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a b s t r a c t

Many fundamental computer vision problems, including optical flow estimation and stereo matching,
involve the key step of computing dense color matching among pixels. In this paper, we show that by
merely upsampling, we can improve sub-pixel correspondence estimation. In addition, we identify the
regularization bias problem and explore its relationship to image resolution. We propose a general upsam-
pling framework to compute sub-pixel color matching for different computer vision problems. Various
experiments were performed on motion estimation and stereo matching data. We are able to reduce
errors by up to 30%, which would otherwise be very difficult to achieve through other conventional opti-
mization methods.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Computing a dense displacement map between two images is a
fundamentally important step in solving many computer vision
problems, such as stereo matching and optical flow estimation.
Techniques for improving correspondences are usually based on
model or prior refinement, such as introducing outlier rejection
[24,4], 2nd order regularization [28,27], and edge preserving
smoothness [29], or on improving the optimization method itself
[16,24,28,17].

The coarse-to-fine strategy for motion estimation is popular
[5,6]; apart from helping avoid local minima, it also helps reduce
the search space. However, this strategy is mostly treated as a
numerical approximation. In this paper, we suggest that an uncon-
ventional fine-to-coarse strategy is very useful in establishing more
accurate sub-pixel correspondence. We show, through theoretical
analysis and empirical validation, that this intuition is correct. This
paper is also the first attempt to fuse results in different scales for
effective error suppression.

We analyze the effect of image scale in sub-pixel correspon-
dence estimation, and propose a general and unified upsampling
framework to improve it. This framework is applicable to different
tasks such as motion estimation and stereo matching. It has three
main contributions. First, we analyze from a quantization error
perspective how changing image scale would affect sub-pixel cor-
respondence. Second, we study the energy bias caused by the reg-
ularization term which was generally neglected in previous work.
ll rights reserved.
Third, we propose a unified upsampling framework that fuses the
matching results in different scales to further suppress errors,
based on the observation that upsampling improves sub-pixel cor-
respondence within smooth regions but not necessarily at region
boundaries with abrupt changes in color. Our framework is simple
and general, and can be employed in stereo matching and flow
estimation to improve result quality.

In our experiments, consistent matching accuracy enhancement
is observed where up to 30% error reduction is yielded. Given the
simplicity and the generality of our method, it is noteworthy that
this substantial melioration would otherwise be very difficult to
be obtained even by specifically adjusting previous matching
schemes.

Our system is different from optical flow based super-resolu-
tion [1,32,10], which focuses on recovering high-resolution
images making use of optical flow. These methods do not discuss
whether high-resolution images help improve the flow estimate
or not. Methods that use interpolation to enhance the accuracy
in computing data costs [3,23,25,18,19] also do not discuss the ef-
fect of the regularization terms and still solve the final energy
functions at the original resolution. In contrast, we show that per-
forming matching with high-res images not only reduces the data
cost, but as well decreases inherent regularization bias, resulting
in an explicit upsampling framework to find sub-pixel
correspondence.
2. Related work

We briefly review approaches of stereo matching and optical
flow estimation in terms of ways to improve the optimization

http://dx.doi.org/10.1016/j.cviu.2011.11.003
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methods (the solver) or to refine the matching energy cost and
smoothness prior (the model).

Two-view stereo matching is generally a 1D matching problem
using disparities [21]. Discrete optimization, such as belief propa-
gation [24], graph-cuts [16,13], and the QPBO algorithm [28],
was proposed to solve the problem.

Several methods improve the sub-pixel accuracy for discrete
disparity estimation. The sub-pixel displacement is usually esti-
mated by parabola fitting of neighboring integer values [26]. A
classification of early sub-pixel estimation methods using peak
detection and interpolation was presented in [9]. Shimizu and
Okutomi [23] computed the displacement for several half-pixel-
shifted image pairs. Birchfield and Tomasi [3] improved the dis-
crete data term by sampling and compared the reference image
with a linearly interpolated matching view. In [25], Szeliski and
Scharstein proposed using signal interpolation, interval matching,
and quadratic fitting to infer the continuous pixel matching cost
in the disparity space. To improve the sub-pixel accuracy of stereo
matching, in [18,19], spline interpolation followed by symmetric
refinement and improved correlation-based data cost measure
were respectively adopted. Gehrig and Franke [11] proposed expli-
cit evaluation of the data cost at fractional disparities and applied
disparity smoothing between adjacent pixels.

Though interpolation techniques were used to improve data
cost computation, above methods solve the matching problem still
at the original resolution. How regularization term affects the sub-
pixel accuracy has generally been ignored. In comparison, we con-
tribute an explicit upsampling framework with a refinement fusion
step. Our framework not only reduces data matching cost, but as
well decreases the bias caused by enforcing regularization.

Optical flow estimation aims to compute 2D apparent motion
for each pixel. Variational methods are dominant in this field
[14,4,6]. They have been extended by incorporating different priors
such as color segmentation [33,30]. Coarse-to-fine strategies were
typically adopted to avoid local minima and for speedup [5,6]. An
extensive evaluation was presented in [2]. An important issue is
to improve sub-pixel accuracy by refining the data cost through
interpolation [5,6,30].

