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Abstract—Given a single outdoor image, we propose a collaborative learning approach using novel weather features to label the

image as either sunny or cloudy. Though limited, this two-class classification problem is by no means trivial given the great variety of

outdoor images captured by different cameras where the images may have been edited after capture. Our overall weather feature

combines the data-driven convolutional neural network (CNN) feature and well-chosen weather-specific features. They work

collaboratively within a unified optimization framework that is aware of the presence (or absence) of a given weather cue during

learning and classification. In this paper we propose a new data augmentation scheme to substantially enrich the training data, which is

used to train a latent SVM framework to make our solution insensitive to global intensity transfer. Extensive experiments are performed

to verify our method. Compared with our previous work and the sole use of a CNN classifier, this paper improves the accuracy up to

7-8 percent. Our weather image dataset is available together with the executable of our classifier.

Index Terms—Weather understanding, image classification, structure SVM

Ç

1 INTRODUCTION

WE address the problem of two-class weather classifica-
tion from a single outdoor image. This seemingly easy

task for humans—to tell whether a given image is sunny or
cloudy—turns out to be challenging. This paper attempts to
provide technical insight and solutions to address the above
issues, while acknowledging that our work is a first but sig-
nificant step for weather understanding from single images.
Note that naive schemes based on image brightness or
color/intensity statistics (Figs. 1 and 2) are doomed to fail in
this two-class classification problem. While hardware solu-
tions relying on expensive sensors are employed, for centu-
ries human vision is still the most powerful tool for weather
observation. If we can exploit existing surveillance and
smartphone cameras, which are found almost everywhere, it
may be possible to turn human weather observation into a
powerful and cost-effective computer vision application.

Previously, in [37], we demonstrated that careful engi-
neering of well-chosen weather-specific features employed
in supervised learning can adequately address this two-class
weather classification problem. In this paper, we further
investigate the efficacy of the state-of-the-art convolutional

neural network (CNN) in solving the problem. The CNN
approach as well as the CNN feature is data-driven, which is
in contrast to hand-picked weather features in [37]. As will
be shown in the experimental section, we found that the con-
catenation of the CNN feature and weather-specific features
reports the best performance, namely, a 7-8 percent improve-
ment over the sole use of a CNN classifier that is trained end-
to-end using the given training data. The data-driven CNN
feature and the weather-specific features work together to
exploit the synergies between the two. Based on this new
overall weather feature, our approach consists of the follow-
ing three technical contributions:

First, we describe the design and implementation of vari-
ous weather cues, which are used to form the weather fea-
ture [37]. These everyday weather cues (such as sky, shadow,
reflection, contrast and haze) are what humans are still using
for weather observing—a hazy or grayish sky characterizes a
cloudy day while hard shadow cast on the ground indicates
a sunny day, as illustrated in Fig. 3a Conversely, in the
absence of any weather cues, even we humans may not be
confident in labeling the weather type, as illustrated in
Fig. 3b. In this paper, we concatenate the CNN feature with
the above weather-specific features to form the overall
weather feature in training and testing.

Given the overall weather feature, the next question is
how to properly learn the classifier. Themain issue is that the
weather cues used in this paper may not be all available in an
image—e.g., not every outdoor image has a sky region—
which is problematic to a discriminative training process
adopted by traditional classifiers such as SVM. To address
this issue, our second technical contribution consists of a col-
laborative learning framework using homogeneous voters—
the outdoor images are clustered where images in the same
cluster are similar in terms of weather cues. This allows us to
build a classifier in a conventionalway thanks to the homoge-
neity in each cluster. The final labeling is the weighted voting
result of the cluster classifier outputs. The cluster closer to the
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testing image is given a higher weight. As will be explained
in the following, homogeneous voters are learned under a
unified optimization framework.

To make our system more robust to training images har-
vested from the web, we propose a novel strategy to enrich
our training set by synthesizing for each training image its
weather counterpart images, which belong to a subclass of
images of the same scene taken under different camera set-
tings and/or after photo editing that can be characterized by
a global color/intensity transfer. The training image and its syn-
thesizedweather counterparts together are then used in latent
SVM learningwhich encourages each training sample and its
counterparts to have the same weather label. Our synthesis
strategy is scalable. That is, the production of the weather
counterparts given a training image is fully automatic, which
requires no further data collection or annotation by humans.

Finally, we perform quantitative comparison with a
number of typical baselines including SVM, Adaboost [58],
[62], and prior weather-related methods [26], [46], [61]. Our
final contribution consists of a 10,000-image weather dataset
in which the images are properly selected and annotated.
This is used to evaluate our learning and labeling strategy.

This manuscript extends its conference version [37] along
the following dimensions:

� The overall weather feature combines the data-driven
CNN feature and handcraftedweather features.

� A data-driven approach for synthesizing weather
counterparts to make scalable data collection and
training; the new system is insensitive to global inten-
sity transfer and achieves improvement over [37].

� A latent SVM framework is proposed to capture a
wide variety of global intensity transfer.

� More experiments are conducted to evaluate the pro-
posed method.

The paper is organized as follows. In Section 2 we review the
related work. In Section 3, we introduce our weather-specific
and data driven CNN features. In Section 4, we describe our
weather dataset and weather counterparts generation.
Section 5 presents the collaborative and latent SVM learning
of our weather classifier. Section 6 discusses our results on
weather classification.We conclude this paper in Section 7.

2 RELATED WORK

This section gives an overview of the related work on wea-
ther understanding, which can be regarded as a category in
scene recognition. The background of the convolutional neu-
ral network is also investigated since the CNN feature is an
important component in our computational framework.

2.1 Weather Understanding

2.1.1 Weather Understanding with Hand-Crafted

Feature

Weather understanding plays a vital role in many real-world
applications such as navigation control in self-driving cars.
Automatic understanding of weather conditions enhances
road safety by, for instance, controlling the vehicle speed in
response to real-time weather situation [46], [61]. In [20], a
built-in weather understanding component was found in an
accurate navigation system that involves sky detection. Rain-
drops have been a frequently used cue for weather recogni-
tion, and in [23], discriminative raindrop templates were
learned to infer weather situation. In [50], a photometric
stereo-basedmethodwas proposed to estimate weather situ-
ation. Multiple images were required to estimate the illumi-
nation situation of a given site. Therefore, only a few sites
(e.g., popular tourist sites) can meet this requirement. In [40]
Narasimhan et al. proposed a physics-based model to cap-
ture multiple scattering of light rays from a source to the
camera. This model works well for cases where scattering
effect is strong, such as fog, haze, mist and rain at night. In
[24], 40 transient attributes were studied and a model was
learned to predict these attributes given a single image. The
approach is standard “features + SVM” scheme where the
features used are standard (e.g., HOG, SIFT) which may not

Fig. 1. (a) A sunny image with mean lightness 32.41. (b) A cloudy image
with mean lightness 58.25.

Fig. 2. Pixel intensity distributions in the lightness L channel in the LAB
color space of 5 K cloudy images and 5 K sunny images. It is almost
impossible to draw a decision boundary between the two types of weather.

Fig. 3. Weather cues. (a) Common weather cues in red rectangles.
(b) Regions in (a) lacking any weather cues.
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capture well weather characteristics. In [65] a multi-class
weather classification method was described using multiple
weather features andmultiple kernel learning.

In [7], [51], weather types were recognized by the motion
of cloud, snow flakes, etc. These weather-related phenom-
ena depict periodic movement which provides specific
weather patterns for detection.

Though the above methods have shown good perfor-
mance in their respective applications, custom devices or
conditions were often required. Exploiting existing smart-
phones which are cheaper, and surveillance cameras which
can be found or installed almost everywhere, can make it
possible to turn general weather observation into a power-
ful and cost-effective computer vision application.

2.1.2 Weather Understanding with CNN

Our problem is related to classification which can also be
solved by Convolutional Neural Networks. Deep CNN has
led a series of breakthroughs in image classification [22]. It
is a feed-forward, end-to-end multilayered neural network
inspired by the organization of the animal visual cortex.
The convolutional neural network has found applications in
image and video recognition tasks, such as video classifica-
tion [19], object detection [11], and action recognition [1].
Excellent models, such as AlexNet [22], Network-in-
Network [35], VGG [52] and ResNet [14] have been devel-
oped. Unlike general image classification (e.g., object classi-
fication), weather classification relies on weather-sensitive
cues (as we shall demonstrate in the experiment section)
which is somewhat similar to fine-grained recognition in
the level of details required, while the deep CNN is excel-
lent in capturing global scene semantics which needs to be
integrated to make such recognition succeed [34], [64].
There is only a handful of research attempts in applying
CNN to weather understanding. In [9], convolutional neural
networks (VGG) is directly used in classifying weather, and
in [56] to predict outdoor ambient temperature and the time
of the year. The CNN filter may however miss subtle
weather cues inherent in the input image.

