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Abstract

We address the problem of image segmentation from nat-
ural language descriptions. Existing deep learning-based
methods encode image representations based on the output
of the last convolutional layer. One general issue is that the
resulting image representation lacks multi-scale semantics,
which are key components in advanced segmentation sys-
tems. In this paper, we utilize the feature pyramids inher-
ently existing in convolutional neural networks to capture
the semantics at different scales. To produce suitable infor-
mation flow through the path of feature hierarchy, we pro-
pose Recurrent Refinement Network (RRN) that takes pyra-
midal features as input to refine the segmentation mask pro-
gressively. Experimental results on four available datasets
show that our approach outperforms multiple baselines and
state-of-the-art1.

1. Introduction
Semantic image segmentation is a challenging task that

has gained much attention over past years. Although ex-
isting segmentation methods [24, 2, 36, 35, 20] become in-
creasingly accurate by incorporating Deep Neural Networks
(DNNs) [18, 27, 8, 12] and multi-scale image representa-
tions [6, 21], they are constrained to predict a fixed set of
pre-defined categories. The limited output space for these
methods is insufficient for many real world, language-based
applications where targets are represented by natural lan-
guage expressions.

Recently, there is a surge of interest in combining nat-
ural language processing with visual understanding, in-
cluding image-text retrieval [16, 28, 30], image caption-
ing [13, 29, 32], and visual question answering [1]. Hu et
al. [9] generalized semantic segmentation to the task of re-
ferring image segmentation, which contains a broader set
of categories represented by natural language expressions.

1Code is publicly available at https://github.com/liruiyu/
referseg_rrn.

(a) input image (b) segmentation mask for
people [2]

(c) LSTM-CNN [9] (d) our result
Figure 1. Given an input image (a) and a query “far right
man”, the mask generated by segmentation model (b) is much
more precise than the one generated by LSTM-CNN model (c). (d)
shows the result of our model, which focuses on the entire entity of
interest and has a clear boundary. It is noted that the LSTM-CNN
model, which generates the result in (c), uses the same segmenta-
tion network as [2].

Referring image segmentation, however, is more challeng-
ing than traditional semantic segmentation as it demands a
deeper understanding of the image. For example, to an-
swer the language query “the left two apples on
the table”, an algorithm needs not only to distinguish
among different instances on the table, but also to localize
the two apples on the left.

1.1. Exiting Solutions

Existing methods tackle this problem by first modeling
image and language jointly, then conducting segmentation
based on the combination of both descriptors [9, 10, 23].
Specifically, Long Short Term Memory (LSTM) networks
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encode the given natural language descriptions to vec-
tors, which are followed by Convolutional Neural Network
(CNN) to extract spatial feature maps from corresponding
images. The two resulting features are concatenated with
spatial coordinates [9] or multimodal information [23], and
passed through pixel-wise classification networks to pro-
duce corresponding masks matching language expressions.

These approaches can be interpreted as generating the
foreground masks by looking at a particular combination of
features extracted from images and descriptions. Although
these methods yield notable improvements, the generated
image masks sometimes still fail to capture whole entities.
Moreover, they often produce rougher edge estimation com-
pared to those generated from semantic segmentation mod-
els [24, 36, 2, 35, 20]. Fig. 1 illustrates that segmentation
from combined image and language features is worse than
that with image features alone. One reason is that multi-
scale information, which is vital in semantic segmentation,
is not properly modeled in current systems.

1.2. Our Solution

In this work, we aim to generate higher quality image
masks by incorporating multi-scale information to refine
segmentation results. We note that a simple multi-scale
training and testing strategy is ineffective, since this task
requires the whole image region to be processed at once to
capture the global information referred by natural language.
Thus, we propose Recurrent Refinement Network (RRN),
which takes pyramidal features as input and polishes seg-
mentation masks progressively.

Our model consists of two parts. We first use the LSTM-
CNN model to encode and fuse image and language rep-
resentations, which outputs a rough localization of the in-
terested entity. Then we feed the fused representation and
pyramidal feature to the recurrent refinement module to re-
fine the mask representation over feature hierarchy. The fi-
nal output is a pixelwise foreground mask.