With multi-scale pixel correspondences, optical flow based
super-resolution [1,32,10] links motion estimation to resolution
enhancement to recover high-res images. Iterations between
super-resolution and flow estimation are performed. As high-res
images are only used to compute flow, how resolution change af-
fects the flow results is still unknown.

In this paper, we do not attempt to use multiple low-resolution
images to construct a single high-resolution one. Instead, we pro-
pose upscaling input images and discuss how this scheme would
affect the matching accuracy.
3. Sub-pixel correspondence

Our goal is sub-pixel correspondence across two views. The
dense displacement field (or disparity map) d⁄ between the refer-
ence view I0 and the target view I1 is constructed by solving an
optimization problem expressed as

d� ¼ argmindEdataðdÞ þ kEregðdÞ; ð1Þ

where Edata(d) is a data term and Ereg(d) is a regularization term. Eda-

ta(d) is generally defined as minimizing color difference between
corresponding pixels/sub-pixels, written as

EdataðdÞ ¼
X

m

qðkI1ðmþ dIðmÞÞ � I0ðmÞk2Þ; ð2Þ

where q(�) is a monotonically increasing robust function to reject
outliers. dIðmÞ : Z2#R2 is the dense displacement (or motion)
field, with the same resolution as the image. There are other
ways to define the color similarity, such as varying the robust
function [21,4] or locally grouping the color difference [8,31].
However, most of these methods are variations of Eq. (2). Accu-
rate disparity or flow field estimation depends largely on the data
costs.

4. Sub-pixel correspondence accuracy

We start by raising the question of whether data term compu-
tation on a ground truth high-resolution image pair is more accu-
rate than that on low-resolution images or not. Since ideal high-
resolution images are the goal of many image super-resolution
and upsampling approaches, we call them ideal upsampled images.
We review the image formation process in order to establish the
relationship between the low-resolution inputs and their ideal
upsampled versions. Note that practically, there may not exist
ideal upsampled images if only one resolution is given. Our exper-
iments show that in this case, advanced upsampling methods can
be adopted to similarly improve sub-pixel matching accuracy, as
will be detailed in Sections 6 and 7.

4.1. Image formation process

We denote by L(m) the input coarse-scale image, where m 2 Z2

is the 2D coordinate. It can be modeled as an integration over a
light field, i.e.,

LðmÞ ¼
Z

x2SðxÞ
EðxÞxðx�mÞdx; ð3Þ

where E(x) is a continuous function representing the radiance at
any location x.x is the point spread function (PSF). S(x) is the sup-
port region of the PSF.

By discretizing the continuous function E(�) into image H(p), we
obtain

LðmÞ ¼
X

p2SðW ;mÞ
Wðm;pÞ � HðpÞ; ð4Þ

where W(m,p) is a discrete weight function dependent of the con-
tinuous PSF x(�). By the energy preservation rule,

P
pWðm;pÞ ¼ 1.

Eq. (4) relates an ideal upsampled image H(p) to its coarse-scale
version L(m).p and m are coordinates in L and H, respectively.
S(W,m) is the support region of W at point m. The model in (4)
can be abstracted as prefiltering followed by decimation [12]:

L ¼ D � B � H; ð5Þ

where B and D are respectively the prefilter (to prevent aliasing)
and decimation processes. For simplicity, we denote BH ¼ B �H.
Decimation of D samples pixels to generate a coarser level image.
We define p = m � s, where s is the scale factor.

4.2. Accuracy analysis with decimation

The only difference between L and BH is pixel decimation, that
is L(m) = BH(m � s). We analyze the matching process for these two
images with their data terms similarly defined as:X

p

qðkBH1ðpþ dBHðpÞÞ � BH0ðpÞk2Þ;
X

m

qðkL1ðmþ dLðmÞÞ � L0ðmÞk2Þ;

where BH0 and BH1 are the prefiltered reference and target images
respectively. Given the scale difference between BH and L, we have

dLðmÞ ¼
1
s

dBHðm � sÞ; ð6Þ
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where p = m � s. This difference causes discrepancy in computing
the data term.

To facilitate discussion, we define a latent continuous light field
IðxÞðx 2 R2) from which BH and L are sampled. The sampling inter-
vals of BH and L are h and s � h, respectively. So, we have

BHðpÞ ¼ Iðp � hÞ;
LðmÞ ¼ Iðm � s � hÞ;

ð7Þ

where p and m are integers.
It is notable that I(x) is unknown. It is shown here only for help-

ing analyze how using BH and L introduce errors in data cost esti-
mation especially for points x that are in between the samples.
These points have fractional coordinates and the commonest strat-
egy to infer their intensities or colors is by interpolation of neigh-
boring values. Our analysis will focus on how the interpolation
errors, defined as eL(x) = L(x) � I(x) and eBH(x) = BH(x) � I(x) for L
and BH respectively, vary. It is obvious that e equals 0 for all points
with integer coordinates and is non-zero otherwise. To make the
theoretical discussion specific, we consider bilinear interpolation
for obtaining sub-pixel colors.

