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Definition

Machine recognition of objects is the task of locating
and recognizing a given object in an image and con-
sists of the following steps: object detection, feature
extraction, and recognition.

Background

Early computer vision recognition schemes focused
primarily on the recognition of rigid three-dimensional
(3D) objects, such as machine parts, tools, and cars.
This is a challenging problem because the same object
can have markedly different appearances when viewed
from different directions. It proved possible to deal
successfully with this difficulty by using detailed 3D
models of the viewed objects, which were compared
with the projected 2D image (e.g., [14, 18, 33]). Over
the last decade or so, computational models have made
significant progress in the task of recognizing natural

object categories under realistic, relatively uncon-
strained viewing conditions. Within object recognition,
it is common to distinguish two main tasks: identifica-
tion, for instance, recognizing a specific face among
other faces, and categorization, for example, recogniz-
ing a car among other object classes. We will discuss
both of these tasks below and use “recognition” to
include both.

The qualitative improvement in the performance of
recognition models can be attributed to three main
components. The first is the use of extensive learning
in constructing recognition models. In this framework,
rather than specifying a particular model, the scheme
starts with a large family of possible models and
uses observed examples to guide the construction of
a specific model which is best suited to the observed
data. The second component was the development of
new forms of object representation for the purpose
of categorization, based on both computational con-
siderations and guidelines from known properties of
the visual cortex. These two components, representa-
tion and learning, are interrelated: initially, the class
representation provides a family of plausible models,
and effective learning methods are then used to con-
struct a particular model for a novel class such as
“dog” or “airplane” based on observed examples. The
third component was the use of new statistical learn-
ing techniques, such as regularization classifiers (SVM
and others) and Bayesian inference (such as graphi-
cal models). We next discuss each of these advances
in more detail.

Learning instead of design. A conceptual advance
that facilitated recent progress in object recognition
was the idea of learning the solution to a specific
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classification problem from examples, rather than
focusing on the classifier design. This was a marked
departure from the dominant practices at the time:
instead of an expert program with a predetermined set
of logical rules, the appropriate model was learned
and selected from a possibly infinite set of models,
based on a set of examples. The techniques used in
the 1990s originated in the area of supervised learning,
where image examples are provided together with the
appropriate class labels (e.g., “face” or “non-face”). A
comprehensive theory of the foundations of supervised
learning has been developed, with roots in functional
analysis and probability theory [6, 26, 27, 36]. The
formal analysis of learning continues to evolve and to
contribute to our understanding of the role of learning
in visual recognition.

New image representations. A recognition scheme
typically extracts during learning a set of measure-
ments or “features” and uses them to construct new
object representations. Objects are then classified and
recognized based on their feature representation. Fea-
ture selection and object representation are crucial,
because they facilitate the identification of elements
that are shared by objects in the same class and sup-
port discrimination between similar objects and cat-
egories. Different types of visual features have been
used in computational models in the past, ranging from
simple local-image patterns such as wavelets, edges,
blobs, or local-edge combinations to abstract three-
dimensional shape primitives, such as cylinders [21],
spheres, cubes, and the like [4].

A common aspect of most past recognition schemes
is that they use a fixed small generic set of feature
types to represent all objects and classes. In con-
trast, recent recognition schemes use pictorial features
extracted from examples, such as object fragments
or patches, together with their spatial arrangement
[1, 3, 19, 30]. Unlike generic parts, these schemes use
a large set of features, extracted from different classes
of objects. The use of large feature sets is also con-
nected to an interesting new trend in signal processing,
related to “over-complete” representations. Instead of
representing a signal in terms of a traditional complete
representation, such as Fourier components, one uses
a redundant basis (such as the combination of several
complete bases).

Representations using such features have been used
successfully in recent computer vision recognition

systems for two reasons. First, these representations
can be learned and used efficiently; second, they
proved to capture effectively the broad range of vari-
ability in appearance within a visual class.

An additional comment is appropriate. The repre-
sentations described above are view based, as opposed
to object-centered models. A representation based on
image appearance can include not only 2D image prop-
erties but also 3D aspects such as local depth variations
or 3D curvature.