Different from the recurrent multi-modal interaction
model presented in [23] where the internal mask represen-
tation progresses in a word-reading order, our RRN refines
segmentation by adaptively selecting and fusing image fea-
tures at different scales. It mimics the way human solve
this problem – first localizing the entity of interest and then
drawing segmentation masks progressively.

We evaluate the proposed model on four referring seg-
mentation datasets [14, 25, 33]. We explore different re-
current structures and features that are fed into the refine-
ment module, and show that our recurrent model is the best
among them. We also visualize and analyze the internal rep-
resentation and explain how the result improves over time.
Our contribution is threefold.

• We propose RNN for referring image segmentation
that refines the segmentation mask progressively.

• We explore different structures of the model and ex-
plain our feature hierarchy design.

• Our approach achieves state-of-the-art performance on
all the four challenging datasets.

2. Related Work
Referring image segmentation extends semantic segmen-

tation to a wider output space on natural language expres-
sions. In [5], a question-focused semantic segmentation
task was proposed that links visual questions and segmenta-
tion answers. With the recently collected referring expres-
sion datasets [14, 25, 33], Hu et al. [9] first approached the
task of referring image segmentation. They introduced an
end-to-end trainable framework that combines image and
language features and outputs pixel-level segmentation of
the target region. This model was further improved by
utilizing extra large scale vision-only and image-only data
[10]. To encode individual interaction between an image
and each word, a convolutional multimodal LSTM was pro-
posed to capture multimodal information over time [23].

Different from that of [23], our model focuses on refining
segmentation masks recurrently by gradually incorporating
multi-scale information. Our work is specifically related to
the following areas.

Semantic Segmentation Research on semantic segmen-
tation are mostly driven by advancement of Fully Convolu-
tional Networks (FCN) [24]. FCN converts fully connected
layers to fully convolutional ones and uses skip-connection
to sum segmentation scores over multiple scales. To remedy
the down-sampling issue caused by pooling layers, Chen et
al. [2] proposed dilated convolution to preserve the spatial
resolution while maintaining the size of receptive field of
each kernel during convolution. In [20], a multi-path re-
finement network exploits image details at multiple scales
to produce high-resolution segmentation masks. In [35],
a pyramid pooling module fuses features under different
pyramid scales. The proposed model has won first place in
ImageNet Scene Parsing Challenge 2016 [26]. Our method
also makes use of pyramid features for segmentation.

Referring Expression Comprehension and Generation
Referring image segmentation is closely related to localiz-
ing objects in images referred by natural language descrip-
tion. In [11], a framework was proposed to localize the
object based on the description reconstruction loss of each
bounding box proposal. In [25, 33, 34], the task of referring
expression comprehension and generation was generalized
to localize the object referred by expression and generate
the description for each object simultaneously. Maximum
mutual information training generates less ambiguous de-
scription for each object [25]. Yu et al. [33] modeled vi-
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Figure 2. The overall architecture of Recurrent Refinement Network (RRN) designed for referring image segmentation. Here, we adopt
DeepLab ResNet-101 [2] to extract image representation. Hence the inputs (conv3, conv4, and conv5 feature maps) of convolutional LSTM
are with the same spatial resolution.

sual difference among objects to enhance performance. The
method in [34] jointly learns speaker and listener modules
via discriminative reinforcer’s feedback.

Hierarchical Image Features Feature hierarchy is cru-
cial for building object recognition systems [19, 7, 21]. In
[19], the proposed model partitions the image into different
sub-regions and calculates the local descriptor within each
sub-region. Spatial pyramid pooling layers were used in [7]
to pool region features at different scales on the convolu-
tional feature map. In [21], feature pyramids were created
via a top-down path with lateral connection. Predictions
were made independently at different levels after integrat-
ing the multi-scale information. Our method adopts the top-
down path similar to that of [21], and yet uses a recurrent
mechanism to incorporate the pyramid features.

