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Abstract—A common problem of optical flow estimation in the multiscale variational framework is that fine motion structures cannot

always be correctly estimated, especially for regions with significant and abrupt displacement variation. A novel extended coarse-to-

fine (EC2F) refinement framework is introduced in this paper to address this issue, which reduces the reliance of flow estimates on

their initial values propagated from the coarse level and enables recovering many motion details in each scale. The contribution of this

paper also includes adaptation of the objective function to handle outliers and development of a new optimization procedure. The

effectiveness of our algorithm is demonstrated by Middlebury optical flow benchmarkmarking and by experiments on challenging

examples that involve large-displacement motion.

Index Terms—Optical flow, image motion, video motion, variational methods, optimization, features.

Ç

1 INTRODUCTION

THE variational framework [18], together with coarse-to-
fine refinement [2], [23], is widely used in optical flow

estimation [10], [12]. On the Middlebury optical flow
evaluation website [3], [4], almost all top-ranked methods
adopt this scheme.

However, the conventional coarse-to-fine warping frame-

work has a fundamental limitation in handling motion

details. Brox et al. [9], in computing large-displacement

optical flow, pointed out that if flow structure is smaller

than its displacement, the latter may not be well estimated.

In this paper, we show that this issue can be even more

serious as it also applies to small-displacement motion.

Taking Fig. 1 as an example, due to the camera motion, the

foreground toy deer has motion significantly different from

that of the background (average displacements d ¼ �2 and

d ¼ 21, respectively). This example is very challenging for

coarse-to-fine variational optical flow estimation.
As shown in Fig. 1e, in a coarse level, the narrow neck

does not exist and only the significant background motion

is estimated. This makes the actual motion of the fore-

ground pixels in the finer scale (Fig. 1f) drastically different

from the initial estimate from the background, violating the

linearization assumption and accordingly leading to highly

unstable motion estimation. The final flow result shown in

Fig. 1c is erroneous. This example discloses one problem of

the general coarse-to-fine variational model—that is, the
inclination to diminish small motion structures when
spatially significant and abrupt change of the displacement
exists.

We address this problem in this paper and propose a
unified framework for high-quality flow estimation in both
large and small displacement settings. Central to our method is
a novel selection scheme to compute extended initial flow
vectors in each image level. This makes the following
optimization not completely rely on the result at the
previous scale, and is thus capable of refining the estima-
tion correctly in a top-down fashion. Our flow result shown
in Fig. 1d contains small structures. More examples are
included in Section 5.

This paper also contributes in the following ways: First,
we use robust sparse features, together with patch match-
ing, to produce extended flow initialization, which helps
enforce the linearization condition in the variational setting.
Second, in the flow estimation model, we propose the
selective combination of the color and gradient constraints
in defining the data term, robust to outliers. Third, we
propose a fast variable-splitting-based optimization method
to refine flow maps. It is highly parallel.

Finally, we employ the Mean Field (MF) approximation
to enable solving the objective function, which involves
both discrete and continuous variables, commonly regarded
as challenging to handle. Extensive experiments visually
and quantitatively validate the performance of our ap-
proach under both large- and small-displacement motion.

This manuscript extends its conference version [42] with
the following major differences:

1. We provide more discussion and derivation of the
data term and its Mean-Field approximation.

2. The extended coarse-to-fine scheme is further gen-
eralized to handle nonrigid motion with dense patch
matching.

3. The occlusion is progressively handled in each scale.
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4. We have experimented with more challenging
examples in this paper.

The rest of the paper is organized as follows: Section 2
reviews related work. In Section 3, we introduce the flow
energy. An extended coarse-to-fine framework together
with the efficient solver is presented in Section 4. Section 5
shows results for both large- and small-displacement
optical flow. We conclude this paper in Section 6.

2 RELATED WORK

Following the variational model of Horn and Schunck [18],
modern optical flow estimation is usually posed as an
energy minimization problem, with the energy function
containing a data term and a smoothness term.

One important improvement over the original varia-
tional model is the introduction of robust statistics for both
the energy terms. Black and Anandan [7] replaced the
quadratic penalty functions in [18] by nonconvex robust
ones to reject outliers. ‘1-norm, or its variation (e.g., the
Charbonnier function), is also commonly used [10], [12],
[37], [43]. Learning-based methods construct the distribu-
tion from empirical data. In particular, Roth and Black [26]
learned spatial smoothness using Field-of-Experts and
combined it with a Charbonnier data term; Sun et al. [34]
proposed a learning framework to fit distributions using
Gaussian Scale Mixture (GSM). In [33], Sun et al. empiri-
cally demonstrated that the simple Charbonnier function
(‘1-norm) actually outperforms other highly nonconvex
robust functions due to its convex property.

Efforts have also been put into improving the optical flow
constraints. Haussecker and Fleet [17] proposed a physical
constraint to model brightness change. Wedel et al. [37]
proposed a structure-texture decomposition method to
reduce the discrepancy between two frames caused by
illumination change. Lempitsky et al. [20] computed the
matching cost only using high frequency components.
Prefiltering on the input images was suggested in [34] and
[25] to handle illumination variation. These models are
flexible, at the same time requiring preprocessing or
advanced optimization to solve complex objective functions.