New statistical learning methods. Over the last few
years, the mathematics of learning has become the
“lingua franca” of large areas of computer science and,
in particular, of computer vision. As we discussed,
the use of a learning framework enabled a qualita-
tive jump in object recognition. Whereas the initial
techniques used to construct useful classification mod-
els from data were quite simple, there are now more
efficient algorithms originally introduced in the area
of learning in the 1990s such as regularization algo-
rithms (also called kernel machines), which include
SVM [35, 36] and boosting [12]. By now, the area
of learning has grown to include, in addition to dis-
criminative algorithms, probabilistic approaches with
the goal of providing full probability distributions as
solutions to object recognition tasks. These techniques
are mostly Bayesian and range from graphical mod-
els [13, 15] to hierarchical Bayesian models [16, 17].
At the same time, the focus of research is shifting
from supervised to unsupervised and semisupervised
learning problems, using techniques such as manifold
learning [2]. Semisupervised problems, in which the
training set consists of a large number of unlabeled
examples and a small number of labeled ones, are
gaining attention.

Application

A number of early schemes, mainly focusing on the
class of human faces, obtained significant improve-
ment over previous methods [5, 29, 31, 32, 38].
The techniques have evolved to reach practical
applications, as evidenced by their use in current
digital cameras. The more recent versions of these
computational schemes have started to deal success-
fully with an increasing range of complex object
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categories such as pedestrians, cars, motorcycles, air-
planes, horses, and the like, in unconstrained natural
scenes, to deal with a broad range of objects within
each class (e.g., [1, 8, 19, 22–24, 30, 34, 39]). The algo-
rithms that were refined over the last few years can deal
successfully with a large number of different object
classes, in complex and highly cluttered scenes. They
are being applied to databases of hundreds [9] and even
thousands of object classes [7]. Yearly competitions in
computer-based recognition, such as the Pascal chal-
lenge [25, 28], witness continuous improvement in the
range of classes and in scene complexity successfully
handled by automatic object categorization algorithms
[10, 11, 37].
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Synonyms

Error-correcting graph matching; Error-tolerant graph
matching; Inexact matching; Transportation problem

Definition

When objects exhibit large within-class variation
and/or when image features are under- or over-
segmented, the image features extracted from two
exemplars belonging to the same category may no
longer be in one-to-one correspondence but, in gen-
eral, many-to-many correspondence. If the features are
structured, i.e., captured in a graph, then computing
the correct correspondence can be formulated as a
many-to-many graph matching problem.

Background

The matching of image features to object models is
typically formulated as a one-to-one assignment prob-
lem, based on the assumption that for every salient
image feature belonging to the object to be matched,
e.g., SIFT feature, image patch, contour fragment,
there exists a single corresponding feature on the
model (and vice versa). While the one-to-one corre-
spondence assumption has been prevalent in the object
recognition community throughout its entire evolution,
including the paradigms of graph matching [9], align-
ment [13], geometric invariants [11], local appearance
[14], and a recent return to local contour-based fea-
tures [8], one-to-one feature correspondence is a highly
restrictive assumption that breaks down as within-class
variation increases and as the segmentation and extrac-
tion of more abstract image features suffer from over-
or under-segmentation [7]. In the more general case,
feature correspondence is not one-to-one, but rather
many-to-many. If a feature set is described by a graph,
with nodes representing features and edges captur-
ing pairwise relations between features, computing the
correct many-to-many feature correspondence can be
formulated as many-to-many graph matching.

Consider two simple examples, shown in Fig. 1.
In Fig. 1a, a set of multiscale blobs and ridges have
been extracted from two exemplars (humans) belong-
ing to the same category. In the top image, the straight
arm yields a single elongated ridge, while in the
bottom image, the bent arm yields two smaller and
coterminating elongated ridges. In this case, simple
object articulation (a form of within-class variation)
has led to a violation of the one-to-one correspondence
assumption. Instead, the correspondence is clearly
two-to-one; enforcing one-to-one correspondence will
lead to an incorrect matching of the entire arm to
either the upper or lower arm, e.g., the red high-
lighted features. In Fig. 1b, two region segmentations
of two exemplars belonging to the same class yield a
set of region correspondences that are rarely one-to-
one, but more typically many-to-many. Once again,
enforcing a one-to-one feature correspondence will
ensure an incorrect matching, and will miss the correct
correspondence.

