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RSCM: Region Selection and Concurrency Model
for Multi-Class Weather Recognition

Di Lin, Cewu Lu, Member, IEEE, Hui Huang, Member, IEEE, and Jiaya Jia, Senior Member, IEEE

Abstract— Toward weather condition recognition, we
emphasize the importance of regional cues in this paper and
address a few important problems regarding appropriate
representation, its differentiation among regions, and weather-
condition feature construction. Our major contribution is,
first, to construct a multi-class benchmark data set containing
65 000 images from six common categories for sunny, cloudy,
rainy, snowy, haze, and thunder weather. This data set also ben-
efits weather classification and attribute recognition. Second, we
propose a deep learning framework named region selection and
concurrency model (RSCM) to help discover regional properties
and concurrency. We evaluate RSCM on our multi-class bench-
mark data and another public data set for weather recognition.

Index Terms— Deep learning, multi-class weather recognition,
image classification, attribute recognition.

I. INTRODUCTION

IMAGE weather recognition is a relatively new topic in
computer vision [1]–[4]. Different from other object/scene

recognition problems [5]–[8], weather recognition needs to
understand complex phenomena of lighting and reflection on
object surface and of the scene.

Weather is an integral part of our lives. Instantly and
densely collecting weather information is a scientific topic
with enormous social impact. Images carry a lot of information
to understand weather. Images also have the special advantages
in terms of large quantity for weather analysis and low cost
to generate them.

Image-based weather recognition finds many applications.
One example is that smart power grids, including solar energy
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Fig. 1. Regions of meadow in sunny and cloudy days in (a) and (b)
respectively.

system, can dispatch electric power according to the result of
weather recognition. Driving assistance can also benefit from
the instant response, as reported in [1]. Image weather recog-
nition also helps develop outdoor robotics [9]. In computer
vision, image-based weather recognition profits a group of
research regarding scene understanding and image retrieval.

Despite useful, weather recognition from a single image is
still challenging. The difficulty stems from the unique proper-
ties of weather, which make many global and local invariant
features effective in object recognition and classification unus-
able [3]. Weather recognition methods [5], [10], [11] are also
notably different from scene recognition because variation of
scenes in various meteorological conditions, instead of scene
structure itself [12], needs to be analyzed.

In this paper, we recognize weather condition via important
regions and propose the new coexistence clue to determine a
weather situation from single images. For example, blue sky
with cast shadow on street together strongly suggest a sunny
day. Our finding is briefly described below.

A. Regional Cue and Concurrency Condition

Natural images contain clusters of region context,
e.g., “building”, “road” and “sky”. We observe reasonably
stable weather patterns for these clusters. Figure 1 shows
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Fig. 2. Region concurrency for building & street. The street is partly lit with cast shadow of the wall. This type of concurrency becomes a type of feature
in “sunny days”.

Fig. 3. Region selection and concurrency of an image. The input image is partitioned into 4 region clusters in this example. The middle illustrates
RSCM modeled as an iterative process. In each iteration, the selection module scores regions from different clusters. The concurrency module evaluates
co-existence of each region pair. These two components cooperate to iteratively update the model. The final regions are used for weather recognition. In this
figure, the regions are only for the illustration purpose and we actually use regional features to represent them in experiments.

meadow examples, which can be differentiated between the
sunny and cloudy classes based on their visual appearance.

Besides regional patterns, combination of regions from
different clusters indicates high concurrency. These region
pairs provide useful evidence to recognize weather situations.
Figure 2 shows an example that the building casts shadow on
the neighboring street under sunlight. This concurrency is a
common phenomenon in many scenes, detailed later in this
paper.

B. Difficulties

Object/scene recognition [13], [14] does not sufficiently
explore weather-related regions. In order to construct image
representation, previous methods focus on extracting as much
common structural information as possible. Our first challenge
is to select suitable regions for weather recognition.

For the concurrency condition, region pairs with high visual
concurrency do not necessarily hold stable spatial/structural
relationship as shown in Figure 2, unlike those in object/scene
recognition [15], [16]. The concurrency condition could be
rather sensitive to weather factors, such as direction of sunlight
or reflection. It is therefore critical to propose a suitable

strategy to find concurrency appearing frequently in natural
images.