3. Our Model

The overall architecture of our model is illustrated in Fig.
2. Given an input image and a natural language description
as query, our model first uses LSTM and CNN to localize
a rough image region of the target indicated by natural lan-
guage descriptions. Then, we use a recurrent refinement
module to generate a high quality pixel-wise segmentation
mask. In the following, we begin with our motivation, and
elaborate on RRN in Section 3.2. Implementation details
are presented in Section 3.3.

3.1. Motivation

The ultimate goal of referring image segmentation is to
segment a precise foreground mask corresponding to the
queried natural language expression. Previous methods

[9, 10, 23] search for a particular correspondence between
jointly embedded image and language features. While such
correspondences are determined by combining image and
language features, the resulting segmentation is generally
not as precise as that generated by image feature alone, as
shown in Fig. 1.

Another drawback of previous methods is that multi-
scale semantics are not sufficiently captured. Multi-scale
training and testing is infeasible, since language features are
required to interact with image features at every location to
ensure correct prediction. For example, to segment a per-
son on the left of image, rescaling and cropping the image
may fail to capture the whole interested region. We solve
this problem by adopting hierarchical structure to combine
different semantic features in a top-down fashion. Different
from [21], we devise a gated recurrent regime to aggregate
the pyramidal feature, which has the ability to adaptively
select image features at different scales controlled by the
structures called gates.

3.2. Recurrent Refinement Network

Localization To segment a precise mask queried by a nat-
ural language expression, the first step is to localize the cor-
responding image region. Our localization network is based
on the LSTM-CNN model [9]. However, unlike the previ-
ous one, which outputs the final segmentation mask directly,
we use it to generate a rough mask estimation subsequently
refined by the recurrent refinement module.

Given an input image I of size W ×H , our model uses
a CNN to extract a w × h ×DI spatial feature map. Then
we perform l2 normalization on the last dimension of the
feature map to obtain a robust representation. To include the
spatial information, we concatenate a 8D spatial coordinate



akin to the implementation of [9] at each position to produce
a w × h× (DI + 8) image representation.

As for the input natural language description, we encode
each word using one-hot vectors and map it to a word em-
bedding space. Then an LSTM takes one word embedding
at a time to update its hidden states. The final hidden state
s of size DS is considered as the language representation.
Similar to the image feature, we also apply l2-normalization
to the hidden state s.

The language representation s is then concatenated to the
image feature at each spatial location to produce a w× h×
(DI + DS + 8) feature map. We use 1 × 1 convolutional
layer to fuse the concatenated features, resulting in a joint
representation of image, language, and spatial information.
The fused feature q of size w × h×DQ serves as the input
to the following recurrent refinement module.

Recurrent Refinement The fused representation gener-
ated by the localization module finds a rough region of in-
terest. To obtain a more precise result, we adopt a recur-
rent mechanism to leverage pyramidal features and refine
the segmentation mask.

Given a set of feature maps m = {m1,m2, ...,mT }
carrying the semantic information at several scales, where
T is the number of different feature maps, we first resize
them to match the spatial resolution of the fused feature
q. Then each of feature maps is fed to a 1 × 1 convo-
lutional layer followed by non-linear activation function φ
to match the channel dimension DQ. The resulting feature
maps {x1, x2, ..., xT }, corresponding to {m1,m2, ...,mT },
serve as input to the recurrent module.

To refine the fused feature q, we consider it as the initial
hidden state h0 of the recurrent process and let it interact
with the features maps {x1, x2, ..., xT } sequentially. The
tth interaction happens between ht−1 and xt, given by

ht = F (ht−1, xt; θ), (1)

where F represents the function that outputs updated hidden
state ht by taking the previous hidden state ht−1 and current
input xt as input. θ is a set of parameters shared across all
ts. In the case with convolutional LSTM [31], updates take
the following form.

it = σ(Wixt + Uiht−1 + bi) ,

ft = σ(Wfxt + Ufht−1 + bf ) ,

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc) ,

ot = σ(Woxt + Uoht−1 + bo) ,

ht = ot ◦ tanh(ct) , (2)

where σ denotes the sigmoid function and ◦ is the
Hadamard product, i.e., element-wise multiplication. ct is
the internal cell state at the tth time step. it, ft, and ot

are the input gate, forget gate, and output gate respectively.
These gates regulate the current input information before
combining it to the hidden state ht. Wi, Ui, Wf , Uf , Wc,
Uc, Wo, and Uo are parameters of the convolutional opera-
tions. bi, bf , bc, and bo are biases.

