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Abstract

We propose tensor-based multiview stereo (TMVS) for

quasi-dense 3D reconstruction from uncalibrated images.

Our work is inspired by the patch-based multiview stereo

(PMVS), a state-of-the-art technique in multiview stereo re-

construction. The effectiveness of PMVS is attributed to

the use of 3D patches in the match-propagate-filter MVS

pipeline. Our key observation is: PMVS has not fully uti-

lized the valuable 3D geometric cue available in 3D patches

which are oriented points. This paper combines the com-

plementary advantages of photoconsistency, visibility and

geometric consistency enforcement in MVS via the use of

3D tensors, where our closed-form solution to tensor vot-

ing provides a unified approach to implement the match-

propagate-filter pipeline. Using PMVS as the implementa-

tion backbone where TMVS is built, we provide qualitative

and quantitative evaluation to demonstrate how TMVS sig-

nificantly improve the MVS pipeline.

1. Introduction

Match-propagate-filter is a competitive approach to mul-

tiview stereo reconstruction for computing a (quasi) dense

representation. Starting from a sparse set of initial matches

with high confidence, matches are propagated using pho-

toconsistency to produce a (quasi) dense reconstruction of

the target shape. Visibility consistency can be applied to

remove outliers.

Among the existing works using the match-propagate-

filter approach, patch-based multiview stereo (or PMVS)

proposed in [5, 6] has produced some of the best re-

sults to date. The central idea of PMVS is the use of

3D patches in the match-propagate-filter pipeline, which is

more effective than operating in the 2D domain, fitting lo-

cal planes, or adopting simplified assumptions such as ho-

mography [16, 8]. In particular, PMVS’s propagation step

(or expansion) contributes a lot to the excellent results pro-

duced. Starting with sparse geometry, PMVS effectively

used photoconsistency and visibility consistency to process
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unmatched regions in the matching step. The propagated

3D patch coordinates were shown to be very accurate [22]

due to their effective enforcement of photoconsistency and

visibility.

We observe however that PMVS did not fully utilize the

3D information inherent in the sparse and dense geometry

before, during and after propagation, as patches do not ad-

equately communicate among each other. As noted in [5],

this communication should not be done by smoothing, but

the lack of communication will cause perturbed surface nor-

mals and more patch outliers during propagation even for

simple geometry (Figure 5).

This paper proposes tensor-based multiview stereo

(TMVS) and uses 3D tensors which communicate among

each other via a closed-form solution to tensor voting [28].

We found that such tensor communication not only im-

proves propagation in MVS without undesirable smoothing

but also benefits the entire match-propagate-filter pipeline

within a unified framework (Figure 1):

• Match. In the uncalibrated scenario, robust parame-

ter estimation employing the closed-form tensor vot-

ing effectively discards epipolar geometries induced

by wrong matches, such as similar points on two differ-

ent sides on the same object. In the calibrated scenario,

TMVS produces better 3D normals than PMVS by 3D

tensors communication.

• Propagate. Tensor communication enables better sur-

face normals reconstruction by combining photocon-

sistency, visibility and geometry information. This sig-

nificantly improves tensor propagation in the 3D space

without using visual hulls.

• Filter. When needed, tensor voting can be deployed to

remove outliers after the propagation process. The en-

ergy function turns out to be a quadratic optimization

and thus can be solved efficiently using Gauss-Seidel

method.

We believe these improvements are quite significant. Us-

ing PMVS as the implementation backbone where TMVS

is built, we focus on quantitative evaluation on normal re-

construction accuracy, and refer readers for location recon-
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Figure 1. From left to right: input image, initial patches, propagated patches, filtered patches (not necessary here), the quasi-dense recon-

struction, and one view of the reconstructed surface.

struction accuracy to [22]. The quasi-dense reconstruction

produced by TMVS can be deployed in existing surface re-

construction, such as [13, 5] to produce a surface represen-

tation. While related to quasi-dense 3D reconstruction, sur-

face reconstruction is not our focus. Rather than compar-

ing reconstructed surfaces, we directly compare patch nor-

mals and normals from tensors, the raw outputs of PMVS

and TMVS. Like PMVS, TMVS is available in C++ source

codes (in the supplemental material) which include the im-

plementation of the closed-form tensor voting.