2.2 Scene Understanding

Weather understanding is a specific case of scene recogni-
tion. General scene recognition focuses on discovering dis-
criminative scene structure. As explained in [45], scene
structure can be regarded as a combination of parts which
are called regions of interest. These discriminative parts pro-
vide a powerful representation of the scene. Thus exploiting
them in relevant tasks has recently become a popular trend.

The work [17], [30], [31], [32], [48], [53] discovered parts
with specific visual concepts. Each learned part is expected
to represent a single or a cluster of visual objects, which is
beneficial to alleviate visual ambiguity. Meanwhile, unsu-
pervised discovery of discriminative parts has received
much attention. Though handcrafted part filters are easy to
comprehend, they strongly rely on human labeling and are
not scalable. Unsupervised frameworks [18], [21], [28], [32],
[33], [42], [43], [49], [55], [66] can be more practical and effi-
cient especially for large data sets.

Recently, various mid-level representations have been
employed to enhance the discriminative power in classifica-
tion [3], [30], [31], [66]. State-of-the-art methods [17], [32],
[53] proposed discriminative parts and used them to

construct mid-level representation, e.g., response maps
obtained from convolution with part filters. These mid-level
representations are fed into discriminative classifiers and
evaluated on different scene classification datasets. Mid-
level representation can be a better alternative or comple-
mentary to traditional low-level representations [6], [27],
[36], [41], [44], [58], [62], because mid-level representation is
capable of differentiating among a large variety of inter and
intra categories as described in [63].

We note the methods in scene classification cannot be
employed to solve our problem. Though weather is part of
the scene, it is not as concrete (e.g., no closed boundary) as
objects such as trees, buildings, and mountains, thus risking
information loss when we apply these methods.

2.3 Weather Applications

Weather cues have been used to enable various applications.
In [2], deep convolutional neural networks was used to esti-
mate transient attributes including weather, time of the day,
season and subjective properties of a given scene. In [12], the
interaction between the appearance of an outdoor scene and
the ambient temperature was studied, where the statistical
correlations between image sequences from outdoor cam-
eras and temperature measurements were derived. In [15],
weather conditions with the scene structure and position of
the sun were used to estimate the time and location the
image was captured. Snow recognition was studied in [57],
which enables the production of satellite maps of snowfall
using geo-tagged, time stamped images from Flickr. Cloud
cues were explored in [59], where a method was presented
for estimating the geometry of an outdoor scene. Another
work that used cloud cues is [16], where cloud motion ena-
bles geometric calibration of static outdoor cameras.

3 THE OVERALL WEATHER FEATURE

We compute for each image the overall weather feature, a
4717-D feature consisting of two parts, namely the CNN fea-
ture and five weather features. The feature vector is formed
by concatenating the six components

f sk; f sh; f re; f co; fha; f cn½ �; (1)

where the first five features, namely, sky, shadow, reflec-
tion, contrast and haze, correspond to a key weather cue to
be defined shortly. We incorporate the CNN feature [22] f cn
to describe the image in general, which is extracted from a
learned two-class weather CNN model. Since not all of
these cues are necessarily present in a given outdoor image,
we also compute the existence vector

½vsk; vsh; vre; vha; vcn�; (2)

where each scalar score in ½0; 1� indicates the confidence that
the corresponding weather cue is present in the given image
and in particular, vcn is the confidence score of the CNN
classifier. Since image contrast difference exists in both
sunny and cloudy photos, vco is always 1 and excluded.

3.1 Weather Feature

3.1.1 Sky

If present, the sky is the most important cue for weather
labeling. A clear, cloudless sky is blue as air molecules
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scatter blue light more than red light. Cloud is made of tiny
water droplets which make the sky look grayish white.

To define vsk, the sky region is detected in a pixel-wise
manner in the following steps. We respectively collect
20,000 sky and non-sky patches, each of size 15� 15, and
extract a 131 dimensional feature, which contains the SIFT
descriptor (128D) and mean HSV color (3D). This feature
was suggested in [54]. Then a random forest classifier is
learned on the two patch classes. Now, given an image, we
uniformly sample 15� 15 patches and test their labels (sky
or non-sky) as seeds. Sky region can be segmented by
implementing graph cuts on those seeds (see Figs. 4a and
4b). Let A be the sky to image area ratio. We set vsk 2 ½0; 1� as

vsk ¼ 1 if A > 0:5
minf2A; 1g otherwise.

�
(3)

To define the f sk vector we have considered various alterna-
tives. Straightforward color histogram feature in the sky
region suffers from two defects. First, possible sky colors
(both cloudy and sunny) are sparse, thus yielding most
color bins with the zero value (Fig. 4c). Second, no adequate
consideration is given to color contrast. In this paper, we
define f sk using color-pair dictionary coding as follows.

We collect 2,000 images with detected sky regions. Neigh-
borhood pixels in pairs are extracted from the sky region to
form a large number of 6D vectors, each of them consisting
of a total of 6 RGB values. This process results in about
100,000 pixel pairs. We then learn a sky color-pair dictionary
D 2 R6�256 on the vectors using the method described in
[38], thus producing a set of neighborhood-pixel vectors
sparsely coded over the learned dictionary, expressed as

min
bi

kpi �Dbik22 þ �kbik1; (4)

where pi 2 R6�1 is the ith vector, bi 2 R256�1 is the sparse
code over D. We solve Eq. (4) using [58]. Our final f sk is fil-
tered by max pooling of all bi. That is, the jth bin of our fea-
ture is set tomaxifbi;jgwhere bi;j is the jth bin of bi.

Max pooling can preserve subtle sun-to-cloud contrast in
the feature representation. Fig. 4d shows a typical f sk plot.

In comparison to color histogram, our 256-D f sk covers the
full range of the histogram and encodes color contrast infor-
mation as well. The advantage over color histogram was
demonstrated in [37].

3.1.2 Shadow

Hard shadow boundaries form another useful cue because
they are often found in outdoor photos shot in sunny days.
To compute vsh and f sh, we resort to shadow detection tools.
Unlike sky detection, shadow detection in an image is still a
challenging problem. Our extensive evaluation indicates
while working well in sunny images, state-of-the-art
shadow detection often fails for cloudy images, where dark
regions are often misclassified as shadow as shown in Fig. 5.

Notwithstanding, we apply [25], rank the resulting sha-
dow boundary confidence scores and take the 10th highest
score to set vsh. This serves as a rough relative indicator in our
method. A larger vsh represents possibly stronger shadow
presence. High precision is not needed in the estimation.

Using a data-driven approach we design our f sh by rely-
ing on the shadows detected in the training images
restricted to sunny outdoor photos. If a given boundary is
similar to those training shadow boundaries, we regard this
as a shadow boundary typical of a sunny image.

In detail, initially, for all of the sunny images in the train-
ing set, we apply [25] to detect shadow boundaries and gen-
erate their corresponding confidence scores and boundary
descriptors. For each image, we keep only the top 10 most
confident shadow boundaries, and save them to the pool P
which has 10 V samples, where V is the number of sunny
images in the training set.

Given a boundary, we measure its likelihood to be a
shadow boundary typical of a sunny photo by the mean dis-
tance to itsK-nearest (K ¼ 5) neighbors in P. Two examples
of K-nearest neighbor matching are shown in Fig. 6. The
Euclidean distance between the two boundaries descriptor
vectors was used [25]. Given an image, we obtain its top 10

Fig. 4. Sky. (a) input image, (b) detected sky region, (c) color histogram
of the sky, (d) plot of f sk.

Fig. 5. Shadow detection results of [25] for (a) a cloudy image and (b) a
sunny image. Shadow detection in cloudy images is vulnerable to false
detection.

Fig. 6. K-nearest neighbor matching in P. Shown in the blue rectangles
are the five nearest neighbors.
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most confident shadow boundaries and compute their like-
lihood as described above to form the 10-D f sh vector.

3.1.3 Reflection

Strong sunlight reflected from shiny objects is another pow-
erful cue. Except for a perfect mirror reflector, sunlight
reflection is usually characterized by a brightly lit region in
the image where pixels in the region center are brightest
and saturated in nearly all color channels. The reflection
intensity decays from the center toward the boundary of the
reflection region. An example was shown in Fig. 7, which
compares strong sunlight reflection with the reflection from
a white matte/dull object.