After interacting with all the feature maps, the final hid-
den state hT has incorporated multi-scale semantics to pro-
duce better segmentation results. A convolutional layer is
then attached to produce the probability map of foreground
p as

p = sigmoid(Wp ∗ hT + bp). (3)

Training Loss During the course of training, we use bilin-
ear interpolation to upsample p to the same size of the input
image, and minimize the binary cross-entropy loss function
of

L = − 1

WH

W∑
i=1

H∑
j=1

(yij log(pij)+ (1− yij) log(1− pij)),

(4)
where y is the binary ground-truth label.

3.3. Implementation Details

Our recurrent refinement module starts with the lowest
resolution feature map, which encodes the strong semantic
information. We then feed the feature maps to the recurrent
refinement module in a descending order of the levels in
the pyramid. The last feature map is composed of lower-
level information. But its activations are better-localized
and hence become essential for precise edge estimation.

The CNN to extract image feature maps is built upon
DeepLab ResNet-101 [2] pre-trained on Pascal VOC [4],
which reduces the stride of conv4 1 and conv5 1 to 1 and
uses dilated convolution to compensate receptive fields. We
remove the atrous spatial pyramid pooling module and only
use the feature maps of each stage’s last residual block to
create a feature hierarchy m as in [21]. Input images are
resized and zero-padded to W ×H . We choose W = H =
320 in our experiments, which results in a spatial resolution
of 40× 40 in the last feature map.

Follow [23], the LSTM for encoding language represen-
tation has the maximum length of 20, i.e., we keep the first
20 words for each description. The cell size of LSTM is
set to 1, 000. Moreover, both image and language features
have dimension DI = DS = 1, 000. The 1 × 1 con-
volutional layers that map each mt to xt share the same
output dimension DQ = 500, which is identical to the
size of hidden states in the recurrent refinement module.
We choose φ to be the rectified activation function (ReLU)
φ(x) = max(0, x), which, based on our experiments, yields
the best performance. We have also conducted experiments
on different updating functions F , including convolutional
LSTM, vanilla Recurrent Neural Network (RNN), and the



one without sharing weights. Results are presented in Sec-
tion 4.2.

The network is trained in an end-to-end manner using
Adam optimizer [15] with a weight decay of 0.0005. The
initial learning rate is set to 0.00025, to which we apply a
polynomial decay with power of 0.9. CNN is fixed dur-
ing training. We choose batch size 1 and stop training after
700K iterations.

4. Experiments
4.1. Datasets

We evaluate our model on four available referring im-
age segmentation datasets of ReferIt[14], UNC [33], UNC+
[33], and G-Ref [25].

ReferIt dataset was collected [14] in a two-player game,
in which one player clicks on the image region referred by
the other player. It contains 130,525 expressions referring to
96,654 segmented image regions in 19,894 natural images.
It is built upon IAPR TC-12 dataset [3] and consists of both
objects and stuff, e.g., “water” and “ground”. We use
the same splits as in [9].

Both UNC and UNC+ [33] are built on top of MS COCO
dataset [22] using the two-player game [14]. They only con-
tain object segmentation masks and have an average of 3.9
same-type objects per image. In UNC dataset, no restric-
tion is placed on the referring expressions, but the players
in UNC+ are not allowed to use any location word in the
description. Hence UNC+ dataset is more complicated than
UNC since only appearance information is available when
referring to an object. In UNC, there are 142,209 refer-
ring expressions for 50,000 objects in 19,994 images, and in
UNC+, there are 141,564 referring expressions for 49,856
objects in 19,992 images. We follow [33] to use the same
training, validation, and test splits.