In [10], Brox et al. introduced a gradient constancy
constraint to complement the brightness constraint. In [12],

separate penalties are imposed on the brightness and
gradient constraints. Zimmer et al. [45] further employed
the normalized brightness and gradient constraints. We will
show later that the way to combine the brightness and
gradient terms can be improved by a selection model.

To preserve motion discontinuities, anisotropic [39],
steerable [34], [44], [45], and adaptive-smoothness [1], [36]
terms were studied. Segmentation information was incor-
porated to regularize flow estimates in [19], [24], [41].
Recently, the nonlocal smoothing strategy [33], [38] demon-
strated the potential to handle displacement discontinuities
and occlusion, which is tightly linked to explicit refinement
of the flow field using image filtering [28], [40].

Almost all the above methods rely on coarse-to-fine
warping to deal with motion larger than one pixel [2], [6].
As discussed in Section 1, this strategy could fail to recover
small-scale structures. Handling incorrect initialization by
adapting windows for stereo matching [31] is a solution. It,
however, assumes at least that the nearby disparities are
correctly initialized, which may not be true for small-scale
structures that are totally eliminated in the coarse level.

Using discrete optimization, Lempitsky et al. [20] pro-
posed fusing flow proposals obtained from different flow
estimation methods with various parameter settings. It is
effective at finding the optimal values among the given
proposals. But, the sufficiency and optimality of the
proposals cannot be controlled. Because the proposals are
still generated by the conventional coarse-to-fine warping, it
is possible that none of the proposals preserves small-scale
motion structure. In comparison, our method computes high
confidence flow candidates in each level, and thus is not
entirely dependent on flow obtained from the coarse scale.

Related work also includes recent large-displacement
optical flow estimation [9], [11], where region-based
descriptor matching was introduced. It is an effective
method, except for occasional vulnerability to matching
outliers due to the data term. As discussed in [11],
descriptor matching could decrease the performance in
small-motion regions.

By extending the numerical scheme of Zach et al. [43]
and by searching possible values to minimize the data
energy [32], large displacement optical flow estimation
can be achieved. As the smoothness prior is not enforced,
the results can possibly be noisy and lack subpixel
accuracy. In this paper, an extended coarse-to-fine method
is proposed, which can significantly improve both the
large and small-displacement optical flow estimation in a
unified framework.

3 OPTICAL FLOW MODEL

We introduce in this section our objective function. We base
our data penalty function on the ‘1 norm to reject outliers
and use the Total Variation (TV) for regularization.

3.1 Robust Data Function

As the color constancy constraint is often violated when
illumination or exposure changes, combining the gradient
constraint was adopted [10], [12]. Denoting by u ¼ ðu; vÞT the
flow field that represents the displacement between frames I1

and I2, one choice of the data term for flow estimation is
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Fig. 1. Motion detail preserving problem. (a)-(b) Two input patches.
(c) Flow estimate using the coarse-to-fine variational setting. (d) Our
flow estimate. (e)-(f) Two consecutive levels in the pyramid. Flow fields
are visualized using the color code in (g). The input data is from [29].



EDðuÞ ¼
X

x

1

2
kI2ðxþ uÞ � I1ðxÞk

þ 1

2
�krI2ðxþ uÞ � rI1ðxÞk;

ð1Þ

where x 2 ZZ2 indexes the 2D coordinates, � is a weight

balancing the two matching costs. r is the discrete

approximation of the gradient operator. This function, due

to the addition of two terms, is less accurate in modeling pixel

correspondence than only using one out of the two terms.
Fig. 2 shows an example where the patch in Fig. 2a

contains two points P1 and P2. Their data cost distributions

with respect to different displacement values are plotted in

Figs. 2b and 2c, respectively, (ground truth displacements

are shifted to 0). It is noticeable that the color constraint

(blue curve in Fig. 2b) does not produce the minimum

energy near the ground truth value because the color

constancy is violated given point P1 moving out of the

shadow. Adding the color and gradient terms using (1) also

results in an undesirable distribution (dashed magenta

curve) as the cost at the ground truth point is not even a

local minimum. Similarly, in Fig. 2c, only the color

constancy holds because point P2 undergoes rotational

motion, which alters image gradients. It is not ideal as well

to add the two constraints in the data function definition.
The above analysis indicates that a good model should

only use the more fitting constraint, but not both of them. We

accordingly define a binary weight map �ðxÞ : ZZ2 7!f0; 1g to

switch between the two terms. The new data function is

expressed as

EDðu; �Þ ¼
X

x

�ðxÞkI2ðxþ uÞ � I1ðxÞk

þ ð1� �ðxÞÞ�krI2ðxþ uÞ � rI1ðxÞk:
ð2Þ

When �ðxÞ ¼ 1, the gradient constraint is favored. Other-

wise, we select color constancy. Our empirical investigation

provided in Section 5 shows that this model can produce

higher quality results than various alternatives.

3.2 Edge-Preserving Regularization

The regularization term for an optical flow estimation is

generally designed to be edge preserving [34], [36], [45]. We

define our smoothness term as

ESðuÞ ¼
X

x

!ðxÞkruðxÞk; ð3Þ

where kruðxÞk is the common TV regularizer. !ðxÞ is the
simple structure adaptive map that maintains motion
discontinuity [1], [36]:

!ðxÞ ¼ expð�krI1k�Þ; ð4Þ

where we set � ¼ 0:8 in our experiments. For simplicity, we
use the brightness derivatives (two channels) to compute
krI1k�. The final objective function is defined as

Eðu; �Þ ¼ EDðu; �Þ þ �ESðuÞ; ð5Þ

where � is the regularization weight.