2. Related Work

Volumetric stereo methods make use of the photo-

consistency constraint to build a 3D map from which the

target shape is extracted or segmented. The MVS problem

was thus translated into a 3D segmentation problem. Shape

from silhouettes [25] is a special case of voxel labeling in

which the target shape (visual hull) is given by intersecting

the projected volumes of the object’s silhouettes on the im-

ages. The voxel coloring algorithm [23] computes a photo-

consistent shape by projecting voxels and correlating pixel

colors among visible set of images. The space carving algo-

rithm [14] adopted a multi-pass sweeping method to carve

out non-photo-consistent voxels.

A straightforward approach merges depth maps [7] by

using [4], which computes signed distance function from

each depth map. This merging approach relies on depth

maps which can be improved using multiple hypotheses [3].

To handle occlusion in MVS, shiftable windows combined

with temporal selection yields significant improvements

near depth discontinuities [12]. Also, in [7], SSSD-style

multi-baseline window matching were used to compute

depth at high confidence points. Depth maps are also used

in other top-performers such as graph-cuts: in [10], a ro-

bust, voting-based photo-consistency metric that does not

need visibility reasoning [9, 27] was used to create depth

maps for the subsequent graph-cuts minimization.

Graph-cuts [10, 27] is one successful technique in solv-

ing the MVS problem posed as one of 3D segmentation.

Because photo-consistency basically uses pixel correspon-

dence to triangulate points lying on the 3D object, the en-

ergy functional usually include two terms: the discontinuity

cost, derived from photo-consistency measurements; and an

additional labeling cost, which produces a “ballooning” ef-

fect to fill in the volume roughly bounded by voxels with

high discontinuity cost. Graph-cuts MVS then focused on

the proper design of the two costs. Another graph-theoretic

approach [11] defines a “crust” using photo-consistency

scores from which a manifold surface can be extracted via

dual graph embedding.

Normal is a useful cue for robust surface reconstruc-

tion. In MVS, photo-flux [2] was introduced, but it required

surface orientations information for foreground/background

modeling. In [8], surface normals were considered within a

photoconsistency measure. By assuming the scene geome-

try visible centered around a pixel to be locally planar, the

depth, color scale, and normal can be related using an over-

determined nonlinear system, which can be solved using it-

erative techniques.

3. Tensor Voting

A concise review of tensor voting [20] is given in [28]. In

essence, tensor is used for token representation, and voting

is used for non-iterative token-token communication. Ten-

sor and voting are related by a voting field . A voting field is

a dense tensor field for postulating smooth connection and

discontinuity in a neighborhood. In this section we state

two new results [28]: CFTV (closed-form tensor voting)

and EMTV, which will be used in the following sections.

Closed-form solution to tensor voting. In tensor voting,

voting fields are precomputed and stored as discrete vot-

ing fields for execution efficiency. Although precomputed

once, discrete approximations involve uniform and dense

sampling of tensor votes ññ
T where ñ is a normal vector.

We proved a closed-form solution to tensor voting, which

provides an efficient solution to computing an optimal ten-

sor without resorting to discrete and dense sampling.

Given two sites xi,xj ∈ R
D, and Kj which is a second

order symmetric tensor represented by a D×D matrix (D =
3 in this paper), a tensor at site xj , the optimal tensor Sij at

xi induced by xj is given by1:

Sij = cijRijKjR
′
ij , (1)

1Initial Ki and Kj can be derived when the input direction is available

(in the matching stage of TMVS), or simply assigned as an zero matrix (in

the propagation stage of TMVS). This will be explained in the following

sections.



stereo step tv purpose

matching, uncalibrated cftv, emtv F-matrix estimation

matching, calibrated cftv normal estimation

propagation cftv patch propagation

filtering cftv, mrftv outlier rejection

Table 1. The roles of cftv, emtv, and mrftv in the match-

propagate-filter stereo pipeline.

where

cij = exp(−
||xi − xj ||

2

σd

), (2)

σd is the scale of analysis which is the only free parameter,

and

Rij = I − 2rijr
T
ij , R

′
ij = Rij(I −

1

2
rijr

T
ij), (3)

where I is an identity matrix and rij is an unit vector at xj

pointing to xi. Full derivation is given in [28].