We set vre to 1 if white pixels are present in the image and
0 otherwise. To construct f re, we apply image matting [29] at
the detected white pixels. The definite foreground region
consists of white pixels, and definite background region
consists of a closed curve enclosing the foreground seeds.
We then estimate the closed curve under the constraint that
the euclidean distance between pixels along the curve and
enclosed foreground seeds should be larger than a thresh-
old (0.5 in our experiments). This closed curve can be com-
puted by simple dynamic programming. An example was
shown in Figs. 7b and 7c.

Given the matting result (e.g., Figs. 7b and 7f) we plot the
alpha matte distributions as shown in Figs. 7d and 7h, and
then assign the 100-bin alpha matte histogram as our 100-D
f re vector.

3.1.4 Contrast

Outdoor images captured in sunny and cloudy days exhibit
different global and local saturation contrast. To compute
f co, we utilize contrast information encoded as the percentile
in image saturation. For example, a value at the 20th satura-
tion percentile means that 20 percent of the image pixels are
grayer. Clearly, if all saturation percentiles are the same for
a given image, the saturation contrast is low. If on the other
hand the 50th percentile is at 100 (saturation level) while the
49th percentile is 0, this image is very likely to have a high
saturation contrast. In our paper, we use the C channel of
LCH color space as our saturation map.

We collect all saturation percentile ratios to build f co and
leave the selection process to the final classifier. Specifically,
we denote pi as the ith percentile in the saturation map. The
set of all saturation percentile ratios is given by frjr ¼
pi=pj; 8i > jg, where i and j are multiples of 5. We thus
obtain 171 percentile ratios in total, which are used to form
our 171-D f co vector. An example is shown in [37].

3.1.5 Haze

Cloudyweather may comewith haze. Haze priors have been
well studied in computer vision: the dark channel prior pre-
sented in [13] is effective. Similarly, we compute the dark
channel as

J kðxÞ ¼ min
r;g;b

f min
y2VðxÞ

fJ cðyÞgg; (5)

where J c is a color channel and VðxÞ is a local patch (with
8� 8) centered at x. Most haze-free regions have a low
intensity in the dark channel. We measure the haze level
and set vha of a given image as the median value of its dark
channel.

We define the fha component with the consideration that
haze becomes thicker when a region is distant from the cam-
era. These regions commonly exist at the top of an outdoor
image. We consider haze location by using a spatial pyra-
mid scheme. The input image is resized into 512� 512. The
dark channel in each image is uniformly partitioned into 22,
42, and 82 non-overlapping regions to obtain 84 sub-regions.
We use the median value of the dark channel intensity in
these regions to form the 84-D fha vector. An example of
haze feature is shown in [37].

3.2 CNN Feature

Our new method in this paper includes the CNN feature
which incorporates global discriminative information of the
image. We train a CNN model on the two-class image set;
the model we used is the AlexNet [22]. As in standard set-
ting [11], the 7th layer neurons of the AlexNet model is
extracted to form our 4096D feature f cn. This feature is effec-
tive when the CNN classifier is confident with its predic-
tion. With the confidence scores of sunny and cloudy image
scnn and ccnn (scnn þ ccnn ¼ 1), we measure vcn as

vcn ¼ 2maxfscnn; ccnng � 1; (6)

where vcn is in the range of ½0; 1�. Thus, only discriminable
feature of the CNNmodel contributes to the system.

4 WEATHER IMAGES AND COUNTERPARTS

DATASET

We created a new weather dataset that contains 10,000
images for training and testing. The dataset and the classifier
executable are publicly available. The training images col-
lected from the web were taken by different cameras, under
different settings, and might have been edited as well. As
most of our proposed weather features are designed based
on scene illumination, we describe a new strategy to make
our system insensitive to camera settings and photo editing
that can be defined by a global transfer function.

Fig. 7. Reflection cue. A sunny image with strong sunlight reflection in (a)
versus a cloudy image with inherently white regions in (e). (b) and (f) are
the corresponding alpha mattes. In (c) and (g), red and blue points indi-
cate background and foreground seeds used in alpha matting. (d) and
(h) are distributions of the alpha maps, taken as the f re cue.
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A robust weather recognition system should output a
uniform weather label for an image as well as its weather
counterpart images, which are images of the identical scene
transformed by a global intensity mapping, and hence they
should have the same weather label. Fig. 8 shows examples
of weather counterpart images.

To make our data collection scalable, we propose to auto-
matically generate weather counterparts for the training
data. In the following, we first describe the construction of
the weather dataset, and then present a perceptual study to
validate the dataset, followed by detailing our learning-
based weather counterpart generation.

4.1 Weather Image Dataset

Our weather dataset contains sunny and cloudy images
obtained from three sources: Sun Dataset [60], Labelme
Dataset [47] and Flickr. The minimum and maximum
dimensions of the images are respectively 600 and 1,500.

To avoid bias, the helpers recruited to collect and label
images were unaware of the purposes or methods used in
our experiments. They worked with their own understand-
ing, and collected each 14,000 outdoor images, in which
sunny and cloudy images are in equal proportion.

We discarded very similar images by first computing the
color histogram distance for all of the image pairs, and then
rejected those identical or highly similar. As a result, 1,121
sunny images and 812 cloudy images were rejected. Next,
we asked two helpers to independently check the remaining
images (5,879 sunny and 6,188 cloudy). Images labeled as
ambiguous weather condition by either or both of the help-
ers were discarded. A total of 5,467 sunny images and 5,612
cloudy images remained after this round. Finally, we asked
the third helper to pick 5,000 sunny and 5,000 cloudy
images in the final dataset.

4.2 Perceptual Validation

We first validate our weather image dataset using a user
study. A total of 11 participants were recruited for the vali-
dation experiment. The participants consisted of five males
and six females whose ages ranged from 26 to 41. All of the
subjects reported normal or corrected-to-normal vision with

no color-blindness, and reported that they were familiar
with the outdoor scenes to be tested in the study. The partic-
ipants were volunteers who were unaware of the purpose of
the experiment.

We asked the participants to assign a sunny/cloudy
score to each image where the two assigned scores should
sum up to 1. We found that 97.6 percent of the images were
assigned a score of 1 for the designated class by all of the
subjects, which indicates that the weather type of most of
the images in our dataset are unambiguous.

For the remaining 3.4 percent images, we compute the
mean and variance of the user-assigned “probability scores”
across different subjects, and report the average scores in
Table 1. If we take 0.5 as the threshold for the “mean proba-
bility,” the user-assigned weather type has 100 percent
accuracy. We also regress these user-assigned probability
scores, and the regression errors are shown in Table 2. Note
on the one hand in the evaluation in the following sections,
we do not use these user-assigned probabilities as the mea-
surement metric due to the fact that the assigned scores are
subjective, although the average score across different sub-
jects is used here. On the other hand, we believe this may
lead to interesting and worthwhile future work on using
user-assigned probability scores (i.e., user’s observation) in
performance evaluation.

4.3 Weather Counterpart Image Generation

Now, we build a dataset for learning weather counterpart
images. We capture 1,000 outdoor images with different
camera parameters. To guarantee pixel-wise alignment, a tri-
pod was used during capture. For each image, four weather
counterpart images were captured using different camera
parameters. The ISO setting is the most important camera
parameter and we found it sufficient to capture a large set of
tone variances in different cameras.

In addition, we recruited seven helpers to edit the 1,000
outdoor images using Photoshop. Five of themwere without

Fig. 8. Camera parameters and photo editing. (b) and (c) are weather counterparts of (a). These weather counterparts are obtained by adjusting
camera parameters while capturing the same scene. Here, a high ISO value makes the picture sensitive to light. (e) and (f) are weather counterparts
of (d). These weather counterparts are obtained via editing the original photos.

TABLE 1
The Mean and Variance of the Mean User-Assigned

Probabilities Not Equal to 0 or 1

mean (Average) variance (Average)

Sunny 0.88 0.03
Cloudy 0.85 0.02

TABLE 2
Regression Error (Mean � Variance)

of Different Methods

Average regression error

LLC [58] 0:442� 0:027
ScSPM [62] 0:437� 0:031
CNN classifier [22] 0:032� 0:002
Ours 0:026� 0:003

The momentum, weight decay and learning rate of CNN are
0.0001, 0.9 and 0.005 respectively. The SVM step in LLC and
ScSPM is replaced by SVR.
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computer vision background. To avoid editing bias, these
subjects were given no specific instruction except that their
editing should not change the weather label of the image.
The editing operation mainly includes gamut mapping, tone
mapping, sharpening, blurring, etc. For each image, four
edited versions are produced.