Claim 1. For an underlying differentiable light field, given small
sampling interval h and linear interpolation, we have the average
interpolation error (eBH) 6 (eL).
Proof. We prove it in 1D, as the 2D derivation is similar. For any
sub-pixel at location x, where x is not an integer, its color is inter-
polated from nearby pixels p0 ¼ x

h

� �
h and p1 ¼ dx

heh. We define
Dx = x � p0, where Dx 2 [0,h). Using linear interpolation, the
approximated color for BH at location x is given by

BHðxÞ ¼ h� Dx
h

Iðp0Þ þ
Dx
h

Iðp1Þ: ð8Þ

By substituting Eq. (8) into eBH and taking the Taylor expansion at x,
we obtain

eBH ¼ BHðxÞ � IðxÞ ¼ h� Dx
h

Iðp0Þ þ
Dx
h

Iðp1Þ � IðxÞ

¼ 1
2

€IðxÞDxðh� DxÞ þ 1
3!

I
v
ðxÞDxðh� DxÞðh� 2DxÞ þ Oðh4Þ; ð9Þ

where Ï(x) and I
v
ðxÞ are the second-order and third-order derivatives

of the light field at x in BH.
Similarly, for L, we can express error eL as

eL ¼
1
2

€IðxÞDx0ðsh� Dx0Þ þ 1
3!

I
v
ðxÞDxðsh� Dx0Þðh� 2Dx0Þ

þ Oðh4Þ; ð10Þ

where Dx0 2 [0,sh). Eqs. (9) and (10) indicate that the interpolation
error approaches zero when the second- and higher-order deriva-
tives of the irradiance are very small locally. It would happen with
very low frequency content, which makes the two interpolation er-
rors equal zeros.

For non-zero interpolation errors, the ratio of the average errors
can be expressed as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
h

R h
0 ðeBHðDxÞÞ2dDx

1
sh

R sh
0 ðeLðDx0ÞÞ2dDx0

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1h4 þ c2h6 þ Oðh7Þ

c1ðshÞ4 þ c2ðshÞ6 þ Oðh7Þ

vuut ; ð11Þ

where c1 ¼
€IðxÞ

2!�30 and c2 ¼ I
v
ðxÞ

3!�210. Note that

lim
h!0

r ¼ 1
s2 : ð12Þ

This proves that lower resolution images yield larger interpolation
errors on average. The derivation in 2D is similar, with the corre-
sponding ratio being 1/s4 instead. h
The above analysis shows that higher-resolution images can
make data cost estimation more accurate compared to their coar-
ser-level versions. When the sampling rate is high enough with re-
spect to the local intensity variation, the error bound in Eq. (12)
holds.

The ratio r for other interpolation methods can also be derived.
We omit the proof here as they are quite similar to the one shown
above. The ratio r using the nearest neighbor (NN) interpolation is
proportional to 1/s2 as the interpolation error for NN is O(h). Poly-
nomial interpolation with degree n has the interpolation error
O(hn). We conclude that if a polynomial interpolation method is
used for sub-pixel matching, performing the same procedure on
a higher resolution image would generally produce a more accu-
rate color difference measure.

There are special cases for Eq. (11). (a) If c1 = 0 and the high or-
der terms are not neglectable (e.g. the inflection points of local irra-
diance), the ratio is dominated by the high-order terms. Thus the
ratio r could be even smaller. (b) If h is significant with respect
to the spatial color variation, or the underlying light field is not dif-
ferentiable at a step edge, there is no theoretical bound for r. We
will compare the interpolation errors empirically.

We experimented with 24 images from the Kodak color image
set (http://www.r0k.us/graphics/kodak/). All images in their origi-
nal resolution approximate light field I. They are respectively
downsampled by filtering and are decimated to generate two
images BH and L with scale difference s = 2. The pixel intensity is
scaled to [0,1]. One example is shown in Fig. 1.

We first interpolate intensities at the sub-pixel locations of L,
which are also the sub-pixel locations of BH. The average interpo-
lation errors (AIEs) jeBHj and jeLj are calculated on these common
locations, listed in Table 1. AIEs of BH are consistently smaller than
those yielded on L for the three interpolation methods we experi-
mented with.

The proof of Claim 1 also indicates that interpolation errors pro-
duced from higher-resolution images are generally smaller for
smoothly varying signals, but not for signals with abrupt change
necessarily. To illustrate it, we select two patches (size 100 � 100)
highlighted in yellow in Fig. 1 and compare their mean interpolation
errors counting in the influence of local structure and texture. We
sum the squared interpolation errors eL

2 and eBH
2 for each patch

and compute ratio r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

e2
BH=

P
e2

L

q
.

The upper patch contains high-frequency textures, resulting in
ratio r0 = 0.49. Interpolation errors near step edges are relatively
large. The lower patch contains a larger degree of low-frequency
color transition, which produces a smaller ratio r0 = 0.26. These val-
ues indicate if spatial color variation is small, using prefiltered high-
resolution images effectively reduce interpolation errors. We use this
principle to guide displacement refinement in Section 6.