If a point lies on a 3D surface, the stick votes received

in its neighborhood reinforce each other with a high agree-

ment of tensor orientations. The accumulated tensor should

be stick-like, or λ1 ≫ λ2, λ3, where λ1, λ2, λ3 are the

eigenvalues of the eigensystem. This tensor indicates cer-

tainty in a single direction. On the other hand, an outlier

receives a few inconsistent votes, so all the corresponding

eigenvalues are small. We can thus define surface saliencies

by λ1 − λ2, with the eigenvector ê1 corresponding to λ1 to

denote the normal direction to the surface. Furthermore, if

it is a discontinuity or a point junction where several sur-

faces intersect exactly at a single point, it indicates a high

disagreement of tensor votes where not a single direction is

preferred. Junction saliency is indicated by high values of

λ3 (and thus all eigenvalues). Outlier noise is characterized

by low vote saliency and low vote agreement. Therefore, by

using surface saliency, our filtering can reject outliers while

not smoothing out sharp features.

EMTV. While tensor voting can reject outliers well, it falls

short of producing very accurate parameter estimation, ex-

plaining the use of RANSAC in the final parameter estima-

tion step after outlier rejection [26]. We summarize below

the EMTV algorithm for optimizing (1) the tensor K at each

input site, and (2) the parameters of a single plane v of any

dimensionality containing the inliers (e.g. epipolar geome-

try is a high-dimensional plane v estimation problem). The

expectation-maximization algorithm (full derivation avail-

able in [28]) is suitable for such alternating optimization as

(1) and (2) are interdependent:

E-Step: Let wi to be the probability of an observation oi

being an inlier. Then

wi =
1

2πσσ1
exp(−

||xT
i v||2

2σ2
) exp(−

||vT
K

−1
i v||

2σ2
1

) (4)

(a) (b) (c)

Figure 2. LongJing: (a) One of the two input images. (b) Sparse

reconstruction generated by using KeyMatchFull. (c) Sparse

reconstruction generated by using emtv match.

M-Step:

K
−1
i =

1
∑

j∈G(i) wj

(
∑

j∈G(i)

S
−1
ij wj −

σ2
2

2σ2
1

vv
T wi)

Mv = 0 (solve for v)

σ2 =

∑

i ||x
T
i v||2wi

∑

i wi

σ2
1 =

∑

i ||v
T
K

−1
i v||wi

∑

i wi

σ2
2 =

∑

i

∑

j∈G(i) ||K
−1
i − S

′
ij ||

2
F wiwj

∑

i wi

(5)

where M =
∑

i xix
T
i wi + σ2

σ2

1

∑

i K
−1
i wi and G(i) is a set

of neighbors of i.
To conclude this section, Table 1 summarizes the roles of

tensor voting in the match-propagate-filter stereo pipeline.

We explained closed-form tensor voting (cftv) and EMTV

(emtv) above. Markov Random Field tensor voting

(mrftv) will be described shortly.

4. Matching

In the uncalibrated scenario, EMTV estimates parame-

ter accurately by employing closed-form tensor voting, and

effectively discards epipolar geometries induced by wrong

matches (section 4.1). In the calibrated scenario, TMVS

produces better 3D normals than PMVS by utilizing ten-

sors and their communication via closed-form tensor voting

(section 4.2).

4.1. Uncalibrated Images

When the input images are uncalibrated, camera cal-

ibration is performed using nonlinear least-squares mini-

mization and bundle adjustment [17] which requires good

matches as input.