C. Our Contribution

We propose a region selection and concurrency
model (RSCM) to tackle these difficulties. Our RSCM is
based on deep convolutional neural network (CNN). Figure 3
demonstrates the work flow of our RSCM with two major
components – region selection and concurrency processes.
For pre-processing, we segment an image into regions. For
each region cluster, a latent variable is used for indicating
the region that provides appropriate weather discrimination
information. Instead of only considering neighboring regions,
we discover visual concurrency on all region pairs. Their
estimation is accomplished via the Siamese architecture
of neural networks [17], [18] of RSCM, which powerfully
handles the complex combination of regional patterns.

Our RSCM also makes it possible to train a weakly
supervised framework with only image weather labels. It
facilitates automatic discovery of regional weather cues and
concurrency in a data-driven manner, which is hard to be
defined beforehand.
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Fig. 4. Overview of our multi-class weather dataset. It includes 6 weather categories, i.e., sunny, cloudy, rainy, snowy, haze and thunder.

In addition, we construct a dataset with 65,000 images
from 6 common weather categories, readily usable for multi-
class weather recognition. We use our data as benchmark
for weather classification and attribute recognition. Compared
with previous work, our RSCM yields decent performance
in terms of multi-class classification and attribute prediction.
We also conduct comprehensive study to show weather infor-
mation is transferable to attribute recognition.

II. RELATED WORK

There are works to construct a weather recognition algo-
rithm for driving assistance. Yan et al. [1] proposed detecting
regions of interest based on road information, which was
captured by vehicle cameras. Roser et al. [2] followed the
traditional bag-of-feature strategy considering brightness, con-
trast, sharpness, saturation and hue in sunny and rainy days.
A histogram was constructed as the whole-image represen-
tation for weather classification. These methods need special
hardware to recognize weather situation.

Recently, research on weather classification focuses on
adding weather priors. Lu et al. [3] presented a framework for
single natural images. Sky, shadow and haze information was
used to construct weather-specific features. The voting models
were employed to incorporate all features into the inference
and learning framework. Recently, Zhang et al. [4] extended
the similar framework to multi-class weather classification.
They designed features for sunny, rainy, snowy and haze
weather. With the pre-defined features, multi-kernel learning
was employed to recognize weather condition.

Several related methods estimate illumination from outdoor
images. Lalonde et al. [19] utilized sky, shadow on the ground

and shading on vertical surface to compute the distribution
over the sun position and visibility. Kim et al. [20] took a
sequence of images recorded by a fixed camera to compute
illumination change. Wehrwein et al. [21] estimated the direc-
tion of sun and detected shadow from a set of images.

These methods do not consider variant patterns of distinct
region clusters and their concurrence. Our region selection
and concurrency is new for solving this problem in another
line. Our method makes use of deep learning for the new
recognition task. Besides, We contribute a larger multi-class
weather dataset, allowing further analysis and training reliable
systems.

III. MULTI-CLASS WEATHER DATASET

Our newly constructed multi-class weather dataset (MWD)
contains 65,000 images from 6 common categories, i.e., sunny,
cloudy, rainy, snowy, haze and thunder weather, as shown
in Figure 4.

A. Previous Datasets

Publicly available datasets for weather classification are
limited in scale and quantity. The dataset provided in [2]
includes weather conditions of clear, light rain, and heavy
rain. These images are rain-oriented, obtained specially from
expressway surveillance. Lu et al. [3] provided a weather
classification dataset with more natural scenes. But only sunny
and cloudy images are involved. Zhang et al. [4] described a
multi-class weather dataset containing four classes of weather
conditions. In comparison to previous datasets, ours comprises
of more images with different weather classes.
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Fig. 5. Sample images of our (a) weather classification dataset and (b) weather attribute dataset.

B. Data Collection

To reduce bias during data collection and annotation, we
asked 12 annotators to build the dataset. All annotators were
unaware of the methods used in future weather experiments.
To determine the categories in our dataset, the 12 annotators
collected images from Flickr and Google using keywords
“outdoor” and “weather”. Around 10,000 images were initially
gathered and annotated. Eventually, we select the six most
general weather categories to form our dataset.

Then annotators were asked to collect more images within
these six categories. Only images containing photo-realistic
outdoor scenes and with reasonable resolutions were kept.
Visually similar images were rejected by computing the color
histogram distances for all image pairs, similar to what was
done in [3]. After this step, we have around 12,000 images
for each category.

C. Annotation

The images are divided into two groups. They are further
annotated with weather classes and attributes.

1) Weather Class Annotation: We make a group of our
dataset used for weather classification, where the critical
weather condition of an image is identified. Although only
a single weather class per image is labeled, the classification
data helps discover and analyze characteristics of each weather
condition. The properties can be combined flexibly to study
their correlation.