3.3 Mean Field Approximation

Minimizing (5) involves simultaneously computing two
fields: continuous u and binary �, which is computationally
challenging. We employ the Mean Field approximation [14]
to simplify the problem by first canceling out the binary
process by integration over �. The probability of a
particular state of the system is given by

P ðu; �Þ ¼ 1

Z
e��Eðu;�Þ; ð6Þ

where � is the inverse temperature and Z is the partition
function, defined as

Z ¼
X
fug

X
f�¼0;1g

e��Eðu;�Þ: ð7Þ

We then compute the sum over all possible �s with the
saddle point approximation (see Appendix in the supple-
mentary file, which can be found in the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2011.236, for the derivation), yielding

EeffðuÞ ¼ �ESðuÞ �
X

x

1

�
ln
�
e��DIðu;xÞ þ e��DrIðu;xÞ

�
; ð8Þ

whe r e DIðu;xÞ ¼ kI2ðxþ uÞ � I1ðxÞk an d DrIðu;xÞ ¼
�krI2ðxþ uÞ � rI1ðxÞk. It indicates that the flow estimate
by minimizing (8) is actually the MF approximation of
minimizing (5). The effective energy is therefore written as

EeffðuÞ ¼ Eeff
D ðuÞ þ �ESðuÞ; ð9Þ

where the effective data function is

Eeff
D ðuÞ ¼

X
x

� 1

�
ln
�
e��DIðu;xÞ þ e��DrIðu;xÞ

�
: ð10Þ

The optimality of (9) does not depend on the estimate of �.
Equation (10) defines a robust function and � plays a key
role in shaping it. When � ! 0, (10) acts as the average of the
two data costs in (1), while � !1 leads to the lower
envelope of the two costs in (10). We show in Fig. 3 several
examples on how the effective function is affected by
varying �. Fig. 3a contains plots with different � values,
the same as the ones shown in Fig. 3b. In Figs. 3b, 3c, and 3d,
we show distributions of the effective data costs by varying
�. Note that a small � makes the distribution (plotted in
Fig. 3b) close to the original one with � ¼ 0:5 (shown in
Fig. 3a) while a relatively large � (shown in Fig. 3d) yields
the distribution approaching the lower envelope of the costs
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Fig. 2. Data cost distributions for two points. (a) A patch in the
“RubberWhale” example, where two points P1 and P2 are highlighted.
(b)-(c) Plots of different data costs (heights of the points) for P1 and P2.
The ground truth displacement is moved to 0 in the horizontal axis for
ease of illustration.



with � ¼ 0 and � ¼ 1, which is what we need for accurate
flow estimation. The effective data costs (with � ¼ 5) are also
plotted in Figs. 2b and 2c using the green crossed curves.
They are coincident with the smallest-value curves. Our
method always keeps � � 1 empirically.

We optimize (9) using an iteratively reweighted optimi-
zation strategy. The difficulty of minimizing (9) stems from
the nonconvex data function. Taking the partial derivative
with respect to the variable u yields

@uE
eff
D ðuÞ ¼

X
x

��ðxÞ@uDI þ ð1� ��ðxÞÞ@uDrI; ð11Þ

where ��ðxÞ is the flow-dependent weight, written as

��ðxÞ ¼ 1

1þ e� DIðu;xÞ�DrIðu;xÞð Þ : ð12Þ

It indicates that the energy can be minimized by iteratively
updating �� in the outer loop and by solving for u with the
computed weights afterwards. In addition, although (9) is
nonconvex and difficult to solve using continuous optimi-
zation, there is no obstacle to applying discrete optimization
if candidate labels can be obtained. We propose a robust
algorithm, described in the next section, to estimate u.

The solver can also be interpreted from another
perspective. Note that ��ðxÞ is actually the MF-approxima-
tion of �ðxÞ (see the Appendix, available in the online
supplemental file), and thus can be updated once u is
obtained. It has an effect similar to �ðxÞ (given in (2)) in
constraint selection.

4 OPTIMIZATION FRAMEWORK

Traditional optical flow estimation, ascribed to the use of
the variational setting, relies excessively on the coarse-to-
fine refinement. As discussed in Section 1, this process
could fail to recover ubiquitous fine motion details given
the possible large discrepancy between the initial flow and
the ground truth displacements in each image level.

In this section, based onEeff and ��, we propose an iterative
method to optimize (5). Specifically, because Eeff

D ðuÞ is
independent of ��, we first infer multiple high-confidence

flow candidates and apply discrete optimization to select
the optimal ones. With this result, �� in (12) can then be
quickly estimated. We finally improve the subpixel accu-
racy of flow with the estimated �� using continuous
optimization. This procedure is found to be surprisingly
effective in dampening estimation errors.

Our overall algorithm is sketched in Table 1 based on
iteratively processing images in a top-down fashion. The
steps are detailed further below.

4.1 Extended Flow Initialization

We address the general flow initialization problem in each
image scale by finding multiple extended displacements
(denoted as fuv0; . . . ;uvng) through sparse feature matching
and dense patch matching to improve estimation in uc,
which is the flow field computed in the immediately coarser
level. The following steps are adopted to obtain the
extended displacements.