We provide our method, emtv match, to show the effi-

cacy of EMTV on camera calibration while noting others

can be used. EMTV estimates the fundamental matrix (F-

matrix) by hyperplane fitting [28]. Here, SIFT [18] is used

to detect image keypoints. Candidate matches are generated

by comparing the resulting 128D feature vectors, so many



(a) (b) (c)

Figure 3. Teapot: (a) Sparse reconstruction (360 points) gener-

ated by using KeyMatchFull. (b) Sparse reconstruction (37

points) generated by using ransac match. (c) Sparse recon-

struction (2152 points) generated by using emtv match. The

candidate matches returned by SIFT are extremely noisy due to

the ambiguous patchy patterns. On average 17404 trials were run

in ransac match. It is very time consuming to run more tri-

als on this noisy and large input where an image pair can have

as many as 5000 similar matches. emtv match does not need

random sampling.

matched keypoints are not corresponding. The epipolar

constraint is enforced in the matching process using EMTV,

which returns the fundamental matrix and the probability

wi (Eqn (4)) of a keypoint pair i being an inlier. In the fol-

lowing experiments, we assume keypoint pair i is an inlier

if wi > 0.8. Note that no random sampling is used.

The following compares emtv match with

KeyMatchFull [24] and ransac match. ransac match

solves v (hyperplane fitting) by using RANSAC.

Tea Can. Figure 2 shows that, by using our filtered matches,

even in the absence of any focal length input, our sparse

reconstruction of the tea can (the image pair was obtained

from [29]), produced by the nonlinear least-squares mini-

mization and bundle adjustment [17], is denser and contains

less errors as compared with [24], where we can faithfully

reconstruct the right-angled container.

Teapot. Figure 3 shows our running example teapot which

contains repetitive patterns across the whole object. Wrong

matches can be easily produced by similar patterns on dif-

ferent parts of the teapot. This data set contains 30 images

captured using a Nikon D70 camera. Automatic configura-

tion was set during the image capture.

Visually, the result produced using emtv match is much

denser than the one produced with KeyMatchFull and

ransac match, the latter of which solves the hyperplane

fitting by using RANSAC. While KeyMatchFull can still

handle this data set, we observe that many outliers and in-

liers were rejected as well. This is because KeyMatchFull

employed a restrictive criterion to drastically reduce the

number of outliers. Specifically, they used d1 < 0.6d2,

where d1 and d2 are respectively the shortest and second

shortest distance between a point and a candidate match

in the 128D feature space. In other words, many similar

structures or repeated patterns were filtered out, and only

very distinctive feature pairs were retained for the following

bundle adjustment stage. On the other hand, emtv match

utilizes the epipolar geometry constraint by computing the

Figure 4. Comparing the initial patches generated by PMVS (left)

and TMVS (right). Normals shown on the right are attenuated

by surface saliency, so potential outliers are detected early in the

stereo pipeline.

fundamental matrix in a data driven manner. Note the result

obtained using ransac match is extremely sparse, which

can be attributed to two reasons: (1) the fundamental ma-

trix is rank 2 which implies that v spans a subspace ≤ 8-D

rather than a 9-D hyperplane; (2) the input matches contain

too many outliers.

4.2. Calibrated Images

If the input images are calibrated, we proceed to produce

initial matches as in PMVS. In TMVS, we encode each 3D

patch into a 3D tensor K. To initialize K the initial nor-

mals ñ given by PMVS can be used, that is, K = ññ
T .

Or we can simply initialize K as an identity to indicate

that we have no orientation preference. We found the op-

timal tensors produced by closed-form tensor voting, that

is, Eqn. (1), in both cases are quite similar. The tensor votes

collected are summed up using tensor addition which sim-

ply adds up the collected matrices computed using Eqn. (1).

Figure 4(a) shows the initial 3D patches and the per-

turbed normals estimated by PMVS. Figure 4(b) shows the

improved set of normals produced by TMVS where the

(λ1 − λ2)ê1 components of all tensors are shown. A more

accurate set of 3D normals will improve the propagation

process by better predicting which 3D direction to explore

next when combined with photoconsistency and geometric

consistency enforcement.