G-Ref [25] is also based on MS COCO dataset [22] and
contains only object masks. This dataset was collected on
Mechanical Turk via independent rounds instead of a two-
player game. This collecting strategy results in an average
length of 8.43 words in expression, which is much longer
than expressions in the other three datasets (with average
length less than 4). At least 2 and at most 4 objects of the
same type can appear in a single image. It is composed of
104,560 referring expressions for 54,822 objects in 26,711
images. We use the same splits as in [25].

4.2. Results

Setup We follow the setup of [9] and report two metrics
of overall intersection-over-union (overall IoU) and preci-
sion with different thresholds. Overall IoU calculates the
total intersection area between prediction and ground-truth
divided by total union area accumulative over test sam-
ples. Precision metric measures the percentage of predic-

tions with IoU higher than a pre-defined threshold. We re-
port the results with five different thresholds as in [9].

4.2.1 Ablation Study

We first explore and compare multiple variants in our pro-
posed model, including different updating structures, ways
we build the feature hierarchy, and non-linear activation
functions used after each update. Table 1 summarizes the
results on UNC validation set.

Baseline We re-implement the D-LSTM model [23] with
the help of authors’ code that is publicly available. We
change the kernel size of the last fully convolutional layer
to 3× 3 and use it as our baseline without recurrent refine-
ment (referred to as D-LSTM-ours). Another difference is
that we compute the training loss regarding image resolu-
tion instead of feature resolution. Rows 1 and 2 of Table
1 show the improvement by utilizing a larger-size kernel
on the last fully convolutional layer and a denser loss func-
tion. Our baseline improves the overall IoU by 2.98% and
all precision metrics by 0.9-6.8%. The reason of this im-
provement is twofold. First, a larger size kernel generates
finer edge estimate by exploiting the surrounding informa-
tion. Second, calculating loss regarding image resolution
helps estimate a more precise gradient at each position dur-
ing back-propagation.

Different Feature Pyramids We investigate the effec-
tiveness of incorporating features at different scales in our
model. Specifically, we build feature pyramid m described
in [21] using feature maps from last residual blocks of dif-
ferent stages. We denote CX as the feature map from the
last output of convX . m={C5} implies that we only use C5

to build the feature pyramid. To understand the benefit of
using multi-scale information, we choose a simple updat-
ing function F (ht−1, xt) = a(Wh ∗ ht−1 + Uh ∗ xt + bh),
where a(x) = max(0, x) is ReLU activation function. We
compare the models that utilize different numbers of fea-
ture maps and refer to them as plain structures of our model
without sharing weights.

Rows 2 to 7 of Table 1 demonstrate the impact of incor-
porating features at different scales. We obtain improved
performance when we gradually feed C5, C4, C3 features
to the network, but it starts to deteriorate when we combine
lower-level features (C2 and C1). This analysis indicates
while the activations in lower-level feature map are better-
localized, lack of semantics may cause ambiguity when
combining them with higher-level features. Nevertheless,
incorporating multi-scale information is beneficial, which
can be seen from the comparison between baseline in row 2
and the models utilizing feature pyramids in rows 3-7.



Model prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 ovreall IoU

1 D-LSTM [23] (reproduced) 40.57 28.91 18.08 7.14 0.91 43.51
2 D-LSTM-ours 45.49 35.79 24.27 11.93 1.88 46.49

3 Plain, m={C5} 46.82 36.47 25.25 12.25 1.67 46.87
4 Plain, m={C5, C4} 49.66 39.78 28.36 15.87 3.10 48.56
5 Plain, m={C5, C4, C3} 51.84 42.36 30.64 17.39 3.84 49.74
6 Plain, m={C5, C4, C3, C2} 49.99 40.30 29.68 17.21 4.40 48.97
7 Plain, m={C5, C4, C3, C2, C1} 49.19 38.92 28.12 16.07 3.80 48.30

