IT (d) FT (e) CA (f) HC (g) RC (h) Ours

Figure 2. More visual comparisons on CSSD dataset.
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