5. Propagation

In PMVS, patch expansion proceeds from initial patches

in the 3D space to process unmatched image regions in the

previous step. Using patch normals and their neighborhood,

the algorithm generated a set of candidate 3D positions,

each passing through the respective lines of sight. Then,

at each candidate position the patch normal and location

along the line of sight are optimized using photoconsistency

(local pixel colors) and visibility (the subset of visible im-

ages). Overall, the patch expansion is a 3D floodfill algo-

rithm by considering normal directions, photoconsistency,

and visibility. This expansion algorithm does not however

take active consideration geometric cues available in the ori-



(a) (b) (c) (d) (e)

Figure 5. Earth. (a) one input image (81 in total), (b) and (c) show zoom-in views of the normal reconstruction produced by PMVS and

TMVS after the propagation step, (d) and (e) show respectively one view of the quasi-dense reconstruction by PMVS and TMVS.

Figure 6. Comparing the optimized normals generated by PMVS (top) and TMVS (bottom) in the propagation step. The left three are

different zoom-in views of teapot, the rest are zoom-in views of the normal results of the Middlebury dataset: dinoRing and templeRing.

No silhouette or visual hull information is used in propagation.

min avg max

TMVS 0.0032 1.1236 5.7442

PMVS 0.01 11.7417 89.9998

Table 2. Quantitative comparison on normal estimation accuracy.

The angular errors shown are in degrees.

ented set of 3D points, thus resulting in perturbed normals

(as well as positions). Erroneous patch normals will in turn

adversely affect the propagation accuracy, producing more

outliers as demonstrated in the following quantitative study.

We first performed quantitative comparison between

PMVS and TMVS on normals accuracy. Figure 5 shows

an example Earth where the analytical geometry is known

(the ground-truth is a sphere). This data set contains 81

images captured by a Nikon D40 camera with fixed intrin-

sic camera parameters. One input image is shown in Fig-

ure 5(a). To show the significance of our improvement, we

executed both PMVS and TMVS on this example and com-

pared quantitatively the estimated surface normals. Table 2

tabulates the angular errors (in degree) produced by the re-

spective methods2. It shows that TMVS is a clear winner

2Outliers are ignored in the calculation. A point is regarded as an outlier

where the maximum error produced is much smaller than

the average error produced by PMVS. Qualitatively, we ob-

serve the difference from Figure 5(b) and (c), which are

the zoom-in views of the surface normals generated by the

tested methods. The surface normals produced by TMVS

radiates from the center while those by PMVS oriented

quite randomly. Moreover, because TMVS utilizes geomet-

ric cues via tensor communication, TMVS generated less

outliers compared to PMVS in the propagation stage, as

shown in Figure 5(d) and (e).

After showing the improvement, here we discuss the

reason why, at this stage, TMVS outperforms PMVS. In

TMVS, we incorporate closed-form tensor voting into the

patch propagation step, which imposes the uniqueness con-

straint along the line of sight. Specifically, given a candidate

position p0, we sample along its line of sight a set of nor-

malized cross correlations and surface saliencies. Normal-

ized cross correlation can be computed using camera and

image information (i.e., visibility and photoconsistency)

which is similar to [5]. Surface saliencies are obtained by

sampling tensor votes along the line of sight using closed-

if dp > rgt + 0.06, where dp is the distance of the point measured from

the center of the Earth and rgt = 0.6533 is the radius of the Earth.



form tensor voting. If the site being sampled is not an input

site, which is usually the case, then the initial K is set to be

a zero matrix. Else, initial K is simply the tensor obtained

in the previous matching step.

Let nccp and salp be the normalized cross correlation and

the surface saliency (normalized to [0, 1] using the maxi-

mum eigenvalue of K at p) respectively at a position p along

the line of sight. We detect the maximum of

(1 − ρ)nccp + wsalp (6)

along the line of sight passing through a given candidate

position p0, and ρ ∈ [0, 1] is a weight factor which is set to

(0.2–0.4) in our experiments. Note that [15, 21] also con-

siders surface saliency maxima along lines of sight. They

select matches from the point cloud of candidate matches

generated by the initial matching stage by examining the

amount of support received from their neighboring candi-

date matches after tensor voting. However, we have two dif-

ferences: (1) closed-form tensor voting contributes a faster

and accurate implementation without discrete approxima-

tions using pre-computed tensor voting fields; (2) both pho-

toconsistency and geometric consistencies are considered in

our optimization process. In TMVS, the precise patch loca-

tions are optimized using photoconsistency and geometric

consistency prescribed by tensor voting.