8 FPN, m={C5, C4, C3} 33.83 25.42 16.79 7.94 1.17 39.31
9 RNN, m={C5, C4, C3} 49.85 40.22 29.49 16.62 4.05 48.86

10 RNN, m={C5, C4, C3}, a=tanh 46.34 37.63 27.56 15.81 3.38 46.35
11 LSTM, m={C5, C4, C3} 56.88 47.05 36.05 20.82 4.79 52.48
12 LSTM, m={C5, C4, C3}, a=tanh 60.19 50.19 38.32 23.87 5.66 54.26
13 LSTM, m={C5, C5, C5}, a=tanh 56.27 45.31 32.67 17.48 2.53 51.41
14 LSTM, m={C5, C4, C5}, a=tanh 58.56 48.36 36.23 21.43 4.31 52.81
15 LSTM, m={C3, C4, C5}, a=tanh 59.65 49.64 37.00 22.06 4.69 53.81

Table 1. Results of different variants of our proposed model on UNC [33] validation set. We compare different updating structures and
pyramidal features fed to our model. m refers to the set of feature maps used to build the feature hierarchy. a=tanh indicates the non-linear
function used after each update.

Fig. 3 shows the segmentation masks predicted from
models with different feature pyramids. It is obvious that
the boundary of right zebra, especially the part between
legs, becomes clearer as the model combines more infor-
mation from different scales. We note that the ground truth
annotation misses one leg of the zebra, which is however
revealed by our model. Overall, our model with feature
pyramid m={C5, C4, C3} (row 5) yields an improvement
of 3.25% over the baseline on the overall IoU metric.

Different Updating Functions Given the practice of us-
ing feature pyramidm={C5, C4, C3}, we then compare per-
formance of employing different updating functions in Ta-
ble 1 (rows 8-12). FPN refers to the combination strategy
used in [21] where the element-wise addition of ht−1 and xt
serves as the output. RNN is a recurrent counterpart of the
plain structure where the weights of updating function are
shared. LSTM refers to the convolutional LSTM with three
gates regulating input, output, and internal information.

We first observe that applying the FPN-like connecting
module directly results in notable deterioration on all met-
rics. We believe this is because the original FPN [21] fo-
cuses on object detection and generating segmentation pro-
posals. So this simple structure is not applicable to the re-
ferring image segmentation task. Rows 5 and 9 show that
sharing the weights of the updating function causes slight
performance degradation. However, replacing the updat-
ing function with more sophisticated LSTM (in row 11)
significantly improves the performance by 3.62% on over-
all IoU metric. The performance gap between LSTM and
RNN demonstrates the effectiveness of the gated mecha-
nism when combining different input information. Regular-

ized by these gates, LSTM has the ability to adaptively add
or remove features at different scales, and finally retains in-
formation useful for generating final segmentation results.

We notice that changing the activation to tanh leads to
1.78% improvement for convolutional LSTM model (in row
12), and 2.51% performance drop for RNN structure (in row
10) on overall IoU metric. We thus use ReLU for RNN and
tanh for convolutional LSTM in the rest of our paper.

We have analyzed the convolutional LSTM with feature
pyramid m={C5, C4, C3}. We now explore setting differ-
ent input orders of the feature pyramid since the weights of
the updating function are shared. Specifically, we compare
models with the same number of updates but with different
set of pyramidal features.

As expected, using C5 alone (row 13) leads to a drop
of 2.85% on overall IoU metric. Using C5 and C4 (row
14) obtains a better result. Yet it is still inferior to the one
that utilizes more information at different scales (row 12).
These results confirm that our gated recurrent structure in-
deed benefits from capturing multi-scale information. Fi-
nally, we find that the model with the inverse order of fea-
ture pyramid (row 15) yields slightly worse performance.

4.2.2 Comparison with State-of-the-arts

We compare the performance of different architectures of
our model against state-of-the-arts on the four datasets
[14, 33, 25] in Table 2. Here, we only present the overall
IoU due to page limit. The full table is presented in the
supplementary material. Note that we use the same set of
hyper-parameters as explained in Section 3.3 across all the
datasets.



(a) input image (b) ground truth (c) baseline (d) m={C5} (e) m={C5, C4} (f) m={C5, C4, C3}
Figure 3. Segmentation masks generated by different models for the query “zebra right side”. Notice how our model gradually
refines the segmentation mask by combining features at different scales.