Therefore, for each of the two cases we have five (one
original + four additional) images, which are ordered differ-
ently to form 20 image pairs after permutation. Finally we
obtain a total of ð1;000þ 1;000Þ � 20 image pairs, which are
named weather counterpart image pairs.

Weather Counterpart Mapping Functions. We now learn the
mapping relationship from a given image to its weather
counterpart. We assume the RGB color of an outdoor image
(denoted as I) and its weather counterpart image (denoted
as Io) has the mapping relationship expressed as

fro; go; bog ¼ Hðr; g; bÞ; (7)

where fr; g; bg and fro; go; bog are the input and mapped
RGB color vectors. Eq. (7) has only three variables, so we
can build a 3D array to turn this mapping operator into a
table look-up operation.

The table construction is as follows. The intensity in each
variable (channel) is quantized into 256 bins, which produ-
ces the mapping table with dimension 256� 256� 256. We
define vp and vo

p as the quantized RGB vector of pixel color
at p in I and Io respectively. For an input ðr; g; bÞ, by defin-
ing c ¼ ½r; g; b�T , the output of the mapping table is

Hðr; g; bÞ ¼ 1

K

X
p2DðcÞ

exp � 1

s2
kvp � ck22

� �
vo
p þ gc

� �
; (8)

where

DðcÞ ¼ fqjkvq � ck22 � d; 8q 2 Qg: (9)

HereQ is the pixel set of the image. TheK in Eq. (8) is a nor-
malization factor, which is given by

K ¼
X

p2DðcÞ
exp � 1

s2
kvp � ck22

� �
þ g: (10)

In our experiments, we set d ¼ 45, g ¼ 0:1 and s ¼ 5.
The output of Hðr; g; bÞ is the weighted combination of

pixel-pairs mapping whose input RGB vector is close to
½r; g; b�T . Therefore, the mapping relationship of I and Io can
be smoothly transferred to table H. If we cannot find suffi-
cient number of RGB vectors close to ½r; g; b�T in the original
image,

P
p2DðcÞ exp½� 1

s2
kvp � ck22� is small, so that we trust

more the original input c in this case.
Weather Counterparts Generation. We produce 40,000 map-

ping functions for all 40,000 weather counterpart pairs in
our dataset. Each function captures a color transform from
the first image to the second in the corresponding weather
counterpart pair. Given a training image, we use the map-
ping where the input images are similar to produce the
weather counterpart images for training.

We use the color GIST descriptors [8] to extract the color
and context information. We pick d ¼ 50 mapping functions
whose input image is closest to the given image according
to color GIST features, and then use the d mapping func-
tions to produce dweather counterpart images. Fig. 9 shows
examples of weather counterpart images.

5 COLLABORATIVE LEARNING WITH

HOMOGENEOUS VOTERS

Traditional classifiers such as SVM cannot achieve good
performance on our overall weather feature because they
assume all of the components are present simultaneously in
every image, which may unfortunately not be the case. For
example, outdoor images do not always contain the sky
region. Images lacking one or more weather cues would sig-
nificantly affect SVM’s classification performance.

Our learning strategy is to partition the training images
into disjoint clusters of homogeneous voters, so that voters
closer to a given testing image have more weights when the
weather label is considered.

5.1 Voting Scheme

Our training outdoor images are first partitioned into homo-
geneous clusters according to the existence vector of each
image as defined in Eq. (2). The partitioned sets thus corre-
spond to different weather cue patterns, such as “reflection
+ shadow”, “sky + haze”, and “sky + reflection + shadow”.
Images in the same cluster/pattern are the homogeneous.

In implementation, we partition the set of training
images into M subsets fV1; . . . ;VMg based on the existence
vectors using hierarchical clustering [10]. We set the cluster
error threshold to 0.5 in terms of Euclidean distance. M can
be found automatically. We denote the set of cluster center
vectors as fbe1; . . . ; beMg. Fig. 10 shows sample images of two
converged clusters and their cluster centers.

In the testing phase, given an overall weather feature x
with existence vector e, the training data whose existence
vectors are similar to e should be used. So our classifier is
implemented using a weighted voting scheme, expressed as

hðx; eÞ ¼ sign
XM
i¼1

sðbei; eÞbhiðxÞ
" #

; (11)

where sign½�� is the function outputting 1 (resp. �1) for non-
negative (resp. negative) input, sðbei; eÞ is a similarity func-
tion under parameter s

Fig. 9. Examples of weather counterpart mapping. (b) and (c) are weather
counterparts of (a). We build the mapping function from (a) to (b)-(c)
respectively denoted as H1 and H2. Given the testing image (d), (a) is
among those visually similar to (d) in the weather counterpart dataset.
(e) and (f) are respectively themapped results ofH1 andH2 with input (a).
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sðbei; eÞ ¼ expð� kbei�ek22
2s2

ÞPM
i expð� kbei�ek22

2s2
Þ
; (12)

and bhið�Þ (defined shortly) is the homogeneous voter trained
using the data in Vi. Our classifier Eq. (11) gives a larger
weight to the homogeneous voter whose existence vector
pattern is similar to that of the testing data.

5.2 Collaborative Learning

For training image i, we denote the overall weather feature
as xi, and the weather label as yi 2 f�1;þ1g, where �1 and
þ1 correspond respectively to “cloudy” and “sunny”. For
each homogeneous voter, we model bhið�Þ as

bhiðxÞ ¼ sign
Xp
j¼1

vj;ixðjÞ þ bi

 !
; (13)

where xðjÞ is the jth element of vector x. If each homoge-
neous voter works independently without information shar-
ing, the classifier in Eq. (13) can be modeled as a standard
SVM [5], expressed as

min
vj;i;bi;zi;k

Xp
j¼1

v2
j;i þ C

X
k2Vi

zi;k

s.t. yk
Xp
j¼1

vj;ixkðjÞ þ bi

 !
	 1� zi;k; zi;k 	 0; 8k 2 Vi;

(14)

where p ¼ 4;717 is the dimension of the overall weather
feature and C is a constant.

In our framework, we do not train each bhiðxÞ indepen-
dently because this will lead to a large bias. Our voters
work collaboratively to determine the classification result
and we optimize them together in a unified framework.

By removing sign from bhiðxÞ, we make the system linear,
which updates Eq. (11) into

hðx; eÞ ¼ sign
XM
i¼1

sðbei; eÞ Xp
j¼1

vj;ixkðjÞ þ bi

 !" #
: (15)

We make this change because a voter should not be
restricted to output binary values. This also helps to indicate
ambiguous situation where sunny and cloudy features are
present at the same time, see Fig. 19.

5.3 Latent SVM Learning

Now, for each training sample, we produce dweather coun-
terpart images and extract the 4717-D weather feature on
them. Given training image t, we denote the weather feature
of its lth weather counterpart image as xlt (l ¼ f1; . . . ; dg).
We also define x0t ¼ xt.

For each training sample, we require that its weather
counterparts to have the same weather label in the train-
ing phase. This requires us to prevent all the weather
counterpart features from falling into the margin during
the training stage. To this end, we define a latent vari-
able to indicate which weather counterpart image can
produce the minimum classification margin, and encour-
age the minimum margin to be large during optimiza-
tion. According to the max-margin strategy, we can
write the constraints as

min
c2f0;...;dg

yk
Xp
j¼1

vj;ix
c
kðjÞ þ bi

 !( )
	 1� zi;k;

zi;k 	 0; 8k 2 Vi; 8i ¼ 1; . . . ;M;

(16)

and

min
m2f0;...;dg

yt
XM
i

sðbei; etÞ Xp
j¼1

vj;ix
m
t ðjÞ þ bi

 !" #( )
	 1� �t;

�t 	 0; 8i ¼ 1; . . . ;M; 8t ¼ 1; . . . ; N;

(17)

where N is the number of training images, c and m are two
latent valuables to indicate which weather counterpart
image produces the minimum classification margin.