4.3. Accuracy analysis with prefiltering

We have shown that in computing matching cost, the prefil-
tered image BH generally produces smaller interpolation errors
than L. In this section, we demonstrate that matching on H is even
better in terms of robustness to find pixel correspondences.

It is explainable that pixel matching on H outperforms that on
BH. On the one hand, a blurred image has less high frequency de-
tails, making matching more ambiguous. On the other hand, as we
will show shortly, when the local displacement field is flat, pixel
correspondence estimation between image pair H0 and H1 is more
stable.

We denote the pixel color difference on the sharp and blurred
image pair as

MðdH;pÞ ¼ H1ðpþ dHÞ �H0ðpÞ; ð13Þ

and

http://www.r0k.us/graphics/kodak/


Fig. 1. One example from the Kodak color image set. The high-resolution image (left) simulates I. It is downsampled to produce two images (right) in different scales. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Average errors using three interpolation methods.

Method Mean jeLj Mean jeBHj

Nearest neighbour 0.0909 0.0468
Bilinear 0.0769 0.0370
Bicubic 0.0803 0.0383
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BMðdBH;pÞ ¼ BH1ðpþ dBHÞ � BH0ðpÞ;

respectively. If the displacement field varies slowly in a local region
(which is very common), we can approximate

BMðdBH;pÞ �
X

p02SðW;mÞ
dp0 ðH1ðp0 þ dHÞ �H0ðp0ÞÞ; ð14Þ

where dp0 is the filter for pixel p0, i.e., Wðx;p0Þ ¼ dp0 . Considering a
small displacement increment Dd > 0 near the optimal point d⁄

for each pixel. If Mðd� þ Dd;pÞ � Mðd�;pÞ, the optimum can be
easily mistaken as d⁄ + Dd with a small perturbation of the solution.
We compare solution stability in this regard for the original and fil-
tered images in order to analyze how easy the results are influ-
enced. The following inequality holds:X

p

kMðd� þ Dd;pÞ �Mðd�;pÞk2

P
X

p

k
X

p02SðW ;mÞ
dp0 ðMðd� þ Dd;p0Þ �Mðd�;pÞÞk2

; ð15Þ

based on the Cauchy-Schwarz inequality. The right hand side of (15)
can be further written as

P
pkBMðd

� þ Dd; pÞ � BMðd�Þk2, yieldingX
p

kMðd� þ Dd;pÞ �Mðd�;pÞk2

P
X

p

kBMðd� þ Dd;pÞ � BMðd�;pÞk2
: ð16Þ

Eq. (16) shows if pixel matching on the sharp images is easily
perturbed near the optimal point, i.e., Mðd� þ Dd;pÞ � Mðd�;pÞ,
so does matching on the corresponding filtered images. It also im-
plies that computing color difference on the ideal upsampled
images can be more, or at least equally, robust than that on the fil-
tered images when the displacement field is locally smooth.

5. Regularization bias

We also analyze the influence of image scales in computing the
regularization cost. The regularization term in general enforces
smoothness when the data costs for different labels are not distinc-
tive enough especially in the textureless or occluded regions. The
side effect includes the possible bias towards unfaithful or exces-
sive smoothness account for using only local information. In what
follows, we first quantitatively analyze the bias caused by regular-
ization, and then discuss how image scales affect it.

One common choice of the regularization term is

EregðdÞ ¼
X

m

qðkrdðmÞk2Þ: ð17Þ

The gradient operator rd(m) can be discretized with forward dif-
ference. To enable quantitative analysis, we use the example of
the total variation regularizer [6], which simplifies Eq. (17) to

EregðdÞ ¼
X

ðm;nÞ2N
kdðmÞ � dðnÞk; ð18Þ

where N contains all neighboring pixel pairs. We define the regu-
larization bias as the difference between the ground-truth displace-
ment ~d and the displacement dreg computed using Ereg for point m.
It is expressed as

biasðmÞ ¼ k~dðmÞ � dregðmjfngÞk: ð19Þ

dreg(mj{n}) is the smoothness cost for point m, which depends on
the disparity of the neighboring points, written as

dregðmjfngÞ ¼ argmin
X

ðm;nÞ2N
kdðmÞ � dðnÞk; ð20Þ

where n indexes the neighboring pixels of m.
Fig. 2 shows an 1D illustration of the bias. There are three con-

secutive points in (a), based on which we analyze the regulariza-
tion bias of the central point m with regard to a and b.d(a) and
d(b) have values 0.5 and 0.3 respectively in this example. Fig. 2c
shows the regularization energy. The blue and red curves show
how the energy changes with respect to different d(m) using the
total variation regularizers kd(m) � d(a)k and kd(m) � d(b)k for a
and b respectively. The dashed curve represents the regularization
term dreg(m), written as

dregðmjfa;bgÞ ¼ kdðmÞ � dðaÞk þ kdðmÞ � dðbÞk: ð21Þ

It is clear that the regularization energy is minimized when
d(m) 2 [d(a),d(b)]. Otherwise, the bias is larger than 0, indicating
a non-zero penalty at pixel m.