Weather conditions may co-exist. It is thus ambiguous to
give each image one category label. To tackle it, we classify
the images as “normal” ones if they do not contain apparent
rain drop, snow or haze as shown in Figure 6(a). These images
are labeled as sunny or cloudy. Other images with heavy rain,
snow and thunder, as shown in Figure 6(b), are assigned to
“bad” weather condition.1

During annotation, all annotators knew our discipline.
The 12 annotators were divided into 6 groups. The two
annotators in each group independently check the images
in corresponding categories. Images labeled as ambiguous
weather by either of them were discarded. Finally, we maintain

1The normal and bad weather is classified by the condition of [2]. We extend
the differentiation criteria using rainy, snowy, haze and thunder conditions
together.

Fig. 6. Sample images of (a) clear weather conditions and (b) bad weather
conditions.

10,000 images for each weather category. Sample images are
shown in Figure 5(a).

2) Weather Attribute Annotation: The other group of data
is annotated to support weather attribute recognition, which
aims to find all weather conditions in an image. Comparing
with classification, attribute recognition allows more flexible
weather recognition.

During attribute annotation, we make use of selected
12,000 images. These images are likely to have two or
more weather conditions since they cause ambiguity during
class annotation. About 2,000 images were assigned to each
2 annotators. Again, the 2 annotators independently labeled
the images with attributes. After labeling, an extra process
was applied to check each image labeled by the 2 annotators.
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If an image was labeled with at least one ambiguous attribute,
it is eliminated. Totally we have 5,000 images with weather
attributes. Samples are shown in Figure 5(b).

To the best of our knowledge, weather attribute data was not
provided by any other publicly available datasets. We believe
ours will profit related research.

IV. OUR FRAMEWORK

Our framework to recognize weather is illustrated
in Figure 3. First, we segment the image into different regions.
For each of them, we extract regional features for represen-
tation. We apply these features and the region selection and
concurrency model (RSCM) to weather recognition. Without
loss of generality, we elaborate on our RSCM for binary
classification where each label is denoted as y = {−1, 1}.
We then extend this framework to multi-class classification
and attribute recognition by training independent RSCM for
each weather class.

A. Pre-Process: Coarse Segmentation

Outdoor images are composed of regions. Figure 8(a) shows
an example with four clusters of regions. Regions in each
cluster are similar in appearance. Image semantic labeling
techniques [22]–[25] aim to find these region clusters under
supervised learning with human annotation. The output regions
are with semantic categories, e.g., building and tree. Since
we only need to know whether two regions come from the
same cluster or not, co-segmentation [26]–[28] is adopted in
our framework, which works in an unsupervised manner to
segment an image into different regions.

The resulting clusters each contains a few separate regions.
Figure 8(b) shows the segmentation result using the method
of [26] where cluster 1 involves 2 regions marked in green.
Note our method does not require regions coming from
semantic classes or accurate in terms of class labels. Coarsely
segmented regions without semantic classes are enough for
our weather recognition.

Regarding possible variant region clusters mistaken by
co-segmentation [26]–[28], we apply the K-means algorithm to
group images based on global appearance features [10], [29].
With this step, each group of images are close in appearance,
as shown in Figure 7. The generated region clusters are
illustrated in Figure 9.

After K-means to partition images, for each group we
train a co-segmentation model. During training and testing,
each image is processed by corresponding co-segmentation.
We eliminate regions with size smaller than 200 pixels. More
details are given in Section VII.

B. Regional Feature Extraction

We use convolutional feature masking (CFM) [30] to extract
regional feature of the segmented regions. CFM is a fast way to
extract feature of irregular regions on the convolutional feature
map. Figure 10 illustrates the pipeline. We denote R as a
region in image I and compute the convolutional maps on the
image I. Then we keep the down-sample ratio to map region
R from image domain to the convolutional map.

Fig. 7. Examples of image groups generated by k-means. Each group of
images have similar appearances.

We apply region-of-interest (RoI) pooling [31] and masking
to generate the fixed-length feature. This fixed-length feature
is processed with fully-connected layers to form the final
regional feature. We denote the regional feature of R as

f = G(�; I,R), (1)

where the function G(�; :) represents the architecture of CNN.
� is the model parameter.