Denoting the latent variables as C ¼ fcð1Þ; . . . ; cðNÞg and
M ¼ fmð1Þ; . . . ;mðNÞg for Eqs. (16) and (17) respectively,
the final objective function for hðx; eÞ is written as

min
vj;i;bi;�t;zi;k;C;M

XM
i¼1

Xp
j¼1

v2
j;i þ C1

XM
i¼1

X
k2Vi

zi;k þ C2

XN
t¼1

�t (18)

s.t.

min
cðkÞ2f0;...;dg

yk
Xp
j¼1

vj;ix
cðkÞ
k ðjÞ þ bi

 !( )
	 1� zi;k;

zi;k 	 0; 8k 2 Vi; 8i ¼ 1; . . . ;M

(19)

min
mðtÞ2f0;...;dg

yt
XM
i

sðbei; etÞ Xp
j¼1

vj;ix
mðtÞ
t ðjÞ þ bi

 !" #( )
	 1� �t

�t 	 0; 8i ¼ 1; . . . ;M; 8t ¼ 1; . . . ; N;

(20)

where C1 and C2 are constants.
Eq. (18) can be regarded as latent SVM whose latent vari-

ables are C and M. We solve Eq. (18) by iteratively

Fig. 10. Sample images found in two clusters. (a) “sky + shadow” cluster
with center f0:90;0:87; 0:26; 0:11g. (b) “sky + haze” cluster with center
f0:94; 0:24; 0:27;0:84g, where fvsk; vsh; vre; vhag is composed of the
respective existence scores.
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optimizing fvj;i; bi; �t; zi;kg as a standard SVM problem, and
optimize the latent values fC;Mg in the constraining condi-
tions. The following steps are adopted:

1) Keep fvj;i; bi; �t; zi;kg fixed, optimize the latent
fC;Mg subject to the constraints (19) and (20). This
is a simple minimization operation.

2) Keep fC;Mg fixed, optimize fvj;i; bi; �t; zi;kg by solv-
ing a standard SVM problem which can be solved
using Lagrange multipliers [5].

For the second step, voter collaboration is characterized
by Eq. (20), which forces all of the voters to work together in
the classification. The effectiveness of each voter is gov-
erned by Eq. (19). It guarantees that each voter is learned
from its corresponding homogeneous data. Eqs. (19) and
(20) can accomplish good classification performance. We
solve Eq. (18) using different ss for sð�Þ in Eq. (12). In the
final stage, we pick the s with the minimum energy for the
objective function (18).

Similar to other latent SVM solvers, the two-step iteration
converges to a satisfactory fvj;i; big in our experiments. This
is because the difference among feature weather counter-
part images is much smaller than the difference among all
of the training samples. In the two-step iteration, compared
to the first step (latent variables optimization), the second
step plays a more important role in model update with
SVM weights. The latent variable optimization can be
regarded as a fine-tuning step in the feature space, in order
to capture the variance introduced by different camera
parameters and image editing. Empirically, the update
stops after 8-10 iterations.

6 EXPERIMENTS

We report the classification results under different evalu-
ation settings, and further validate our dataset using a
perceptual study. In the following, the CNN feature is
the feature extracted from the CNN model used as input
to our system. The CNN classifier refers to the CNN
model trained end-to-end on our dataset. The visualiza-
tion of the learned convolutional filters can be found in
Fig. 14.

6.1 Classification Results

The training and classification were done using the weather
dataset constructed. We adopted the cross validation
scheme where in each round, 80 percent of the data were
selected randomly as the training set, with the remaining
20 percent as the testing set. We ran five rounds of

experiment and recorded the mean and variance of the clas-
sification accuracy.

On two-class labeling, even random guess can reach
50 percent accuracy. We use the normalized accuracy given
by maxfða� 0:5Þ=ð1� 0:5Þ; 0g, where a is the raw accuracy
obtained. Thus, the normalized accuracy is within ½0; 1� and
random guess is expected to get zero.

6.1.1 Individual Features and Scores

We use SVM to evaluate individual weather features. Note
that it may not be fair for the CNN feature whose perfor-
mance is sensitive to choice of parameters. Nevertheless we
include the CNN feature in this section, and defer the dis-
cussion of its performance under different parameter set-
tings in a later section. The momentum, weight decay and
learning rate of the CNN are 0.0001, 0.9 and 0.005 respec-
tively to produce the best performance.

Table 3 tabulates the classification results. Although
the overall weather feature vector (4717D) is lopsided to
the CNN feature (4096D), and that using the CNN feature
alone reports better performance than any of the individual
non-CNN features, we shall show that the combination of
CNN and non-CNN features reports the best performance
by taking the advantages of both features. Not surpris-
ingly, the sky is the most important weather cue among
the five non-CNN features. We believe that this is due
to the fact that sky detection is relatively easier and more
stable. The majority of failure cases are images without a
prominent sky region. In addition, the reflection and
shadow classifiers also work well. The performance of the
contrast classifier on the other hand depends on the com-
plexity of the scene.

We note that the haze cue is weaker than the sky and
contrast cues mainly due to the fact that many images in
our dataset simply do not exhibit detectable haze. To con-
firm this, we select 415 images with haze vha score larger
than 0.7 and 415 sunny images. The haze classifier perfor-
mance is improved up to 84.2 percent in normalized accu-
racy when it is applied to these 830 images. We also found
that the haze cue can help identify sunny images as well in
classification, since many sunny images have vivid color
which exhibits low dark-channel intensities.

Next, we evaluate individual existence scores, which are
used to form Eq. (2). For each individual feature, we select s
percent of the images with the highest existence score in the
dataset, and apply SVM classification on this image subset.
Fig. 11 shows the performance with varying s of each indi-
vidual classifier. The plot indicates that our existence score
design is effective—each individual feature is more useful
when it has a higher existence score. For reference, two fail
cases produced by our system are shown in Fig. 18.

6.1.2 Ablation Study

We also conducted an ablation study, that is, to study the
performance of the system when a given weather cue is left
out. Table 4 verifies that all of the proposed cues are useful
in accounting for the overall weather classification perfor-
mance, since removing any one of them results in a perfor-
mance drop. In particular, the momentum, weight decay
and learning rate of our CNN are 0.0001, 0.9 and 0.005

TABLE 3
Classification Results (Mean � Variance)

Using Individual Features

Feature Normalized accuracy

Sky 44:3� 1:9
Shadow 41:1� 2:2
Reflection 27:0� 2:1
Contrast 40:5� 2:0
Haze 34:1� 1:9
CNN feature 83:6� 2:0
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respectively. We note that the CNN feature plays an impor-
tant role among all of the features due to the larger drop in
comparison to other features.

6.1.3 Data Augmentation

We enrich the data set by introducing weather counterpart
images in the training phase. In this section we compare the
classification results on training using the data with and
without data augmentation. Table 5 shows that our data
augmentation leads to about 7 percent improvement in nor-
malized accuracy. Note that we use the best parameters for
the CNN classifier and our classifier.

Therefore, for the rest of our evaluation in this section we
will use the augmented training dataset.

6.1.4 Comparison

We report our overall classification performance compared
with typical baseline systems, weather related systems, and
the CNN classifier. For the latter, we will show and explain
that relying on the CNN without the proposed weather-
specific features will result in a significant performance
drop, despite that CNN is powerful in encoding global
scene structure and characteristics.

Comparison with Baseline Systems. The first baseline is to
implement SVM directly on the 4717-D weather feature. We
test both the linear and non-linear versions with different
kernels and report the results with the best performance.
The second baseline is the traditional Adaboost, which com-
bines several classifiers to build a stronger one. We take
each feature bin as a weak classifier. Another two baseline
methods based on dictionary learning [39] are typical image
classification methods, namely LLC [58] and ScSPM [62].

For the SVM baseline we tried different parameters:
C 2 ½0:0001; 100� and we report the best one (C ¼ 0:05). We
tried different non-linear kernels, including the Gaussian
kernel, RBF kernel and Polynomial kernel. The best kernel
is the polynomial kernel which produces a performance
similar to the linear solver. For the Adaboost baseline, we
took each single dimension in the 1645-D feature as a weak
classifier, and tried 50 different permutations of the weak
classifiers. We found that the variance in accuracy is very
small—0.16 only. For LLC and ScSPM, we use the codes
provided in [58] and [62] with default parameters. We also
tried three dictionary sizes, 512, 1,024 and 2,048. We found
all of the parameters cannot yield a result significantly
greater than 0 normalized accuracy.

Table 6 lists the classification results. Figs. 12 and 13
show a few examples, where we test five different s values
in Eq. (12), that is, f0:5; 0:1; 0:01; 0:05; 0:001g, and select the
best result with the lowest energy in Eq. (18).