To understand how changing image scale affects the bias in
smooth regions, we assume that the original continuous displace-
ment field is sufficiently sampled by the image where the unknown
displacements at sub-pixel level in a local region can be approxi-
mated by a monotone function between the neighboring pixels.
This assumption is not restrictive and can be satisfied in many
images.
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(c) Regularization energies for pixel m. The blue and red curves plot the smoothness costs for jaj and jbj respectively. The dashed curve represents the total regularization cost
dreg(m). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Average errors (in terms of regularization bias) for different flow fields.

Reg. bias biasðAÞ biasuðAuÞ biasuðAÞ

Avg. 0.0309 0.0089 0.0092
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Claim 2. If the displacement field in a region is sufficiently sampled
(that is, the displacement change between neighboring samples are
monotone) and the total variation regularizer is used, the regulariza-
tion bias for a pixel in that region in the original image is larger than or
equal to that in the ideal upsampled version.
Proof. For simplicity’s sake, we also prove it in 1D, while the same
result can be derived in 2D. The regularization bias can be explic-
itly written as

biasðmÞ ¼
0 ifðdðmÞ � dðaÞÞðdðmÞ � dðbÞÞ 6 0
minðkdðmÞ � dðaÞk; kdðmÞ � dðbÞkÞ otherwise

�

where a and b are the neighbors of m as indicated in Fig. 2. In an
ideal upsampled image, the neighbors of m are denoted as a0 and
b0 (Fig. 2b). The bias biasu for the ideal upsampled image is given by

biasuðmÞ ¼
0 ifðdðmÞ � dða0ÞÞðdðmÞ � dðb0ÞÞ 6 0
minðkdðmÞ � dða0Þk; kdðmÞ � dðb0ÞkÞ otherwise

(

We show biasu(m) 6 bias(m). First, if bias(m) = 0, because

ðdða0Þ � dðaÞÞðdðb0Þ � dðbÞÞ 6 ðdðmÞ � dðaÞÞðdðmÞ � dðbÞÞ 6 0;

based on the monotone property, we get biasu(m) = 0. Second, if
bias(m) – 0, also according to kd(m) � d(a0)k 6 kd(m) � d(a)k and
kd(m) � d(b0)k 6 kd(m) � d(b)k, we have biasu(m) 6 bias(m). h

To validate the Claim 2 and test how the regularization bias
changes in general images, which contain both high and low fre-
quency structures, we conduct experiments on the Middlebury
optical flow data set [2]. We downsample the given flow field with
the factor 2 to simulate the low resolution field and evaluate the
regularization bias on both levels of images. The bias for the 2D
flow fields is computed using Eq. (19). Results are listed in Table
2. The average bias of all pixels in low resolution field is denoted
by biasðAÞ. For the high resolution field, we calculate the average
bias (a) on all pixels of the high resolution grid (denoted by
biasuðAuÞ) and (b) on the same pixel set of the low resolution coun-
terpart (denoted by biasuðAÞ) respectively. Both of them are much
smaller than that on the low resolution grid. The bias decreases
around 70% in average.
6. An upsampling framework

We have shown that by using an ideal upsampled image pair,
the matching accuracy generally increases while the regularization
bias works the other way around especially in smooth regions.
When there is no high resolution input in stereo matching or opti-
cal flow estimation, we propose a general upsampling framework
with only low-resolution images to improve sub-pixel matching
accuracy. Our algorithm is sketched in Table 3. It has procedures
to suppress possible errors introduced in upsampling.

Preprocess. We first upsample the input images L0 and L1. We
tested representative upsampling methods, including the interpo-
lation (bilinear and bicubic), reconstruction [22], and learning
based methods [15].

Matching. Any matching algorithm can be used in our system,
since our framework is a general one for improving sub-pixel cor-
respondence. The matching algorithm is performed on the input
and upsampled image pairs. It results in two displacement maps
dH and dL. We then downsample dH to dL0 in order to construct a
new map in its original resolution. The reason that we still keep
dL is that dL0 is not everywhere better than dL. Although the upsam-
pled image matching scheme generally improves the result, it may
also deteriorate a few areas (e.g., highly textured regions, or object
boundaries with step edges). In the next step, we fuse these the
displacement maps and select optimal values.

Fusing. Our fusing algorithm computes a binary map c that indi-
cates which displacement value to use (from either dL or dL0 ). We
minimize energy Ec in order to infer c. Ec contains 3 terms and is
written as

Ec ¼ Ec1 þ Ec3 þ Ec2: ð22Þ

Ec1 is the data term, defined as



Table 3
Overview of our method.

0. Preprocess:
0.1 Upscale input images

1. Matching:
1.1 Estimate the displacement field dL with sub-pixel accuracy on the

input image pair
1.2 Estimate displacement map dH on the upsampled images
1.3 Downsample dH to dL0

2. Fusing:
2.1 Fuse dL0 and dL based on multiple cues to reject outliers
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Ec1 ¼
X

m

ð1� cmÞkMLðdLÞk2 þ cmkML0 ðdL0 Þk2
; ð23Þ

where ML is the matching confidence given by

MLðdÞ ¼ L1ðmþ dðmÞÞ � L0ðmÞ; ð24Þ

with m being the pixel coordinate at which correspondence is com-
puted. ML0 is defined in a similar way as Eq. (24). Ec1 is a selection
between two measures given the value of cm being either 0 or 1.
Minimizing Ec1 favors small cost.