C. Region Selection and Concurrency

Region clusters are illustrated in Figure 11(a) along with
their features. To recognize weather, we further address
two problems. The first is region selection for each cluster.
In Figure 11(b), the 1st cluster contains two regions and
only the bottom region contains pattern of shadow, which is
important for understanding it as a sunny day. The other region
is not similarly useful. How to find and give importance to
respective regions is a challenge.

The second problem is region concurrency. Some regions
from different clusters should be considered simultaneously
as exemplified in Figure 11(b) and (c) where the two high-
lighted regions form causality under sun light regarding the
cast shadow. Thus concurrency frequently yielded in train-
ing data should be considered, which can make weather
recognition more reliable. We propose RSCM to tackle these
two problems.

1) Region Selection: Given an image I, we denote Ri, j,k

as the i th region in the j th cluster of the kth image group.
We note the image group k is determined by K-means clus-
tering and is regarded as a constant. For each k, we set the
regional features computed by other image group models as
zero vectors, which do not affect training and inference. For
simplicity, we omit subscript k and use notation Ri, j .

The feature of Ri, j is denoted as fi, j . The number of regions
of the j th cluster is denoted as n j . We introduce the binary
variable vi, j with value 1 (or 0) to denote that region Ri, j is
(or is not) selected. Our RSCM selects one region for each
cluster. We define f0, j = 0 as a zero vector and let v0, j = 1
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Fig. 8. (a) Image with regions containing building, road, tree and sky. (b) Partitioning of the image by co-segmentation. Each cluster contains a few separate
regions.

Fig. 9. Two images from the same group. Their co-segmentation results
show similar appearances that can be reasonably divided into stable region
clusters.

only when n j = 0. This setting allows us to select a zero
vector from a cluster, which has no visible region. The selected
feature is formulated as

F j = vT
j f j , (2)

where

v j =
⎡
⎢⎣

v0, j
...

vn j , j

⎤
⎥⎦, vi, j ∈ {0, 1}, ‖v j ‖1 = 1, f j =

⎡
⎢⎣

f0, j
...

fn j , j

⎤
⎥⎦,

(3)

v j ∈ R
n j +1 and f j ∈ R

(n j +1)×D . F j ∈ R
D is the selected

feature from the j th cluster. D is the dimension of the feature,
which is 4,096 in our experiment. Our region selection of an
image is formulated as

Es(Ws; V, F) = trace(WsFT), (4)

where

Ws =
⎡
⎢⎣

ws
1
...

ws
M

⎤
⎥⎦, V =

⎡
⎢⎣

v1
...

vM

⎤
⎥⎦, F =

⎡
⎢⎣

F1
...

FM

⎤
⎥⎦, (5)

Ws ∈ R
M×D is the model parameter. V contains all binary

variables. F ∈ R
M×D contains all the selected features from

different region clusters. The model parameter ws
j is used to

weight the selected feature F j from the j th cluster. Their dot
product is regarded as a score that predicts an image to have
a positive label, i.e., y = 1. As in Eq. (4), we sum all the
scores as an overall confidence for the region selection process.
The weather condition of an image can be classified by a set
of discriminative regions. We formulate Eq. (4) as a scoring
function. It outputs high score to encourage the selection of
discriminative regions.

2) Region Concurrency: We measure the concurrency of
two regions in different clusters using a Siamese architecture
of deep neural networks. Figure 10 illustrates our Siamese
network. Following [17], [18], we model this network as a
two-branch architecture. These two branches share the same
network parameters of all convolutional and fully connected
layers. During training and testing, the Siamese network
accepts a pair of regions from different clusters as input.
These two regions are used by CFM to generate distinct
regional features. This design accounts for the complexity of
concurrency patterns.

Using the regional features, the Siamese network outputs the
concurrency of a pair of regions in the j th and kth classes.
The concurrency is computed as

s j,k = −‖F j − Fk‖2. (6)

Larger values of s j,k refer to higher concurrency of selected
regions.

Given M clusters, we computer concurrency of each pair of
regions from different clusters. Using Eq. (6), we formulate
region concurrency as

Ec(Wc; V, F) =
M−1∑
j=1

M∑
k> j

(Wc ◦ S) j,k, (7)
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Fig. 10. Architecture of the Siamese CNN for regional feature extraction. Input contains an image and segmented regions. All region-of-interests (RoIs) of
the input image share the identical convolutional map and fully-connected layers.