4.1.1 SIFT Feature Detection

SIFT feature detection and matching [22] can efficiently
capture large motion for objects undergoing translational
and rotational motion. Instead of computing a dense
descriptor field as in scene matching [21], we only employ
sparse matching of discriminative points, which avoids
introducing many ambiguous correspondences and out-
liers. One example is shown in Fig. 4b. Note that some
matches could still be wrong. But this is not a problem as
we will eventually employ discrete optimization to only
select the most credible candidates.

4.1.2 Selection

The computed displacement vectors by feature matching
are denoted as fs0; . . . ; sng, as shown in Fig. 4b. They are
new potential flow candidates except those that already
exist in the initial flow field uc (shown in Fig. 4c). To
robustly screen out the duplicated vectors, we compute
the euclidean distance between each si and all ucjs, where
pixel j is within a 5� 5 window centered at the reference
feature si. If all results are greater than 1 (pixel), we regard
si as a new flow candidate. We repeat this process for all is,
and denote the m remaining candidate vectors as
fsk0

; . . . ; skm�1
g, as shown in Fig. 4d.
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Fig. 3. Effective data cost distributions with different � values. (a) Data
costs with different � values. (b)-(d) Effective data costs by varying �.

TABLE 1
Method Overview



This strategy significantly reduces the system depen-
dence on the coarse-scale flow estimation. It is notable as
well that feature matching initially produces many vectors
distributed in the whole image, as shown in Fig. 4a, but they
reduce to less than 15 candidates after local comparison
with uc in the given example. Only the most distinct flow
vectors are retained.

4.1.3 Expansion

The m remaining vectors fsk0
; . . . ; skm�1

g represent possible
missing motion in the present flow field uc. To determine
whether or not they are better estimates to replace the
original ones in uc, we expand each displacement vector ski
to a constant-value flow field usi for further fusion. The
fields are shown in Fig. 4e.

4.1.4 Patch Matching

SIFT Feature matching, albeit very effective, sometimes still
misses motion vectors. This is because small textureless
objects may not have distinct features, making their detection
problematic. Another main reason is that to let SIFT
descriptors gather enough information for 128-dimension
feature vector formation, the patches on which they operate
should at least contain 16� 16 samples as suggested. The size
could be too large for nonrigid motion as edge statistics may
change a lot for successive two frames.

We resort to dense nearest neighbor patch matching for
amelioration. The patches we use can be as small as 5� 5.
They are more flexible to describe motion of small
textureless regions, as shown in Fig. 4f. Specifically, we
compute the matching field un by minimizing energy:

Eðun;xÞ ¼
X

y2NðxÞ

X
k

��Ik
2ðyþ unðxÞÞ � Ik

1ðyÞ
��2
; ð13Þ

where Ik 2 fIr; Ig; Ib; @xI; @yIg, denoting a total of five color
and gradient channels. NðxÞ is a 5� 5 window centered at
x. Although noise is generated by this method, it can be
quickly rejected in the following optimization step with the
collection of a set of flow candidates for each pixel.

The energy (13) was employed in [13] as well. But,
linearization was performed eventually in [13], confining
only local refinement. In comparison, we do not impose any
smoothness constraint at this stage. So, estimates for very
large displacement can be obtained.

4.1.5 Matching Field Fusion

The mþ 1 new motion fields fus
0
; . . . ;usm�1;u

ng, together
with the original uc, comprise several motion candidates for
each pixel in the present image scale. Selection of the
optimal flow among the mþ 2 candidates for each pixel is a
labeling problem, with the objective function in (9). It can be
solved by discrete optimization efficiently because, on the
one hand, the number of candidates is small, thanks to the
carefully designed selection process; on the other hand, (9)
does not involve �, simplifying computation.

We adopt the Quadratic Pseudo-Boolean Optimization
(QPBO) [27] to solve this problem. The fusion move step
[20] is used to repeatedly fuse the candidates until each gets
visited twice. Also, to suppress the checker-board-like
artifacts commonly produced near motion boundaries in
discrete optimization, we employ the anisotropic represen-
tation of the TV regularizer kruk ¼ kruk1 þ krvk1 with 8-
neighbor discretization [15]. This method turns the checker-
board-like boundaries to octagons, a better approximation
of the original smooth boundaries. The output is the flow
map denoted as u0. One result is shown in Fig. 4g, which
contains better recovered motion structure compared to the
field uc in Fig. 4c. Close-ups are shown in Figs. 4h and 4i.

Note that an alternative is to directly discretize the
original 2D solution space and fuse all candidate flows. It,
however, may suffer from expensive and possibly unstable
computation because hundreds of labels can be produced
simultaneously in the original resolution.

4.2 Continuous Flow Optimization

We now refine flow u0 through continuous optimization by
iteratively updating �� in (12) and u. The initial flow field is
taken into (12) to estimate ��, as shown in Fig. 5b.
Considering that (10) is highly nonconvex, we then take ��
back to (5) for optimization in the variational model.