Ec2 is the regularization term, defined as
Fig. 3. Image examples used to evaluate our approach.

Table 4
Average PSNRs on the test images for different methods.

Method Factor 2 Factor 3 Factor 4

Nearest neighbor 26.48 24.56 22.13
Bilinear 26.51 24.68 22.87
Bicubic 26.96 24.83 22.93
Reconstruction-based 28.87 26.68 24.90
Example-based 27.97 24.83 23.94

Table 5
Average errors of the flow estimates on the original and upsampled images. Columns
‘‘AAE(3%)’’ and ‘‘AAE(5%)’’ list the errors where the input low-resolution images are
with white Gaussian noise (standard deviation 3% and 5% respectively).

Method AAE EPE AAE(3%) AAE(5%)

L pair 4.11 0.16 6.13 7.27
HR pair 2.67 0.10 N/A N/A
Nearest neighbor 4.67 0.18 6.17 7.17
Bilinear 3.32 0.13 5.60 6.73
Bicubic 3.19 0.12 5.58 7.03
Reconst.-based 3.09 0.11 5.53 7.16
Example-based 3.22 0.12 5.73 7.40
Ec2 ¼
X

m

ðacmkrLk2 þ bkcm � Vmk2Þ: ð25Þ

It consists of two energies that are balanced by weights a and b. En-
ergy cmkrLk2 penalizes strong gradients where cm = 1 due to the
consideration that the matching quality for regions with abrupt col-
or transition is unknown. Energy kcm � Vmk2 is based on a heuristic
that upscaled image matching only improves sub-pixel accuracy.
Vm is expressed as

VðmÞ ¼
1 ifkdLðmÞ � dL0 ðmÞk1 < 1
0 Otherwise

�

It indicates if dL and dL0 are quite different, the distance is very likely
being caused by the error in the upscaling process. It is thus prefer-
able to trust dL.

The final term is a spatial smoothness term Ec3:

Ec3 ¼
X

m;n2NðmÞ
ckcm � cnk2

; ð26Þ

where c is a weight and NðmÞ are the neighbors of m.
Minimizing Ec is a binary optimization problem. We use graph

cuts to solve it with a = 1, b = 10, and c = 5. The computed map c
yields the final displacement map

dFðmÞ ¼ ð1� cðmÞÞdLðmÞ þ cðmÞdL0 ðmÞ: ð27Þ
7. Implementation and experimental results

In this section, we first empirically evaluate a few state-of-the-
art upsampling and super-resolution methods on the context of
1 2 3 4 5 6
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Fig. 4. AAEs of matching with different upscaling schemes.

Table 6
AAE and EPE for the results computed on the 8 image pairs using different methods.

Dime. Grove2 Grove3 Hydrangea

A. L 8.26 0.41 3.96 0.28 8.42 0.99 3.10 0.35
A. U 4.16 0.23 3.28 0.22 7.61 0.91 2.70 0.28
B. L 3.21 0.16 2.67 0.18 6.53 0.76 2.42 0.20
B. U 2.70 0.13 1.95 0.12 5.89 0.62 2.07 0.16
B.UD 3.07 0.15 2.27 0.17 6.19 0.66 2.24 0.20
B.LN 6.63 0.35 3.34 0.21 7.89 0.90 3.22 0.31
B.UN 5.47 0.28 2.79 0.18 7.18 0.82 2.74 0.24

RWhale Urban2 Urban3 Venus

A. L 8.06 0.27 8.93 3.10 13.30 1.53 7.47 0.54
A. U 5.94 0.19 8.73 3.11 11.56 1.49 7.47 0.55
B. L 5.27 0.15 3.21 0.69 9.98 1.20 6.41 0.46
B. U 4.19 0.12 2.75 0.80 7.18 0.86 5.53 0.31
B.UD 4.83 0.15 3.19 0.79 8.79 1.19 5.79 0.43
B.LN 9.51 0.30 5.65 1.02 15.15 1.58 7.39 0.49
B.UN 8.27 0.25 5.87 1.05 14.88 1.48 6.91 0.47



Fig. 5. Visual comparison of motion estimation results. (a) An input image with two highlighted patches. (b) Flow estimates in the original resolution. (c) Flow computed
using our method. (d)–(e) Corresponding AAE maps. They are linearly scaled for visibility. (f) Close-ups.
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general matching tasks and then apply our method to optical flow
estimation and stereo matching.
7.1. Comparison of upsampling methods

To evaluate the upsampling methods, we ran two sets of experi-
ments. In the first set, we evaluate how different methods, including
interpolation (bilinear and bicubic), reconstruction [22], and learn-
ing based methods [15], affect the reconstruction error.
7.1.1. Evaluating upsampling quality
The image data are collected from the Kodak image dataset, and

the Middlebury stereo and optical flow websites [21,2]. Sample
images are shown in Fig. 3. We regard the collected images as
the ground truth high-resolution images, and create low-resolu-
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Fig. 6. AAEs for the ‘‘Dimetrodon’’ dataset with different regularization weights.