Fig. 11. (a) Image is segmented into regions. (b) Regions in the 1st and 2nd clusters. (c) The 1st and 2nd regions are with high concurrency for indication
of sunny weather. We actually use regional features to represent the regions in experiments.

where Wc, S ∈ R
M×M . Operator ◦ denotes Hadamard product.

As the concurrency matrix S is symmetric, i.e., s j,k = sk, j ,
the matrix Wc is also symmetric for consistency. The element
wc

j,k ∈ Wc is a weight for the concurrency s j,k ∈ S. The
constraint k > j means we measure the concurrency of regions
from different clusters. Scores of all concurrency are added to
form overall confidence. The parameter Wc is learned from
the training data. Compared to separate regions without any
relationship, regions that stably co-exist provide more useful
information for weather recognition. As in Eq. (7), the region
concurrency is also modeled as a scoring function. A higher
score of Eq. (7) means the regions have higher concurrency.

3) Joint Model for Weather Recognition: Since region selec-
tion and concurrency work together, we combine them to form

the decision function of our RSCM. With Eqs. (4)-(7), the
decision function is expressed as

J (Ws, Wc; V, F) = Es(Ws; V, F) + Ec(Wc; V, F). (8)

The decision function Eq. (8) assigns a score by balancing
region selection and concurrency. The discriminative regions
that also have stable concurrency pattern lead to higher score
of Eq. (8). A higher score means that an image has higher
confidence to have label y = 1.

V. SYSTEM LEARNING

During the learning phase, we are given a training set T .
We denote (F, y) ∈ T as a training sample, where F is the set
of regional features and y is the weather label of an image.
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Fig. 12. Inferred region pairs, which indicate (a) sunny, (b) cloudy and (c) rainy days. The regions are represented as regional features in experiments.

The learning task is to determine the model parameters Ws ,
Wc and �. We formulate learning of Ws , Wc and � in
iterative optimization.

A. Inference of V

The latent variable V indicates the selected/unselected
regions, which should be determined before optimization of
the model parameters. We optimize Eq. (8) over the latent
variable V as

V∗ = arg max
V

J (Ws, Wc; V, F). (9)

According to the definition in Section IV-C.1, V is a discrete
variable. Although the solution space is limited, exhaustive
search is not recommended for large M .

We turn to iterated conditional modes (ICM) [32] for
solving for V. ICM is an iterated algorithm. We randomly
initialize V. In each iteration, we update the set of items
{vi, j | j = m} conditioned on the fixed set {vi, j | j �= m}.
It means that we update the states of a region cluster in one
iteration. The same update also applies to other region clusters
and lasts for iterations, until Eq. (8) converges. Figure 12
shows examples of the inferred region pairs.

B. Learning of Ws and Wc

For the training sample (F, y), we use Eq. (9) to fix latent
variable V. Following latent SVM [15], learning Ws and Wc is
accomplished by minimizing the following objective function

over W = [Ws, Wc].
L(W; T , V)

= 1

2
‖W‖2

2 + γ
∑

(F,y)∈T
max(0, 1 − yW · �),

s.t . W = [ws
1, . . . , ws

M , wc
1,2, w

c
1,3, . . . , w

c
M−2,M , wc

M−1,M ],
� = [F1, . . . , FM , s1,2, s1,3, . . . , sM−2,M , sM−1,M ],

(10)

where γ is set to 0.07 empirically. We apply gradient descent
where the gradient w.r.t. W is computed as

∂L(W; T , V)

∂W
= W − γ

∑
(F,y)∈T

1(yW · � < 1)y�. (11)

Here 1(:) is an indicator function.

C. Learning of �

Input to the Siamese CNN is a pair of regional features
denoted as fi, j and fl,k along with their latent variables
vi, j and vl,k . We follow the method of [17] and name
(fi, j , fl,k) a genuine pair if vi, j vl,k = 1 or an impostor pair
if vi, j vl,k = 0. Obviously, concurrency values of genuine pairs
should be higher than those of impostor ones. The objective
function to learn the Siamese CNN is

L(�; fi, j , vi, j , fl,k, vl,k )

= vi, j vl,k

2
s2 + (1 − vi, j vl,k)

2
(max(0, η − s))2,

s.t . s = ‖fi, j − fl,k‖2, vi, j , vl,k ∈ V, j < k, (12)

where η is a margin parameter set to 2 empirically. We adopt
the standard stochastic gradient descent [33] to update
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Algorithm 1 Model Learning

the model parameter � and minimize Eq. (12) in the
back-propagation phase.