Figure 6 compares the propagation results of PMVS and

TMVS on teapot, dinoRing and templeRing. For the teapot,

our normals are smoother while important features such as

the spout and the lid are preserved. For dinoRing we have

less noise over the fins compared with PMVS. Note our bet-

ter normals on the base which supports the dinoRing (point-

ing upward rather than oriented randomly as shown in the

PMVS result). Our templeRing result has less outliers. Note

we did not use any object masks when the above data were

processed.

6. Filtering

In PMVS, visibility consistency is applied to reject out-

liers. Tricky outliers are close to the target shape and

may accidentally form a structure by themselves, which

are much less salient compared with the quasi-dense recon-

struction.

In TMVS, because of tensor voting, less outliers are gen-

erated during the propagation. For outliers that escape from

the propagation process, they can be removed by running

MRF-TV, tensor voting on MRF, by tensor communications

over the entire geometry. Figure 7 shows the result before

and after applying MRF-TV.

Recall that Kj denotes the tensor residing at xj . To ob-

tain the estimated tensor at xi induced by xj , we employ

Eqn (1) to estimate Sij . In MRF, a Markov network is a

graph consists of two types of node – a set of hidden vari-

ables E and a set of observed variables O, where the edges

Figure 7. Results before and after filtering of Hall 3 (images shown

in Figure 10). Top view of the reconstructed building is shown

here. All salient 3D structures are retained in the filtered result,

including the bushes near the left facade and planters near the right

facade in this top view of the building.

of the graph are described by the following posterior prob-

ability P(E|O) with standard Bayesian framework:

P(E|O) ∝ P(O|E)P(E) (7)

By letting E = {Ki|i = 1, 2, · · · , N} and O = {K̃i|i =
1, 2, · · · , N}, where N is total number of points and K̃i

is the known tensor at xi, and suppose that inliers follow

Gaussian distribution, we obtain the the likelihood P(O|E)
and the prior P(E) as the following:

P(O|E) =
∏

i

p(K̃i|Ki) =
∏

i

e
−

||Ki−K̃i||
2

F
σh (8)

P(E) =
∏

i

∏

j∈N (i)

p(Sij |Ki) (9)

=
∏

i

∏

j∈N (i)

e−
||Ki−Sij ||2

F
σs (10)

where || · ||F is Frobenius norm, K̃i is the known tensor at

xi, N (i) is the set of neighbor corresponds to xi and σh and

σs are two constants respectively. By taking the logarithm

of Eqn (7), we obtain the following energy function:

E(E) =
∑

i

||Ki − K̃i||
2
F + g

∑

i

∑

j∈N (i)

||Ki − Sij ||
2
F

(11)

where g = σh

σs
. Theoretically, this quadratic energy function

can be directly solved once and for all by Singular Value

Decomposition (SVD). Since N can be large thus making

direct SVD impractical, we adopt an iterative approach: by

taking the partial derivative of Eqn (11) (w.r.t. to Ki) the

following update rule is obtained:

K
∗
i = (K̃i + 2g

∑

j∈N (i)

Sij)(I + g
∑

j∈N (i)

(I + c2
ijR

′
ij

2
))−1

(12)

which is a Gauss-Seidel solution. When successive over-

relaxation (SOR) is employed, the update rule becomes:

K
(m+1)
i = (1 − q)K

(m)
i + qK∗

i (13)



Figure 8. Tripp reconstruction from sparse data set: three input

images (left) and the quasi-dense 3D reconstruction produced by

PMVS (middle) and TMVS (right).

where 1 < q < 2 is the SOR weight and m is the iteration

number.