Fig. 7. Fusing. (a) Flow map computed on the low resolution image pair. (b) Flow estimat
after fusing. The errors near object boundaries are reduced. (e) Optimal binary map comp
(f) are 8.42, 7.75, 7.61 and 7.05 respectively.
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tion ones by downsampling them with scale factors 2, 3 and 4
respectively using bicubic interpolation. These coarse-scale images
are upsampled with different methods listed in Table 4. The Peak
Signal to Noise Ratios (PSNRs) between the upsampled and ground
truth images are calculated to evaluate the quality.

Table 4 lists the PSNRs by different methods, all of which use
default parameter settings. For the reconstruction- and learning-
based methods, we use the implementation [22,15] of the authors.
It is found that the reconstruction- and learning-based methods
outperform interpolation-based resizing.

7.1.2. Matching quality evaluation
Our second set of experiments were conducted to measure how

different upsampled images affect correspondence estimation. In
this step, we implement the optical flow estimation method of Bru-
hn and Weickert [7] to compute motion using both the original and
upsampled image pairs. Middlebury optical flow images (with the
ground truth flow) are used to measure the flow accuracy with
ed on the upsampled image pair. (c) The computed binary map c. (d) The final result
uted using AAEs as guidance. (f) Fusing result using (e). The AAEs for (a), (b), (d) and



Fig. 8. A noisy image example. (a) One ‘‘RubberWhale’’ image with additive noise. (b) Close-up of (a). (c) The corresponding patch in the noise-free image.

Fig. 9. Flow on a noisy example. (a) Flow estimates from the input image pair. (b) Flow map obtained by employing our upsampling framework. The AAE drops from 9.52 to
8.31.
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regard to the Average Angular Error (AAE) and End Point Error
(EPE) [2].

The detailed procedure is as follows. For the input image pairs
with the ground truth optical flow, we first downsample them with
scale factor 2. The coarse-level images are then upsampled using
different methods. We estimate flow on these images. Table 5 (col-
umns 2–3) lists the calculated errors. In the ‘‘L pair’’ and ‘‘HR pair’’
rows of Table 5, we show the average errors for the low and high-
resolution images. ‘‘HR pair’’ has 35% less error than ‘‘L pair’’. Other
rows contain errors calculated on images upsampled by different
methods. They demonstrate that all tested methods can improve
matching accuracy except for the nearest neighbor re-sampling be-
cause it cannot preserve image structure well.

We show in Fig. 4 the average matching errors (AAEs) with dif-
ferent scale factors using our upsampling-matching framework. It
shows that better results are consistently yielded after upsampling
the images.

7.2. Application to general optical flow estimation

Optical flow is usually computed either by directly minimizing
the energy function using a continuous optimization method [4],
or by solving the corresponding Euler–Lagrange equations of the
following variational model [6,8]:
Z
X
qðkL1ðxþ dÞ � L0ðxÞk2Þ þ k � qðkrdk2Þdx:

We experiment with two flow estimation algorithms using our
upsampling framework. One is our implementation of Black and
Anandan’s method [4] where a Lorentzian q-function is adopted
to reject outliers. The second estimator is based on our implemen-
tation of [8] using a non-linear multi-grid framework (Full Approx-
imation Scheme). In this implementation, we use the Total
Variation regularizer as the q-function. Reconstruction-based
method [22] is adopted to upsample input images.
7.2.1. Error comparison
Table 6 shows the flow errors yielded from these two methods,

denoted as ‘A.’ [4] and ‘B.’ [7] respectively. ‘L’ and ‘U’ denote flow
estimates on the input images and using our approach (sketched
in Table 3). ‘LN’ and ‘UN’ are their counterparts by adding 3% Gauss-
ian noise. For flow evaluation, we remove 10-pixel-width image
boundary because these pixels are not well handled [2]. We record
an improvement up to 50% (‘Dimetrodon’ set) and 29% (‘Grove’ set)
respectively for the methods of Black and Anandan (A.), and of Bru-
hn and Weickert (B.). The average errors are also reduced by 16%
and 21% respectively. As our framework improves sub-pixel accu-
racy, robust approaches, such as ‘B.’, can be benefitted more. One



Fig. 10. Stereo matching examples. (a) Reference image in each image pair. (b) Occlusion map. (c) Disparity map obtained only using the low resolution images. (d) Disparity
map estimated by our upsampling framework.

Table 7
Average disparity errors. The root mean square errors (RMSEs) from our fusing
framework is consistently smaller than those obtained on low resolution images.

Method Art Dolls Reindeer Cloth3 Cones

BP. L 1.22 0.71 0.91 0.49 0.70
BP. U 1.18 0.51 0.83 0.31 0.63

BP. L ðOÞ 0.57 0.51 0.48 0.47 0.48

BP. U ðOÞ 0.47 0.39 0.39 0.26 0.33
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visual comparison is given in Fig. 5 where the AAEs are 3.29 (in the
original resolution) and 2.72 (using our method). Close-ups in (f)
show better estimation can obtained especially for regions where
the flow vectors change smoothly.