Finally, estimation of parameters Ws , Wc and � is formu-
lated as alternating optimization. We note this alternating opti-
mization follows the convention of coordinate descent [34] that
is easy to implement. The alternating optimization empirically
converges in 3 rounds. The overall optimization is sketched
in Algorithm 1.

VI. SYSTEM APPLICATION

With the model parameters, i.e., Ws , Wc and �, determined
during learning, we apply the RSCM to different scenarios. In
this section, we discuss the application of binary/multi-class
weather classification and attribute recognition.

Inference of weather labels regarding Eq. (8) is to obtain
the latent variable V and label y. We use the ICM algorithm
described in Section V-A to solve Eq. (8) for the latent
variable. The solution is denoted as V∗. Then we calculate the
decision score for classification as J (Ws, Wc; V∗, F). When
dealing with binary classification, we identify the input image
as y = 1 if the decision score J (Ws, Wc; V∗, F) > 0,
otherwise y = −1.

When extending this framework to multi-class weather clas-
sification, we apply one-vs-all strategy to train distinct decision
functions of RSCM for all weather categories. For instance,
when training the RSCM for the category “sunny”, we set the
samples from this category as y = 1 and others as y = −1.
Totally we have 6 RSCMs for the weather categories defined
in our dataset. The decision scores computed by independently
trained RSCMs are not in the same scale, which may bias the
eventual prediction. Thus we use scaling [35] to transform the
decision score into a probability. When testing a new image,
we assign the input image to the weather category with the
highest probability of y = 1.

We note our framework can be adapted to weather attribute
recognition. Similar to multi-class classification, we again use
one-vs-all strategy to train a separate RSCM for each attribute.
For a certain attribute, we set the training images with this
attribute as y = 1 and others as y = −1. Repeating this
process, we have RSCMs for all the attributes. Scaling [35] is
also used to compute the probability that predicts an image to
have the corresponding attribute. When testing a new image,

we set a threshold probability. Any attribute with higher
probability than the threshold is regarded as “existence”.

VII. EXPERIMENTS

In this section, we evaluate proposed method on our multi-
class weather and two-class weather [3] datasets with compre-
hensive analysis. We begin with some experimental settings.

Since our RSCM depends in part on the regions parti-
tioned by the co-segmentation tool [26], we randomly select
2,000 images from the training set regardless of weather
categories. We use K-means to partition these 2,000 images
based on HoG [29] and GIST features [10]. 10 groups of
images are produced. The images in each group are used to
train a co-segmentation model.

VGG-16 [36] pre-trained on ImageNet classification [33]
serves as the CNN architecture in our RSCM. It is built on
Caffe platform [37]. Without pre-training, the network yields
9.1% and 15.8% performance drop on weather classification
and attribute recognition tasks respectively. To extract regional
feature, we first perform CFM [30] on the last convolutional
layer of CNN. Then we use a 7×7 spatial pooling to obtain the
fixed-length feature. This feature passes two fully connected
layers to form the eventual 4,096D regional feature.

A. Experiments on Our Weather Classification Dataset

We evaluate our RSCM on our multi-class weather dataset.
We provide 10 training/testing splits. In each split, we ran-
domly select 50% of the data from each weather category for
training and the rest for testing. These splits are used in all
our experiments. Following the evaluation metric of [3], we
report the mean and variance of the normalized classification
accuracy.

1) Sensitivities to Region Generation: Generation of image
regions with the co-segmentation tool [26] is subject to the
number of region clusters. We investigate how sensitive our
method is in the process of region generation, regarding
different settings of region clusters. When evaluating the
performance of RSCM, we diversify the number of the region
clusters M ∈ {3, 6, 9, 12, 15}, and report the classification
accuracy for every case. In each case, we show the average
inference time per image.

In each training split, we further select 50% of the images
for validation. Table I shows the results of our method using
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TABLE I

SENSITIVITIES TO THE NUMBER OF REGION CLUSTERS EVALUATED ON
OUR VALIDATION SETS. “# REGION CLUSTERS” SHOWS THE NUMBER

OF REGION CLUSTERS WHEN WE USE CO-SEGMENTATION.
“AVG. INFERENCE TIME” SHOWS THE AVERAGE

INFERENCE TIME PER IMAGE

TABLE II

CLASSIFICATION ACCURACY (%) OF DIFFERENT COMBINATIONS

OF COMPONENTS ON OUR TEST SETS

different numbers of region clusters on the validation sets.
We note that the time cost is increasing as the number of
region clusters becomes larger. This is because the algorithm
needs more iterations to converge with more region clusters.