As color images are used, we still denote by Ik 2
fIr; Ig; Ib; @xI; @yIg the set of channels included in the data
term and use �k 2 f��; ��; ��; ð1� ��Þ�; ð1� ��Þ�g to represent
the corresponding weights. The energy in (5) is thus
written as
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Fig. 4. Extended flow initialization. (a) Two input frames. (b) One of the
images overlaid with the computed feature motion vectors si. (c) Flow
field uc propagated from the coarse level. (d) New displacements
fsk0

; . . . ; skm�1
g computed using (b) and (c). (e) New displacement maps.

Each usi is expanded from ski and therefore is a constant-value map.
(f) Dense nearest-neighbor patch matching field un. (g) Optimized flow
map u0 with respect to all candidates in the current image scale.
(h)-(i) Close-ups of (c) and (g).

Fig. 5. Continuous optimization. Errors are further reduced in this step.
(d) and (e) show close-ups of (a) and (c).



EðuÞ ¼
X

x

X
k

�kðxÞkIk
2ðxþ uÞ

� Ik
1ðxÞk þ �ðxÞkruðxÞk;

ð14Þ

where �ðxÞ :¼ �!ðxÞ. With the initial flow u0 estimated in

the previous step, we solve for the increments du ¼
ðdu; dvÞT by minimizing (15). The final flow vector is

u ¼ u0 þ du. By convention, the Taylor expansion of (15)

at point xþ u0 yields

EðuÞ ¼
X

x

X
k

�kðxÞ
��Ik

xduþ Ik
ydvþ Ik

t

��

þ �ðxÞkrðu0 þ duÞðxÞk;
ð15Þ

given small du. In (15),

Ix ¼ @xI2ðxþ u0Þ;
Iy ¼ @yI2ðxþ u0Þ;
It ¼ I2ðxþ u0Þ � I1ðxÞ:

To preserve motion discontinuity, we employ the rotational

invariant isotropic form of the TV regularizer, written as

kruk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð@xuÞ2 þ ð@yuÞ2 þ ð@xvÞ2 þ ð@yvÞ2

q
: ð16Þ

Our Solver. We propose decomposing the optimization

into three simpler problems, each of which can have the

globally optimal solution. The key technique is a variable-

splitting method [35] with auxiliary variables p and w,

representing the substituted data cost and flow derivatives,

respectively, to move a few terms out of the nondifferenti-

able ‘1-norm expression. This scheme is found to be

efficient and is crucial to produce high-quality results.
The derivatives of each flow vector are comprised of four

elements, i.e.,

rdu ¼ ð@xdu; @ydu; @xdv; @ydvÞT:

For each element, we introduce a corresponding auxiliary

variable. The set of the variables is denoted as

w ¼ ðwdux ; wduy ; wdvx ; wdvyÞT:

Then, (15) is transformed to

X
x

X
k

1

2�

��Ik
xduþ Ik

ydvþ Ik
t � pk

��2 þ �kkpkk

þ 1

2�
krdu�wk2 þ �kru0 þwk:

ð17Þ

In this function, 1
2� kIk

xduþ Ik
ydvþ Ik

t � pkk2 þ �kkpkk en-

courages pk to approach Ik
xduþ Ik

ydvþ Ik
t , and 1

2� krdu�
wk2 þ �kru0 þwk2 makes w similar to rdu. It can be

observed as well that (17) approaches (15) when �! 0 and

� ! 0. Our algorithm proceeds with the following iterations

with initial u :¼ u0:

1. Fix u to estimate p. The simplified objective function is

min
X

x

X
k

1

2�

��Ik
xduþ Ik

ydvþ Ik
t � pk

��2 þ �kkpkk:

ð18Þ

Single variable optimization can be used in this step.
The optimal solution is given by the shrinkage
formula [16]:

pk ¼ signðokÞmaxðjokj � ��k; 0Þ; ð19Þ

where ok :¼ Ik
xduþ Ik

ydvþ Ik
t is the flow constraint.

2. Fix u to estimate w. The function reduces to

min
X

x

1

2�
krdu�wk2 þ �ðxÞkru0 þwk2: ð20Þ

Similarly, the following solution can be obtained by
the shrinkage formula:

wdux ¼ maxðkruk2 � ��; 0Þ
@xu

kruk2

� @xu0; ð21Þ

where u ¼ u0 þ du. Solutions for wduy , wdvx , and wdvy

can similarly be derived. The computation in this
step is also quick and is highly parallel by nature.

3. Fix w, p and solve for u. The objective function is

min
X

x

X
k

1

2�

��Ik
xduþ Ik

ydvþ Ik
t � pk

��2

þ 1

2�
krdu�wk2:

ð22Þ

It is quadratic and the corresponding Euler-Lagrange
equations of (22) are linear w.r.t. du and dv. A globally
optimal solution can be obtained by solving the linear
system in this step.

Our method iterates among optimizing (19), (21), and (22)
until convergence. Note that cost function decomposition
with auxiliary variables was used in [38], [39], [43] for flow
estimation. Their steps use the primal-dual solvers. In
comparison, our scheme consists of a set of simpler
subproblems, each with guaranteed global optimality. It
thus differs from previous methods in the way of formulating
the problem and of proposing the solver to each subproblem.