7.2.2. Comparison of costs
To further verify that both the data and smoothness terms

estimation can be profitted in our framework, we experiment
with only changing the data term in the optimization process
and leaving the regularization term intact. Specifically, we up-
scale the input image pairs and compute the data term on them.
Then we downsample the data costs with a box filter and com-
bine them with the original regularization term to compute a
flow field. This process only reduces the data interpolation errors.
The final flow field is computed with our fusion step. Row ‘‘B.UD’’
in Table 6 contains the errors calculated with this configuration.
Interestingly, the results have 11% improvement in average,
which is about the half of the total improvement, which is 21%,
achieved using our complete framework. It indicates that the
upscaling strategy not only reduces data interpolation error, but
also mitigates the side-effect of regularization, such as over-
smoothing.

Note that our upscale-matching scheme is not equivalent to set-
ting different regularization weights on the original images. We
verify it by varying the weight k in a range for both the input
and upsampled image pairs. The graph in Fig. 6 shows that the var-
iation of AAE by this means is not significant. For all weights we
tested, the AAE obtained with our approach is always smaller.
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7.2.3. Effect of fusion
We show in Fig. 7 an example to demonstrate the effectiveness

of our fusion algorithm. (a) and (b) show flow maps dL and dL0

respectively where the AAEs are 8.42 and 7.75. Although (b) is
more accurate, there are problems near motion boundaries. Two
such patches are highlighted. (c) is the extracted fusing map c by
Eq. (22), where the pixels with incorrect flow are appropriately la-
beled. (d) shows the final result after fusing, with AAE reduced to
7.61. For comparison, we also compute the optimal fusing map
(e) taking AAEs as a guidance – that is, only flow vectors with
the smaller AAE are selected. The similarity of (c) and (e) verifies
the effectiveness of our fusing step.

7.2.4. Effect of noise
We also evaluate the system stability against image noise.

Fig. 8a shows an exemplar noisy input image. Rows tagged as
‘LN’ and ‘UN’ in Table 6 contain estimation errors on these images
with 3% white noise. While error increases with noise, our upsam-
pling framework still works. One visual comparison is shown in
Fig. 9.

7.3. Application to stereo matching

We apply our method to two-view stereo matching [21] to
show that this framework is also helpful when discrete optimiza-
tion is employed. Experiments are conducted on the Middlebury
stereo dataset [21,20]. To evaluate the performance in terms of
sub-pixel correspondence accuracy, we downsample the obtained
images by a factor of 5, which makes the scaled-down ground truth
disparities have enough sub-pixel accuracy. Then our upsampling
framework is applied to the low-resolution stereo images.
Fig. 10a shows the input low resolution reference images.

The energy function (1) used here for stereo matching also com-
bines the data and regularization terms, where the 1D disparities
are discretized at 0.2-pixel and 0.4-pixel intervals for the low-res-
olution and upsampled images respectively. The numbers of dis-
parity labels for the image pairs are the same.

Stereo matching using belief propagation (BP) [24] is adopted to
compute the disparities. Since the disparity values in the occluded
regions are ambiguous, we detected occluded pixels in the match-
ing process. Fig. 10b shows the computed occlusion map where
disparities are only evaluated in gray regions.

Fig. 10c and d respectively show the computed disparity maps
from the low resolution images and from the upsampled version.
The disparity quality in (d) is higher than that in (c), especially in
smooth regions. We show in Table 7 the average disparity errors
(RMSEs), with and without including occlusion pixels. It shows
that the estimates in non-occluded regions get improved a lot. Dis-
parity errors in occluded regions are simply unpredictable and thus
cannot be handled well.
8. Discussion

The proposed upsampling-correspondence scheme is a simple
and general framework suitable for matching-based computer vi-
sion methods to improve computation accuracy, especially in the
subpixel level. Although it requires extra computation, compared
to the conventional difficulty in subpixel correspondence estab-
lishment, this scheme finds many applications given the develop-
ment of both the matching algorithms and computing hardware.
Presently, the fast optical flow algorithms only take seconds to
compute a flow field with image size 640 � 480. Comparably,
increasing the sub-pixel matching accuracy by 10% is still consid-
ered challenging and significant. This paper shows that our ap-
proach can yield more than 20% improvement.
The effect of image noise is considered and evaluated in our
experiments for different upsampling methods. The last two col-
umns of Table 5 (AAE(3%) and AAE(5%)) show that the results using
the upsampled images are still better than those obtained on the
input images (up to an improvement of 10%).
9. Concluding remarks

In this paper, we studied the sub-pixel correspondence problem
by analyzing both the data term interpolation errors and the regu-
larization bias. We show that for natural images with locally
smooth-varying regions, the interpolation error from a high-resolu-
tion image is smaller than that produced on its low-resolution ver-
sion. In addition, we analyzed how change in image scales affects
the regularization bias and how this analysis justifies the use of
an upsampling framework. A general framework for improving
sub-pixel matching accuracy was proposed and was tested on opti-
cal flow estimation and stereo matching. Although upsampling re-
quires extra computation, we observe consistent and significant
quality improvement, which would be difficult to obtain otherwise.
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