We empirically observe that our RSCM performs the best
when M = 12. More region clusters, e.g. M = 15, reduce the
overall classification accuracy. It may be because too many
region clusters produce a lot of tiny regions without useful
information. We thus keep M = 12 in our experiments.

2) Component Analysis: Our joint model consists of selec-
tion and concurrency components. We show they are both
necessary. When removing one of them from the whole
framework, the overall performance drops.

The first experiment is to apply the full version of RSCM.
The classification accuracy is listed in the column RSCM
of Table II. The accuracy is 94.1 ± 0.3.

Then we only incorporate region selection in Eq. (8) in our
RSCM. This case corresponds to removing region concurrency
in the inference and learning phases. We list the classification
results in the column selection of Table II. Compared to the
complete framework, training RSCM only with selection com-
ponent shows inferior classification accuracy. This is because
the update of the CNN is not aware of the regions with high
concurrency. As such, the regional feature extracted with the
CNN provides inaccurate concurrency information. It leads to
degradation of classification performance.

Finally, we remove region selection in Eq. (8). The accura-
cies are listed in the column concurrency of Table II. Though
the CNN is updated with region concurrency in the training
phase, we observe significant performance drop compared
to RSCM. This is because the region concurrency to optimize
CNN is not discriminative enough, without the guidance of
region selection.

These experiments manifest the necessity and usefulness of
both the region selection and concurrency components in terms
of the classification performance.

3) Strategies of Utilizing Regions: In Table III, we com-
pare our method with other strategies of utilizing regions.

TABLE III

CLASSIFICATION ACCURACY ON OUR TEST SETS VIA DIFFERENT
STRATEGIES OF UTILIZING REGIONS. “MAX” AND “AVG”

MEAN MAX AND AVERAGE POOLING. “W/O REGION

CLUSTER” DOES NOT CONSIDER REGION CLUSTERS

WHILE “W/ REGION CLUSTER” DOES

TABLE IV

COMPARISON WITH OTHER METHODS ON OUR TEST SETS

Our method considers different region clusters. It jointly
selects the discriminative regions with high concurrency and
update the model parameters. To show the effectiveness of
exploiting regions, we use the whole image to fine-tune the
VGG-16 and evaluate the performance on our dataset as a
baseline. This is a global strategy because the whole image,
rather than some of the local regions, is used to form the
final feature. The accuracy of this baseline is 91.5 ± 0.2. The
comparison with our method shows that utilizing local regions
is vital to weather classification.

There are two simpler alternatives to utilize local regions.
Initially, we follow the steps of CFM [30] to fine-tune the
classification network using the local regions. We use the
network to extract regional feature. The first alternative is to
use common max and average pooling methods to combine
all regional features regardless of their region clusters. Both
pooling methods generate 4,096D features given an image.
The second alternative considers region clusters. Pooling is
applied to combine regional features of the same class. Then
they are concatenated as a 49,116D (4,096 × 12) feature. The
features generated using the above two alternatives are used
to train a multi-class SVM [38]. These two local strategies, as
shown in Table III, are not optimal for weather classification.
It is because merging all regions rather than selecting useful
ones for classification loses information.

4) Comparisons With Other Methods: In Table IV, we
compare with other widely-used classification methods [2],
[33], [36], [39], [40]. We note that the accuracies yielded by
the non-CNN based methods [2], [39], [40] are left far behind
the CNN-based ones [33], [36]. This is because CNN fits large
image data [41] and transfers the per-trained knowledge to the
weather classification task. Our method takes the advantage of
the pre-trained CNN model. It yields accuracy 94.1 ± 0.3.
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TABLE V

COMPARISON WITH OTHER METHODS ON OUR ATTRIBUTE DATASET

B. Experiments on Our Weather Attribute Dataset

In this part, our RSCM is evaluated on our weather
attribute dataset that contains 5,000 images. We randomly
select 2,500 images for training and the rest for testing. This
process is repeated for 10 times. We follow the previous
attribute recognition tasks [42]–[44] to report the normalized
per-attribute accuracy and their variance. The average accuracy
on all attributes is also reported.