In practice, � and � are critical parameters that should be
small. It was found that fixing them to constants typically
results in slow convergence. We thus adopt the continuation
scheme [16] for speedup, which initially sets � and � to large
values to allow warm-starting and then decreases them in
iterations toward the desired convergence. Our algorithm is
sketched in Table 2, where �min and �min are set to 0.1 and
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TABLE 2
Algorithm for Continuous Flow Optimization



0.01, respectively. �0 and �0 are the respective initial values,
configured as �0 ¼ 3n � �min and �0 ¼ 3n � �min, where n

controls the number of iterations. Figs. 5d and 5e show flow
fields before and after the continuous refinement in an
image scale. We denote by ur the refined flow field.

Fig. 6 demonstrates the effectiveness of this continuation
scheme (that is, by altering � and � in iterations) and
compares results obtained with and without using it. We set
different iteration numbers in experiments. The top row
shows results with n ¼ 1, n ¼ 2, and n ¼ 5 using the
continuation scheme. The bottom row contains estimates
using the algorithm shown in Table 2, by fixing � ¼ 0:1 and
� ¼ 0:01 in all iterations. Energy decreasing w.r.t. the
number of iteration is plotted in Fig. 6i. It is clear from
the comparison that our algorithm with the continuation
scheme converges more efficiently.

4.3 Occlusion-Aware Refinement

Motion vectors for occluded pixels generally cannot be
determined due to the lack of correspondences. In this step,
we handle occlusion in the computed flow field. Although
cross-checking is effective in occlusion detection, it needs to
compute optical flow bidirectionally. Our strategy is based
on an observation that multiple pixels mapping to the same
point in the target image using forward warping are
possibly occluded by each other.

Thus, we detect occlusion using the mapping uniqueness
criterion [8], expressed as

oðxÞ ¼ T0;1ðfðxþ uðxÞÞ � 1Þ; ð23Þ

where fðxþ uðxÞÞ is the count of reference pixels mapped
to position xþ uðxÞ in the target view using forward
warping. Tl;hðaÞ is a function that truncates the value of a if
it is out of the range ½l; h�. Equation (23) indicates if there
exist more than one reference pixel mapping to xþ uðxÞ,
the occlusion label for the reference x is set. Although this
simple method sometimes fattens the occlusion region, it
seldom leaves out true occluded pixels, and thus is useful in
the final flow estimation. In practice, we apply a small
Gaussian filter on the computed oðxÞ to reduce noise.

Our measure of the data confidence based on the
occlusion detection is expressed as

cðxÞ ¼ maxð1� oðxÞ; 0:01Þ: ð24Þ

The value 0.01 is to make cðxÞ always larger than 0. The
metric is used in the following two ways to improve flow
estimation in the occluded regions: First, we explicitly
perform cross bilateral filtering for the detected occluded
pixels where oðxÞ > 0:5. Each pixel is further weighted by
the measure cðxÞ so that occluded pixels have weaker
influence in filtering. This scheme was shown to be effective
in occlusion handling [28], [40] and was used in defining
the flow function [33], [38].

Second, based on the fact that we should not trust the
data term with large oðxÞ, the energy function is updated
with respect to the occlusion confidence, which makes flow
computation for the occluded pixels depend more on the
local smoothness constraint:

E0ðuÞ ¼ cðxÞEDðuÞ þ �ESðuÞ: ð25Þ

It can also be efficiently optimized with our solver.
The occlusion-aware flow refinement is applied at each

scale with the computed vectors from the continuous
estimation step. The final result of the “Grove” example
in one image scale is shown in Fig. 7, where the detected
occlusion map is overlaid on the flow estimate. We compare
the ur maps obtained before and after our occlusion-aware
refinement in Figs. 7b and 7c.

5 EVALUATION AND EXPERIMENTS

In this section, we present our results in both small and
large-displacement settings. � in (2) is set to 1=1:4 to
normalize the color and gradient constraints, which is
learned from the Middlebury training image set by setting
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Fig. 6. Continuation scheme. (b)-(d) Our results obtained using the algorithm in Table 2 with the continuation scheme. n is set to 1, 2, and, 5
respectively. The error is already very small when n ¼ 2. (f)-(h) Results with fixed � ¼ 0:1 and � ¼ 0:01 in all iterations. AAE stands for “average
angular error” [3]. (i) Energy decreasing w.r.t. the number of iterations with and without continuation.

Fig. 7. Occlusion-aware refinement. (a) Flow estimate overlaid with the
occlusion map (oðxÞ > 0:5). (b) and (c) Results before and after the final
refinement in an image scale.



the color and gradient costs to be equal. In order to reduce
the sampling artifacts in (12), we filter DI and DrI with a
small Gaussian kernel with the standard deviation 1.0. �, �,
�, and � are empirically set to 5, 12, 0.1, and 0.01,
respectively. For feature detection, we use the implementa-
tion of Lowe [22]. Matches are retained only if ratios
between the best and the second best matching scores are
smaller than 0.6. For patch matching, we adopt the
randomized nearest-neighbor method approximation [5]
with patch size 5� 5.

5.1 Evaluation of the Data Term

We evaluate the selective combination strategy in defining
the data cost function. We compare our method with those
using fixed weights � ¼ 0:5, � ¼ 1, and � ¼ 0 on the
Middlebury training set [4], where the ground truth data
are available. To demonstrate the alpha influence not
involving our other steps, we employ the classic coarse-to-
fine warping framework. The errors are listed in Fig. 8a,
calculated on the two representative examples “Rubber-
Whale” and “Urban2.” It can be noticed that the average
angular error (AAE) for “Urban2” is small when using the
color constraint alone, while the gradient constraint is more
favored in “RubberWhale” due primarily to illumination
variation. Simply adding these two constraints (� ¼ 0:5)
produces AAE in between. Our method locally selects the
more optimal term and thus performs better.