When the energy function (Eqn (11)) is minimized,

we can obtain the surface saliency for each xi by apply-

ing eigen-decomposition on the corresponding estimated

Ki. We consider xi is an outlier if the respective surface

saliency (i.e. λ1 − λ2) is smaller than t (we set t = 0.1 for

all experiments).

7. More Results

Tripp and George. We performed stress test on TMVS

using sparse and unevenly-spaced cameras. 25 images of

Tripp and 14 images of George were obtained. All images

were casually captured using an off-the-shelf digital cam-

era. We compare the quasi-dense reconstruction results of

Tripp produced by PMVS and TMVS, as shown in Figure 8.

Because TMVS produced more accurate normals, it can fill

more holes during the propagation step. Figure 9 shows a

few images and several views of the quasi-dense reconstruc-

tion produced by TMVS.

Hall3. Finally, we captured photos all around a building us-

ing an off-the-shelf digital camera. All images were taken

on the ground level not higher than the building, so we

have very few samples of the rooftop. The building facades

are curved and the windows on the building look identical

to each other. The patterns on the front and back facade

look nearly identical. These ambiguities cause significant

challenges in the matching stage especially for wide-base

stereo. The input photos (179 images in total) were first

calibrated as described, followed by running TMVS to ob-

tain the quasi-dense reconstruction as shown in Figure 10.

The 3D reconstruction is faithful to the real building.

8. Discussion

The only free parameter in tensor voting is the scale of

visual analysis σd in Eqn (2) which can be estimated by ana-

lyzing local tensor densities. In our experiments, all tensors

are sorted using the ANN tree [1] which allows efficient

access of each tensor’s neighbors. Let d be the average dis-

Figure 9. George reconstruction from sparse data set: five input

images (top) and four views of the quasi-dense 3D reconstruction

(bottom).

tance to each tensor’s closest neighbor. Then, σd is given by

a
√

(−d2/ log(ǫ) where ǫ = 0.075 is the minimum strength

of the tail of the Gaussian, and a is a positive constant. We

found that a wide range of σd operates well, while an ex-

cessively large σd will produce wrong and over-smoothed

normals. It is not difficult for user to obtain a good σd by

tuning a: run our system (the efficient closed-form tensor

voting) a few times on the initial sparse tensors only, and

visualize the initial results such as Figure 4.

Our experiments were run on multicore Linux machines

in a multiuser environment. Similar to [5], the bottleneck

of TMVS is tensor propagation. Depending on the input

size, our processing time ranges from 10 minutes to a few

hours. For the Earth, it has about 6000 initial tensors and

each communicates with around 100 neighbors. The run-

ning time is about 1 hour on a quadcore machine with 4 x

AMD Opteron 844 (1.8GHz) CPU with 8GB RAM.

9. Concluding Remarks

We described TMVS which is founded on our new

closed-form solution to tensor voting [28], and provides a

unified approach to implement the match-propagate-filter

stereopsis pipeline with theoretical guarantees: CFTV is a

closed form solution, EMTV has been shown to be conver-

gent (where EM’s convergence is well known [19]), and we

provided an efficient solution to MRFTV in this paper. The

implementation strategy is straightforward because it is not

difficult to implement Eqns (1), (4), (5), and (12)–(13).

Using PMVS’s match-propagate-filter pipeline as our

implementation backbone, TMVS has performance similar

to PMVS when TMVS is tested on the Middlebury MVS

dataset. For surface normals, our qualitative and quanti-

tative evaluation show that TMVS produced significantly

improved normals. As 3D patch (oriented points) is the

main processing token in PMVS (analogously 3D tensors

in TMVS), this improvement leads to less accumulation er-

rors and outliers in the propagation results.

As a side benefit, TMVS has led us to develop the fol-

lowing utilities: CFTV (for perceptual grouping), EMTV

(for parameter estimation), and MRFTV (for outlier rejec-



Figure 10. The Hall 3 reconstruction: ten input images (top) and five views of the quasi-dense 3D reconstruction (bottom).

tion). They are included in the supplemental material and

available to the community, and we believe they are useful

in many MVS and other vision systems as well.
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