We note the baseline VGG-16 model can be trivially
apply to weather attribute recognition. With this setting, the
sigmoid cross entropy loss is used as the objective to allow
the multiple attributes during training. The VGG-16 model
outputs the independent probability for each attribute. If a
probability exceeds a threshold, it is predicted as being present.
In Figure 14, we compare our RSCM with the baseline
VGG-16 model. We report the average recognition accuracy
under different thresholds. As the threshold increase, we
observe the performance of all methods is improved. This
is because more false positive predictions are rejected by
the higher threshold. When the threshold is too high, some
true positive predictions are missed. It reduces performance.
In this comparison, RSCM performs better than the baseline
VGG-16 model in most cases.

In Table V, we compare our RSCM with other methods.
The features of [2], [39], and [40] are used to train separate
linear SVM [38] for each attribute. The scores output by SVM
are all transformed to probabilities [35]. We also report the
performance of two CNN-based methods [33], [36], which
perform attribute recognition on the whole image. Our RSCM
outperforms other methods. It suggests that the discriminative
regions proposed by our RSCM are vital for the difficult tasks
like weather attribute recognition.

C. Study on Weather Classification and Attribute Recognition

In the above experiments, our RSCM is applied to weather
classification and attribute recognition tasks. In what follows,
we further study our model in these two tasks where RSCM
can effectively mine useful information from one task to help
the other.

In classification, our RSCM is trained for each weather
category. Although our RSCM is originally applied to predict a
single label for each image, it can naturally provide confidence
for all weather conditions. We apply our RSCM trained on
classification set to test on the attribute set. We report the
attribute recognition results using the classification RSCM

TABLE VI

RESULTS OF CLASSIFICATION, ATTRIBUTE AND AUGMENTED

RSCM ON THE ATTRIBUTE DATASET

TABLE VII

RESULTS OF CLASSIFICATION, ATTRIBUTE AND AUGMENTED
RSCM ON THE CLASSIFICATION DATASET

in Table VI. They are with lower accuracy than what the
attribute RSCM produces. Yet we observe the classification
RSCM has relatively high response to existing attributes.
A few examples are shown in Figure 13 with their attribute
confidence. This observation manifests that the classification
set contains useful information. It can be mined to help
attribution recognition. When using both the classification
and attribute sets to train RSCM, the results (listed in row
augmented RSCM of Table VI) are better.

We also apply the attribute RSCM to the classification set.
In this scenario, we select the most confident attribute as
the weather class. The classification accuracy of the attribute
RSCM is listed in Table VII. The result of the attribute RSCM
is already similar to that of classification RSCM, by consid-
ering the fact that the training attribute set (2,500 images) is
smaller than the classification set (30,000 images). It suggests
that the RSCM learning of weather correlation benefits classi-
fication. When combining the classification and attribute sets
for training, our augmented RSCM yields better accuracy as
reported in Table VII. We believe more attribute images can
further strengthen the ability.

D. Experiments on Two-Class Weather Dataset

We evaluate our method on the other weather dataset [3].
This dataset contains 10,000 images divided into two cate-
gories, i.e. sunny and cloudy. We follow the training/testing
scheme of [3] where 80% of the data (4,000 sunny and
4,000 cloudy images) are randomly selected for training
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Fig. 13. Sample images with attribute confidence output from our classification RSCM. We sort the confidence in a descending order.

TABLE VIII

COMPARISON WITH STATE-OF-THE-ARTS ON

TWO-CLASS WEATHER DATASET

Fig. 14. Average accuracies of RSCM and VGG-16 models on our attribute
dataset under different thresholds.

and the rest are for testing in each iteration. We repeat
training/testing for 5 iterations. In addition, we supply the
classification results when using VGG-16. The VGG-16 result
on this dataset is 97.2 ± 0.6. Our method yields 99.6 ± 0.4.

VIII. CONCLUSION AND FUTURE WORK

We have presented a new region selection and concur-
rency model for weather classification and attribute recogni-
tion. It selects discriminative regional features from different

region clusters, while effectively discovering their feature
concurrencies that are common for outdoor images to
understand weather conditions. We have also contributed
a novel multi-class dataset to facilitate study on weather
recognition.

Region selection and concurrency model is the core idea
of this paper. Currently, our model discovers regions from
all region clusters. However, there may exist some clusters
that have little or no discriminative regions. Thus using all
region clusters requires unnecessary overhead to recognize
an image, and some useless regions may even harm the
performance. It makes our method less practical to real-time
applications, e.g., video-based weather recognition. In future
work, we will make generation of region clusters aware of the
weather condition during training. It allows the model to learn
the pattern of useful region clusters. This idea can hopefully
reduce the problematic clusters and increase accuracy of
weather recognition.
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