Fig. 8b shows how the estimate changes with respect to
different � for the “RubberWhale” example. � ¼ 0 corre-
sponds to weighted addition of the two normalized
constraints. Note that the average error of the flow field
decreases quickly with the increase of �, in line with our
understanding (explained in Section 3.3).

In Fig. 9, we show a visual comparison. Red arrows in

Figs. 9a and 9f indicate pixels violating the color constancy

assumption. The blue arrows highlight the edge of the

wheel, of which the gradient varies. Figs. 9c and 9d show

results by, respectively, setting � ¼ 1 and � ¼ 0. Fig. 9f

shows the result with � ¼ 0:5, where problems caused by

using either of the constraints is still present. Our selective

combination model helps robustly reject outliers, as shown

in Fig. 9g.
For quantitative comparison, a series of experiments with

different optimization strategies are conducted, varying

from traditional coarse-to-fine to our full optimization with

EC2F and occlusion refinement. The error statistics are listed

in Table 3, where “F” represents setting � ¼ 0:5 and “A”

stands for our adaptive � scheme. “C2F” and “EC2F”

represent the classic and extended coarse-to-fine schemes,

respectively. As described in Section 4.1, “EC2F” uses

extended flow initialization at each scale. Our method yields

consistent quality improvement over other alternatives.

5.2 Evaluation of Occlusion Handling

We also evaluate the occlusion-aware refinement step. The

bottom several rows of Table 3 list the statistics produced

without (“�þEC2F”) and with occlusion-aware refinement

(“�þEC2FþO”). “�þEC2Fþo” stands for occlusion hand-

ling used in the early version of the system [42], where cross

bilateral filtering is not employed. Both occlusion handling

methods yield reasonable results.
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Fig. 8. Flow estimation error comparison. (a) Estimation errors w.r.t. �.
� ¼ 1 and � ¼ 0 indicate, respectively, that only the color or gradient
constancy constraint is used. � ¼ 0:5 refers to weighted addition of the
two constraints. (b) Estimation errors w.r.t. � on the “RubberWhale”
example.

Fig. 9. Visual comparison with different � settings. (a) and (b) Two image
patches. (c) and (d) Flow results computed using the color and gradient
constraints, respectively. (e) The ground truth flow field. (f) The result
with � ¼ 0:5. (g) is the flow map obtained using our selective
combination model. (h) The �� map.

TABLE 3
AAEs Yielded by Different Strategies on the Middlebury Optical Flow Training Data



For the special case where an object moves away from
the camera, the occlusion regions could be largely fattened
because multiple pixels on the object when it is near could
be mapped to one pixel when it is far. Even in this case, the
flow estimates can still be refined because our occlusion
handling in essence seeks flow discontinuity alignment
with image edges.

We show in Fig. 10 an example. Figs. 10b and 10e show
our flow and backward warping results without occlusion
handling. The moving car is correctly reconstructed but the
flow is not accurate at the occluded region (rightmost part
of the car). With occlusion handling, the results are those
shown in Figs. 10c and 10f. The seemingly incorrect
warping result in Fig. 10f in fact indicates correct handling
of occlusion. The flow near the boundary is a bit noisy in
Fig. 10c, due to the fattened occlusion region jeopardizing
proper flow regularization. It is one of the limitations.

5.3 Evaluation of Extended Coarse-to-Fine

We also evaluate our coarse-to-fine framework with
extended flow initialization. Specifically, we have tested

1. classical flow initialization in the coarse-to-fine
framework,

2. flow initialization extended by SIFT feature match-
ing only,

3. extended flow initialization with patch matching,
4. our flow initialization with both SIFT and patch

matching.

Their abbreviations are “C2F,” “C+SIFT,” “C+PM,” and
“All.” The statistics are listed in Table 4. The results indicate
that extended flow initialization (“C+SIFT,” “C+PM,”
“All”) can greatly improve estimation.

5.4 Middlebury Optical Flow Benchmark

We now evaluate our method on the Middlebury optical
flow benchmark data. The table in Fig. 11 is copied in part
from the evaluation website [4]. Our method, denoted as
“MDP-Flow2,” ranked first at the time of submission (as of
29 October 2010).

Regarding the running time, in our current CPU
implementation, the whole program takes 420 s to compute
a high-quality flow field for an image pair with resolution
640� 480 in, for instance, the Urban sequence. The running
time is reported on a laptop computer containing an Intel
Core i7 CPU @2.13 GHz and 2 GB Memory.

We show our flow results for two examples in Figs. 13a
and 13b. The methods of Brox et al. [10] that use the TV=‘1

model for flow estimation, the large-displacement optical
flow estimator [11] that incorporates descriptor matching in
the data term, and the three top-performing methods that
provide motion-discontinuity-preserving regularization
terms produce results shown in Figs. 13e, 13f, 13g, 13h,
and 13i.