For traditional image classification methods LLC [58] and
ScSPM [62], the normalized accuracies are close to 0. This is
because these methods rely on scene structure and do not
consider illumination information. SVM and Adaboost do
not yield significant improvement over single weather clas-
sifiers, such as those of sky or shadow (cf. Tables 3 and 6).
We also find that the use of kernel SVM yields similar
performance.

TABLE 4
Classification Results (Mean � Variance)

with Individual Weather Cues
Being Left Out

Feature Normalized accuracy

Sky 86:3� 1:9
Shadow 86:9� 2:1
Reflection 89:0� 2:0
Contrast 86:2� 1:9
Haze 87:7� 1:5
CNN feature 61:4� 2:0
All 91:4� 1:6

“All” means individual weather cues are included.

Fig. 11. (a)-(d) are respectively the performance curves of sky, shadow,
reflection, and haze classifiers. The x-axis values are the respective per-
centages of selected images (with the highest existence score) in the
dataset. The y-axis is the classification accuracy (in percent).

TABLE 5
Classification Results (Mean � Variance) with and without Data
Augmentation; “with DA” and “without DA” Respectively Stand

for Training with and without Data Augmentation

Classifier Normalized accuracy

CNN classifier (without DA) 77:8� 2:0
CNN classifier (with DA) 83:3� 2:1
Ours (without DA) 84:0� 1:8
Ours (with DA) 91:4� 1:6

The learning rate, momentum and weight decay of the CNN are respectively
0.0001, 0.9 and 0.005.

TABLE 6
Classification Results (Mean � Variance)

of Different Methods

Normalized accuracy

SVM 41:2� 2:2
Adaboost 36:4� 2:3
LLC [58] 0:3� 0:1
ScSPM [62] 0:2� 0:1
CNN classifier [22] 83:3� 1:8
Ours 91:4� 1:6

The momentum, weight decay and learning rate of
the CNN are 0.0001, 0.9 and 0.005 respectively.
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Comparison with Related Methods. We also compare our
classifier with weather-related methods. The first related
work is Lalonde et al. [26]. Note that their system is not
designed for weather classification; one component, namely,
the sun visibility prediction, can be regarded as a coarse
weather estimator. We implemented this component and
tested it on our dataset. Another two vehicle-based weather
classifiers [46], [61] were also compared. The comparison
with [24] is also provided. It can output 40 attributes of image
feature including “sunny” and “cloudy”. We train the
regressor on our data.

Table 7 tabulates the classification statistics. For themethod
of [26], the assumption that an outdoor scene is composed of
ground, sky, and vertical surfaces may not be satisfied (see a
few exceptions in Figs. 12 and 13). For the work of [46], [61],
the weather estimators are specially designed for driver assis-
tance. They rely on vehicle-mounted image priors, which can-
not properly dealwith general natural images.

The framework proposed in [24], where off-the-shelf but
not weather-specific features are used, produces less effec-
tive results. But it still outperforms [46], [61] since it does
not rely on on vehicle-mounted priors. We also observe that
the precisions for “cloudy” and “sunny” attributes reported
on the dataset of [24] is high ð> 0:95Þ, because the testing
images in [24] are dominated by a prominent sky region
which is relatively easy to recognize.

Comparison with CNN. In this section, we train a CNN
classifier end-to-end to perform the two-class classification.
The standard structure provided by [22] is adopted, and we
fine tune on the AlexNet. We report the result with the best
parameter setting.

For the sake of fairness, the CNN feature in our classifier
adopts the same set of parameters with the one being com-
pared. The results are reported with various hyperparam-
eters.

First, in Table 8 we show the performance under differ-
ent learning rates; the most important parameter for CNN
training. The other two important parameters are namely
the momentum and weight decay. Table 9 summarizes their
effects in the comparison experiments. We found that the
proposed non-CNN weather features are complementary
with the CNN feature in the overall weather feature vector.
That is, while the CNN feature is capable of capturing
global image characteristics, it may not encode well weather
characteristics which are better represented by non-CNN
weather cues. The result shows that our system which com-
bines CNN feature and non-CNN features leads to about 8
percent improvement.

To further verify this point, we manually label non-CNN
weather cues to explore their full potentials. For the shadow
feature, we manually label shadow regions in all of the
images using bounding boxes, followed by shadow extrac-
tion [25] within the box region. The existence score is 1
(with shadow) or 0 (without shadow). For the reflection fea-
ture, we label reflection regions manually with a one-
dimensional feature. If reflection occurs the feature bin is 1;
otherwise 0. The existence score is the same as the feature
bin value. For the sky feature, with a few exceptions most of
the sky regions can be correctly segmented, and we manu-
ally label the missing sky regions. Table 10 tabulates the
results, which demonstrates that the proposed features are
indeed effective in weather recognition and perform better

Fig. 12. Detection results: Cloudy images.

Fig. 13. Detection results: Sunny images.

TABLE 7
Classification Statistics of Different Methods

Normalized accuracy

Lalonde et al. [26] 46:5� 1:7
Yan et al. [61] 24:6� 2:6
Roser and Moosmann [46] 26:2� 2:3
Laffont et al. [24] 21:4� 1:9
Ours 91:4� 1:6

TABLE 8
Comparison with CNN Classifier under Different Learning

Rates, Given Momentum and Weight Decay Are
Respectively 0.9 and 0.005

learning rate CNN classifier Ours

0.001 81:5� 1:9 88:7� 2:0
0:0001 83:3� 1:8 91:4� 1:6
0.00001 82:0� 2:0 89:5� 1:9
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than the CNN classifier. Thus, we believe that with the con-
tinuing improvement of low-level vision techniques, the
proposed non-CNN weather cues will improve the overall
performance significantly by working in synergy with the

CNN feature. Fig. 15 shows some fail cases of the CNN clas-
sifier which can otherwise be correctly labeled by our
method. For example, Figs. 15a and 15b are recognized as
cloudy by the CNN classifier due to its globally gray color
tone. But our system can look into more details such as
shadows to produce the correct weather label. In Figs. 15c
and 15d, although shadows are found, they are not strong
cast shadow caused by the sun. On the other hand, the small
sky region can be correctly detected by our method.

We visualize the CNN filters in different layers as shown
in Fig. 14.

6.2 Comparison on Two-Class Laffont Dataset

In [24], a dataset including 40 transient attributes was pro-
posed. In this dataset, 8,571 images in total from 101webcams
are annotated by crowd-sourcing. “Sunny” and “cloudy” are
two of the attributes in their setting. That is, for each image,
confidence score of “sunny” and “cloudy” are available. As
suggested in [24], attributes with confidence score larger than
0.8 is considered strong positive attributes. The images with
strong positive sunny/cloudy attributes are selected to form
the two-class Laffont dataset. We found in this dataset none
of the images is labeled both “sunny” and “cloudy”, so the
images are unambiguous. The resulting dataset contains
1,729 cloudy images and 1,085 sunny images. Fig. 16 shows
example images of the two-class Laffont dataset. We apply dif-
ferent methods on the dataset by using 80 percent of it for
training and 20 percent for testing, and report the cross-vali-
dation results. Table 11 shows that our method has a better
performance than [24] on the two-class dataset. In particular,
note that the performance of our method and the CNN classi-
fier are close to 100 percent. This is because the images in the
dataset typically have a prominant sky region which makes
the classification easier.

6.3 Application in Weather Monitoring Using
Surveillance Cameras

We verify our technique in a real-world application: real-
time weather monitoring. Surveillance cameras can be
found almost everywhere, so we believe running our fast
and cost-effective method on these cameras can effectively

TABLE 9
Comparison with CNN Classifier, Given Learning Rate Is

0.0001, n and � Are Respectively Momentum and Weight Decay

parameters CNN classifier Ours

n ¼ 0:9; � ¼ 0:005 83:3� 1:8 91:4� 1:6
n ¼ 0:9, � ¼ 0:0025 81:4� 1:8 89:6� 1:7
n ¼ 0:45, � ¼ 0:005 77:1� 2:1 85:2� 1:8
n ¼ 0:45, � ¼ 0:0025 78:6� 1:9 86:7� 2:0

TABLE 10
Comparison with Manual Feature Localization

Normalized accuracy

CNN classifier 83:3� 1:8
CNN classifier by [9] 82:2� 3:5
Ours (Sky) 93:5� 1:8
Ours (Shadow) 96:3� 1:7
Ours (Reflection) 95:2� 1:6
Ours (Sky + Shadow + Reflection) 97:4� 1:2

In the table, the feature inside the parentheses are manually labeled as described
in the text. The learning rate, momentum and weight decay for the CNN clas-
sifier are respectively 0.0001, 0.9 and 0.005.