ReferIt UNC UNC+ G-Ref
test val testA testB val testA testB val

LSTM-CNN [9, 10] 48.03 - - - - - - 28.14
DeepLab+RMI [23] 57.34 44.33 44.74 44.63 29.91 30.37 29.43 34.40
DeepLab+RMI+DCRF [23] 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

RRN (with plain structure) 60.66 49.74 51.31 49.49 32.73 34.61 29.86 34.43
RRN (with vanilla RNN) 60.86 48.86 49.79 48.68 32.84 34.63 29.96 33.92
RRN (with LSTM) 63.12 54.26 56.21 52.71 39.23 41.68 35.63 36.32
RRN (with LSTM, DCRF) 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

Table 2. Experimental results of overall IoU metric on different datasets. For all our models, we use feature pyramid m={C5, C4, C3}.
DCRF refers to applying DenseCRF [17] to post-process the segmentation results.

Our model incorporating multi-scale information with
plain structure already outperforms state-of-the-art by 0.3-
5.6% on ReferIt, UNC, and UNC+ datasets. We note that
G-Ref is much more complicated than other datasets due to
the longer descriptions used for object referral. Hence fus-
ing features over the word sequence in the RMI model [23]
yields better performance. Nevertheless, our plain struc-
tured model performs on par with the state-of-the-art with-
out applying DenseCRF [17]. This manifests the effective-
ness of combining features at different scales.

Employing convolutional LSTM substantially boosts the
performance. The most significant improvement is on the
testA split of UNC and UNC+ dataset, with absolute im-
provement of 11.57% and 11.67% respectively. It is be-
cause the referring expressions on testA split only contain
people, which is easier to segment since our CNN is pre-
trained on Pascal VOC [4]. The huge performance gap be-
tween UNC and UNC+ also demonstrates the importance
of location words in the description for this referring im-
age segmentation task. Our overall system after applying
DenseCRF achieves the best performance.

4.2.3 Qualitative Analysis

To understand how our model learns to refine the segmenta-
tion results over feature hierarchy, we visualize the internal
representation of convolutional LSTM after each time it in-
teracts with input features.

Visualization is created by normalizing the strongest ac-
tivated channel of hidden state and upsampling back to the
same size of the input image. Fig. 4 shows the results. We

take the first case as an example, given the query expres-
sion “the white wall”, the response first spreads over
most of the image (column 3). Then it gradually pinpoints
to the queried region after combining new information as
illustrated in columns 4 and 5. The last feature map focuses
on the region of interest and has a clear boundary, which is
essential for producing a precise segmentation mask. This
figure illustrates that our model is capable of ruling out ir-
relevant image regions adaptively.

Fig. 5 presents the segmentation masks generated by dif-
ferent variants of our model on the four datasets. Our model
with convolutional LSTM produces the best segmentation
results, manifesting the importance of integrating multi-
scale information with an appropriate refining scheme. We
show more examples in the supplementary material.

5. Conclusion

We have proposed the recurrent refinement networks for
referring image segmentation. Our model learns to adap-
tively incorporate information from a feature pyramid to
generate precise segmentation results. We present complete
analysis of the variants of our proposed model. On the four
available datasets, our model significantly outperforms pre-
vious state-of-the-arts. Visualization of internal represen-
tation demonstrates the ability of our model to refine the
segmentation masks gradually. Future work includes adapt-
ing this framework to general semantic segmentation or in-
stance segmentation tasks.



query = “the white wall”

query = “water”

query = “tree”

Figure 4. Visualization of the internal representation inside convolutional LSTM. From left to right, we show input images, ground truth
masks, the strongest activated channel of hidden states after combining C5, C4,C3 features, and the predicted masks. Our model has the
ability to refine the internal representation after each time it interacts with a new input feature.

query = “building”

query = “giraffe front”

query = “kid”

query = “the little kid holding a racket”

Figure 5. Segmentation results generated by different models. From left to right, we show input images, ground truth masks, and results
from baseline, plain structure, RNN, and LSTM respectively. From top to down, we show the samples from ReferIt, UNC, UNC+, and
G-Ref datasets.
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