5.5 Large-Displacement Optical Flow Estimation

Our method by nature can deal with large-displacement
flow, without any modification of the framework. One
example from the HumanEva-II benchmark data set [30] is
shown in Fig. 12. It contains significant articulated motion
of a running person. The fast foot movement cannot be
estimated correctly in the conventional coarse-to-fine
scheme [10], as shown in Fig. 12f. Fig. 12b shows the
backward warping result based on our dense flow estimate.
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Fig. 10. Flow estimation of a car moving away from the camera. (a) and
(d) Two input images. (b) and (e) The flow field produced without
occlusion handling and the backward warping result, respectively. (c)
and (f) The flow field and the warping result with our occlusion handling.
“OH” stands for occlusion handling.

TABLE 4
AAEs on the Middlebury Training Data under Different Flow Initialization

Fig. 11. The average end-point errors (EPEs) on the benchmark data as of October 2010, copied from the Middlebury website [4]. Our method is
denoted as “MDP-Flow2.”



The close-ups are shown in Fig. 12d. Our method success-

fully recovers the shape of the left foot. The pixels in the

occluded region are simply unknown for all optical flow

estimation methods. The flow magnitude maps are shown

in the second row. The maps in Figs. 12g and 12h are

produced by two representative large-displacement optical

flow methods.
The flexibility of our method is boosted by patch

matching, especially for nonrigid large-displacement mo-

tion estimation. Figs. 14a and 14b show two frames. The

duck head undergoes very large motion. So it is not

surprising that other optical flow methods based on the

traditional coarse-to-fine scheme [10], [33] cannot cope with
it well. The large-displacement methods using descriptor
matching [11], [21], [42] produce results shown in Figs. 14g,
14h, 14i, 14j, 14k, and 14l. There are also errors. The flow
and warping results produced by extended coarse-to-fine
with only patch matching are shown in Figs. 14m and 14n.
Although the field is noisy, it roughly captures the head
motion. Our final flow estimate, yielded with the complete
EC2F scheme that involves both patch matching and feature
matching, is shown in Fig. 14o. Its quality is much higher.

Another example is shown in Figs. 15 and 16, which is a
low-frame-rate sequence containing a football player. Fig. 15
contains the results of the conventional coarse-to-fine
warping method [10], the large-displacement estimator
[11], and of our method. Fig. 16 shows a few results in the
sequence. All examples demonstrate that in terms of
handling large motion of small-size regions, our method
reduces the dependence on the linearization condition in the
variational model and thus can generate good results.

6 DISCUSSION AND CONCLUSION

We have presented a new optical flow estimation frame-
work to reduce the reliance on the coarse level estimation in
the variational setting for small-size salient motion estima-
tion. Differing from previous efforts mainly to improve the
model, we instead revise flow initialization in the coarse-to-
fine setting, which yields a unified framework to preserve
motion details in both small and large-displacement
scenarios. The proposed method also takes advantage of
the accurate variational coarse-to-fine framework and of
nonlocal search/matching. Other main contributions in-
clude the selective combination of the color and gradient
constraints, sparse feature matching, and dense patch
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Fig. 12. Visual comparison on a large-displacement optical flow example from the HumanEva-II data set [30].

Fig. 13. Visual comparison of the small-displacement optical flow results
on two examples. (a) Our flow results. Close-ups of (b) the input image,
(c) ground truth flow, (d) our estimate, and of the results of (e) Brox et al.
[10], (f) LDOF [11], (g) Zimmer et al. [45], (h) Werlberger et al. [38], and
(i) Sun et al. [33] are shown.



matching to collect appropriate motion candidates, the

mean field approximation to simplify optimization, and a

variable splitting technique to enable fast and reliable flow

estimation. Our future work will be system acceleration

using GPU.
Limitations. There are several limitations. First, although

sparse feature matching and dense patch matching comple-

ment each other in proposing new flow candidates, they

could still be insufficient, especially for motion in texture-

less or regularly patterned regions, where large matching

ambiguity could occur. Other information such as simple

user input may help.
We show one example. Figs. 17a and 17e are input

frames where the boy’s right leg and arms undergo large
motion. Figs. 17b and 17f show our estimated flow field as

well as the backward warping result. Primary large-
displacement motion (of the shoe, for example) is correctly
computed except for the left arm. Note that textureless
regions not only fail feature detection, but also create
ambiguities for nearest neighbor matching. In this example,
we manually specify two corresponding points in the input
frames (the red and blue dots in Figs. 17a and 17e), and then
take the displacement vectors as new constant flow
candidates to improve estimation. Final results are shown
in Figs. 17c and 17g, with close-ups in Figs. 17d and 17h.
They indicate that simple user interaction can decisively
improve flow estimation in challenging regions.

Second, motion inference for large occluded regions is
still an open problem due to lack of correspondence. Our
current occlusion handling relies on a heuristic smoothness
assumption, which could fail in texture or color-rich regions

1754 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 9, SEPTEMBER 2012

Fig. 14. A challenging example for large-displacement optical flow estimation. (a) and (b) Two input images. Seven flow estimation and the
corresponding backward warping results are shown in (c)-(p).
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Fig. 15. Large-displacement optical flow results. (f)-(h) The backward warping results based on the flow estimates in (b)-(d), respectively.

Fig. 16. Optical flow estimation in consecutive frames in a low-frame-rate sequence. First row: Two-body-overlaid images to visualize the large
displacement. Second row: Our flow estimates. Third row: Magnitude maps.



when occlusion is significant. Incorporating other clues,

such as color segmentation, may remedy the problem.
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