Fig. 15. Four CNN failure cases. In (a) and (b), Sunny image mis-
detected as cloudy. In (c) and (d) cloudy image mis-detected as sunny.
“sunny score” and “cloudy score” refer to output CNN confidence score
in the sunny and cloudy class.

Fig. 14. The visualization of the filters of conv1-conv5 layers. Fig. 16. Examples of the two-class Laffont dataset.
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monitor real-time weather in urban areas. This is particu-
larly useful where solar panels are extensively installed on
the rooftops of many buildings; sunny and cloudy weather
provides important guidance for optimizing power transfer
in the main grids. That is, when cloudy weather is detected
for an extended period of time, the main power grid may
start to take over early to maintain stable power supply and
avoid outage. We apply our weather predictor in surveil-
lance videos footage, and collected 2,000 surveillance
images, 1,000 of them are sunny and the other 1,000 are
cloudy. The normalized classification accuracy is 93:2 per-
cent. Sample images are shown in Fig. 17.

7 CONCLUSION AND FUTURE WORK

We have presented a learning-based approach for classifying
two types of weather. This apparently simple two-class weat-
her labeling problem is not trivial given the great variety of
outdoor images. The feature cues we used resonate well with
our own common sense in judging weather conditions. Bec-
ause some of the feature cues may be unavailable in images,
the key to our computational framework is a collaborative
learning strategy where voters closer to the testing image in
terms of weather information/structure are given more
weight in classification.Wehave also incorporated the power-
ful CNN feature into our overall weather feature. To resist
variations caused by different camera parameters and photo
editing, a latent SVM framework is proposed to learn from
various synthesized weather counterpart images. Our experi-
mental results showed that this is an effective strategy, which
we believe has good potential beyondweather classification.

Our current approach is limited to label two weather
types. More research needs to be engaged in generalizing the
approach to labeling more conditions on larger dataset [4].
For example, Fig. 19 shows two images where sunny and
cloudy features are present at the same time. They may be

labeled as “partly sunny” or “partly cloudy” and in fact, our
system labels (a) as sunny, with the rescaled SVM sunny
score 0.641 (and cloudy score 0.359), while labeling (b) as
cloudywith the rescaled SVM cloudy score 0.716 (and sunny
score 0.284), which we believe are reasonable for two-class
weather classification.

We hope this paper will spark interest and subsequent
work along this line of research. Executable and the weather
dataset are available at the project website.

ACKNOWLEDGMENTS

The research was supported by the Research Grants Council
of the Hong Kong Special Administrative Region (Project
nos. 413113, 619313 and 412911). It was also partly sup-
ported by the National Natural Science Foundation of
China (NSFC) key project No. 61133009. Di Lin is the
corresponding author of this paper.

REFERENCES

[1] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt,
“Sequential deep learning for human action recognition,” in Proc.
2nd Int. Conf. Human Behavior Understanding, 2011, pp. 29–39.

[2] R. Baltenberger, M. Zhai, C. Greenwell, S. Workman, and
N. Jacobs, “A fast method for estimating transient scene attrib-
utes,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2016, pp. 1–8.

[3] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-
level features for recognition,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern, 2010, pp. 2559–2566.

[4] W. T. Chu, X. Y. Zheng, and D. S. Ding, “Image2Weather: A large-
scale image dataset for weather property estimation,” in Proc.
IEEE 2nd Int. Conf. Multimedia Big Data, Apr. 2016, pp. 137–144.

[5] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, pp. 273–297, 1995.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2005, pp. 886–893.

[7] K. Derpanis, M. Lecce, K. Daniilidis, and R. Wildes, “Dynamic
scene understanding: The role of orientation features in space and
time in scene classification,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2012, pp. 1306–1313.

[8] M. Douze, H. J�egou, H. Sandhawalia, L. Amsaleg, and C. Schmid,
“Evaluation of GIST descriptors for web-scale image search,” in
Proc. ACM Int. Conf. Image Video Retrieval, 2009, Art. no. 19.

[9] M. Elhoseiny, S. Huang, and A. Elgammal, “Weather classification
with deep convolutional neural networks,” in Proc. IEEE Int. Conf.
Image Process., 2015, pp. 3349–3353.

Fig. 19. Sunny or cloudy?

TABLE 11
Comparison on the Two-Class Laffont Dataset

Normalized Accuracy

[24] 92:4� 1:3
CNN classifier 96:4� 0:5
Ours without CNN feature 98:2� 0:1
Ours 98:6� 0:2

Fig. 17. Some detection results for surveillance images. The first and
second row are sunny and cloudy images respectively.

Fig. 18. (a) Sunny image mis-detected as cloudy, and (b) cloudy image
mis-detected as sunny.

2522 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017



[10] M. Fionn, “A survey of recent advances in hierarchical clustering
algorithms,” Comput. J., vol. 26, pp. 354–359, 1983.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2014, pp. 580–587.

[12] D. Glasner, P. Fua, T. Zickler, and L. Zelnik-Manor, “Hot or not:
Exploring correlations between appearance and temperature,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2015, pp. 3997–4005.

[13] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2009, pp. 1956–1963.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” IEEE Conf. Comput. Vis. Patt. Recog., Las Vegas,
NV, USA, pp. 770–778, Jun. 2016, Doi: 10.1109/CVPR.2016.90.

[15] M. Islam, N. Jacobs, H. Wu, and R. Souvenir, “Images+
weather: Collection, validation, and refinement,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshop Ground Truth,
vol. 6, p. 2, 2013.

[16] N. Jacobs, M. T. Islam, and S. Workman, “Cloud motion as a cali-
bration cue,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2013, pp. 1344–1351.

[17] M. Juneja, A. Vedaldi, C. Jawahar, and A. Zisserman, “Blocks that
shout: Distinctive parts for scene classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2013, pp. 923–930.

[18] H. Kang, M. Hebert, and T. Kanade, “Discovering object instances
from scenes of daily living,” in Proc. Int. Conf. Comput. Vis., 2011,
pp. 762–769.

[19] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2014, pp. 1725–1732.

[20] H. Katsura, J. Miura, M. Hild, and Y. Shirai, “A view-based out-
door navigation using object recognition robust to changes of
weather and seasons,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2003, pp. 2974–2979.

[21] G. Kim and A. Torralba, “Unsupervised detection of regions of
interest using iterative link analysis,” in Proc. 22nd Int. Conf. Neu-
ral Inf. Process. Syst., 2009, pp. 961–969.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Advan-
ces Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[23] H. Kurihata, et al., “Rainy weather recognition from in-vehicle
camera images for driver assistance,” in Proc. IEEE Intell. Veh.
Symp., 2005, pp. 205–210.

[24] P.-Y. Laffont, Z. Ren, X. Tao, C. Qian, and J. Hays, “Transient
attributes for high-level understanding and editing of outdoor
scenes,” ACM Trans. Graph., vol. 33, no. 4, 2014, Art. no. 149.

[25] J.-F. Lalonde, A. Efros, and S. Narasimhan, “Detecting ground
shadows in outdoor consumer photographs,” in Proc. 11th Eur.
Conf. Comput. Vis., 2010, pp. 322–335.

[26] J.-F. Lalonde, A. Efros, and S. Narasimhan, “Estimating the natu-
ral illumiation conditions from a single outdoor image,” Int. J.
Comput. Vis., vol. 98, pp. 123–145, 2012.

[27] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene catego-
ries,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recog-
nit., 2006, pp. 2169–2178.

[28] Y. J. Lee and K. Grauman, “Object-graphs for context-aware cate-
gory discovery,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pat-
tern Recognit., 2010, pp. 1–8.

[29] A. Levin, D. Lischinski, and Y. Weiss, “A closed form solution to
natural image matting,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2006, pp. 61–68.

[30] L.-J. Li, H. Su, L. Fei-Fei, and E. P. Xing, “Object bank: A high-level
image representation for scene classification & semantic feature
sparsification,” in Proc. Advances Neural Inf. Process. Syst. 23, 2010,
pp. 1378–1386.

[31] L.-J. Li, H. Su, Y. Lim, and L. Fei-Fei, “Objects as attributes for
scene classification,” in Proc. 11th Eur. Conf. Trends Topics Comput.
Vis., 2012, pp. 57–69.

[32] Q. Li, J. Wu, and Z. Tu, “Harvesting mid-level visual concepts
from large-scale internet images,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2013, pp. 851–858.

[33] D. Lin, C. Lu, R. Liao, and J. Jia, “Learning important spatial pool-
ing regions for scene classification,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2014, pp. 3726–3733.

[34] D. Lin, X. Shen, C. Lu, and J. Jia, “Deep LAC: Deep localization,
alignment and classification for fine-grained recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1666–1674.

[35] M. Lin, Q. Chen, and S. Yan, “Network in network,” Int. Conf.
Learn. Represent., 2014.

[36] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[37] C. Lu, D. Lin, J. Jia, and C.-K. Tang, “Two-class weather classi-
fication,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,
pp. 3718–3725.

[38] C. Lu, J. Shi, and J. Jia, “Online robust dictionary learning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 415–422.

[39] C. Lu, J. Shi, and J. Jia, “Scale adaptive dictionary learning,” IEEE
Trans. Image Process., vol. 23, no. 2, pp. 837–847, Feb. 2014.

[40] S. G. Narasimhan and S. K. Nayar, “Shedding light on the
weather,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2003, pp. I-665–I-672.

[41] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput.
Vis., vol. 42, pp. 145–175, 2001.

[42] M. Pandey and S. Lazebnik, “Scene recognition and weakly super-
vised object localization with deformable part-based models,” in
Proc. Int. Conf. Comput. Vis., 2011, pp. 1307–1314.

[43] S. Parizi, J. Oberlin, and P. Felzenszwalb, “Reconfigurable models
for scene recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Rec-
ognit., 2012, pp. 2775–2782.

[44] F. Perronnin, Y. Liu, J. S�anchez, and H. Poirier, “Large-scale image
retrieval with compressed Fisher vectors,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3384–3391.

[45] A. Quattoni and A. Torralba, “Recognizing indoor scenes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 413–420.

[46] M. Roser and F. Moosmann, “Classification of weather situations on
single color images,” inProc. IEEE Intell. Veh. Symp., 2008, pp. 798–803.

[47] B. Russell, A. Torralba, K. Murphy, andW. T. Freeman, “LabelMe:
A database and web-based tool for image annotation,” Int. J. Com-
put. Vis., vol. 77, pp. 157–173, 2008.

[48] B. C. Russell,W. T. Freeman, A. A. Efros, J. Sivic, andA. Zisserman,
“Using multiple segmentations to discover objects and their extent
in image collections,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis.
Pattern Recognit., 2006, pp. 1605–1614.

[49] F. Sadeghi and M. F. Tappen, “Latent pyramidal regions for
recognizing scenes,” in Proc. 12th Eur. Conf. Comput. Vis., 2012,
pp. 228–241.

[50] L. Shen and P. Tan, “Photometric stereo and weather estimation
using internet images,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2009, pp. 1850–1857.

[51] N. Shroff, P. Turaga, and R. Chellappa, “Moving vistas: Exploiting
motion for describing scenes,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2010, pp. 1911–1918.

[52] K. Simonyan andA. Zisserman, “Very deep convolutional networks
for large-scale image recognition,”CoRR, abs/1409.1556, 2014.

[53] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of
mid-level discriminative patches,” in Proc. 12th Eur. Conf. Comput.
Vis., 2012, pp. 73–86.

[54] L. Tao, L. Yuan, and J. Sun, “SkyFinder: Attribute-based sky
image search,” in Proc. ACM SIGGRAPH, 2009, Art. no. 68.

[55] S. Todorovic and N. Ahuja, “Unsupervised category modeling,
recognition, and segmentation in images,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 12, pp. 2158–2174, Dec. 2008.

[56] A. Volokitin, R. Timofte, L. Van Gool, and D. CVL, “Deep features
or not: Temperature and time prediction in outdoor scenes,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 63–71.

[57] J. Wang, M. Korayem, and D. Crandall, “Observing the natural
world with Flickr,” in Proc. IEEE Int. Conf. Comput. Vis. Workshops,
2013, pp. 452–459.

[58] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-
constrained linear coding for image classification,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3360–3367.

[59] S. Workman, R. Souvenir, and N. Jacobs, “Scene shape estimation
from multiple partly cloudy days,” Comput. Vis. Image Understand-
ing, vol. 134, pp. 116–129, 2015.

[60] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun data-
base: Large-scale scene recognition from abbey to zoo,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2010, pp. 3485–3492.

[61] X. Yan, Y. Luo, and X. Zheng, “Weather recognition based on
images captured by vision system in vehicle,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., vol. 5553, pp. 390–398, 2009.

LU ET AL.: TWO-CLASS WEATHER CLASSIFICATION 2523



[62] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid
matching using sparse coding for image classification,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 1794–1801.

[63] B. Yao, G. Bradski, and L. Fei-Fei, “A codebook-free and annota-
tion-free approach for fine-grained image categorization,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2012, pp. 3466–3473.

[64] N. Zhang, E. Shelhamer, Y. Gao, and T. Darrell, “Fine-
grained pose prediction, normalization, and recognition,” CoRR,
abs/1511.07063, 2015.

[65] Z. Zhang and H. Ma, “Multi-class weather classification on single
images,” in Proc. IEEE Int. Conf. Image Process., 2015, pp. 4396–
4400.

[66] Y. Zheng, Y.-G. Jiang, and X. Xue, “Learning hybrid part filters for
scene recognition,” in Proc. 12th Eur. Conf. Comput. Vis., 2012,
pp. 172–185.

Cewu Lu received the BS and MS degrees from
Chongqing University of Posts and Telecommu-
nications and Graduate University of Chinese
Academy of Sciences, in 2006 and 2009, respec-
tively. He received the PhD degree in computer
science and engineering from the Chinese Uni-
versity of Hong Kong, in 2013. He was a research
fellow with the Hong Kong University of Science
and Technology. He was a research fellow with
Stanford University AI lab. Since 2016, he has
been in the Department of Computer Science

and Engineering, Shanghai Jiaotong University where he is currently a
professor. His team received the fourth place in ILSVRC 2014
among the 38 participating teams. He received the best paper award of
NPAR 2012 and served as an associate editor of the journal Gate to
Computer Vision and Pattern Recognition and reviewers of several
major computer vision and graphics conferences and journals such as
the IEEE Transactions on Pattern Analysis and Machine Intelligence
and the ACM Transactions on Graphics. His research interests include
activity recognition, object detection, and image/video processing. He is
a member of the IEEE.

Di Lin received the bachelor’s degree in software
engineering from Sun Yat-sen University, in
2012, and the PhD degree from the Chinese Uni-
versity of Hong Kong, in 2016. His research inter-
ests include computer vision and machine
learning. He is currently an assistant professor in
the College of Computer Science and Software
Engineering, Shenzhen University.

Jiaya Jia received the PhD degree in computer
science from the Hong Kong University of Sci-
ence and Technology, in 2004. He is currently a
full professor in the Department of Computer Sci-
ence and Engineering, Chinese University of
Hong Kong (CUHK). He was a visiting scholar
with Microsoft Research Asia from March 2004 to
August 2005 and conducted collaborative
research at Adobe Systems in 2007. He heads
the research group in CUHK, focusing specifically
on computational photography, 3D reconstruc-

tion, practical optimization, and motion estimation. He currently serves
as an associate editor of the IEEE Transactions on Pattern Analysis and
Machine Intelligence and served as an area chair of ICCV 2011, ICCV
2013, and CVPR 2016. He is a senior member of the IEEE.

Chi-Keung Tang received the MSc and PhD
degrees in computer science from the University
of Southern California, Los Angeles, in 1999 and
2000, respectively. Since 2000, he has been in
the Department of Computer Science, Hong
Kong University of Science and Technology
where he is currently a full professor. He was an
adjunct researcher in the Visual Computing
Group, Microsoft Research Asia. His research
areas are computer vision, computer graphics,
and human-computer interaction. He was an

associate editor of the IEEE Transactions on Pattern Analysis and
Machine Intelligence, and was on the editorial board of the International
Journal of Computer Vision. He served as an area chair of ICCV 2007,
ICCV 2009, ICCV 2011, ICCV 2015, and as a technical papers commit-
tee member of the inaugural SIGGRAPH Asia 2008, SIGGRAPH 2011,
SIGGRAPH Asia 2011, SIGGRAPH 2012, SIGGRAPH Asia 2014, and
SIGGRAPH Asia 2015. He is a senior member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2524 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 39, NO. 12, DECEMBER 2017



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