The problem of computing a one-to-one correspon-
dence between a model feature graph and a cluttered
image graph can be formulated as a largest isomor-
phic subgraph problem, whose complexity is NP-hard.

http://dx.doi.org/10.1007/978-0-387-31439-6_100286
http://dx.doi.org/10.1007/978-0-387-31439-6_100287
http://dx.doi.org/10.1007/978-0-387-31439-6_100288
http://dx.doi.org/10.1007/978-0-387-31439-6_100285
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a b

Many-to-Many Graph Matching, Fig. 1 Two graph matching
problems in computer vision for which assuming a one-to-one
feature correspondence will lead to incorrect correspondences,
and which can only be solved if formulated as a many-to-many
graph-matching problem. In (a), a multiscale blob and ridges
decomposition [17] of the two humans yields a single ridge
for the extended arm (top) and two coterminating ridges for
the bent arm (bottom). In this example, articulation has vio-
lated the one-to-one feature correspondence assumption; if a

one-to-one correspondence is enforced for the arm, e.g., the
red highlighted features, it will be incorrect. In this case, the
correspondence should be two-to-one (or more generally, many-
to-many). In (b), two different cup exemplars (bottom row) have
been region segmented (top row), yielding regions that are rarely
in one-to-one correspondence (due to within-class variation or
region over- and/or under-segmentation). Once again, the correct
correspondence is not one-to-one, but rather many-to-many

The complexity of the many-to-many matching prob-
lem is even more prohibitive, for the space of possi-
ble correspondences is greater (any subset of features
in the image may match any subset of features on
the model). The intractable complexity of the many-
to-many matching problem can only be reduced by
exploiting the types of regularities suggested by the
perceptual grouping community, such as proximity,
continuity, conservation of mass, etc. In what follows,
a formal statement of the problem is introduced, and a
number of approaches to its solution is reviewed.

Theory

The main objective of the many-to-many graph match-
ing problem is to establish a minimum cost mapping
between the vertices of two attributed, edge-weighted

graphs. In an attribute-weighted graph G D .V;E/, let
L.v/ denote the set of attributes associated with v 2 V .
Given a subset U � V , let L.U / D [u2UL.u/. For a
set U � V , let GjU denote the subgraph of G induced
on the vertices in U , and let w.u; v/ denote the weight
of an edge .u; v/ 2 E . Finally, let P.G/ denote the
power-set 2V for the vertex set of G. A many-to-many
mapping between two graphs G1 D .V1; E1/ and
G2 D .V2; E2/ is a mapping among power-sets P.G1/

and P.G2/ and can be characterized as a function:

M W .P.G1/ � P.G2// ! f0; 1g: (1)

For two sets, U 2 P.G1/ and V 2 P.G2/, there will
be a cost C.L.U /;L.V // associated with mapping the
labels in set L.U / to those in L.V /. An example of a
common cost function is the edit-distance between the
labels in setsL.U / andL.v/. LetS.G1jU ;G2jV / denote
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the structural distance between induced subgraphsG1jU
andG2jV . Observe that every mappingM has a natural
representation as a matrix, with MU;V D 1 if the sets
U 2 P.G1/ and V 2 P.G2/ are mapped to each other
under M, and MU;V D 0 otherwise. Combining these
two cost functions will result in the cost functionC.M/

associated with the mappingM:

C.M/ D
X

U2P.G1/;V 2P.G2/

MU;V (2)

� C.L.U /;L.V // � S.G1jU ;G2jV /:

In defining an optimal many-to-many matching
between two attributed graphs, G1 and G2, a many-to-
many mapping M� of minimum cost C.M�/ subject
to specific requirements on the structure or cardinal-
ity of M� will be obtained. For example, to prevent
a trivial solution that sets MU;V D 0, for all U

and V , one can require a matching such that its car-
dinality, i.e.,

P
U;V MU;V , exceeds a threshold while

minimizing C.M/. Other functions, such as maxi-
mizing the number of vertices from V1 and V2 that
participate in M, can be used to evaluate the quality of
the mapping. Note that cost functions C.L.U /;L.V //

and S.G1jU ;G2jV / may be used to enforce constraints
such as consistency of mapped labels, limits of feasi-
ble label mappings, or allowed structural mapping of
induced graphs G1jU and G2jV by imposing arbitrary
large values or by being ill-defined.

The above description of the many-to-many match-
ing results in an intractable computational problem.
First, due to the exponential size of power-sets P.V1/

and P.V2/ in terms of number of vertices in G1 and
G2, the size of the search space for the many-to-many
matching problem is exponential. Even simplifying
the problem to one-to-one mappings, by replacing
the power-sets P.V1/ and P.V2/ with sets V1 and
V2, respectively, will result in the multidimensional
matching problem that is known to be NP-complete for
arbitrary labeled graphs.

RelatedWork

Many-to-many graph matching has been studied exten-
sively in a variety of contexts, including graph edit
distance [2, 16], spectral methods [4, 18], optimiza-
tion problems [20], metric embedding [6], abstract
models [10], and grammars [1, 21]. The classical

formulation of graph edit distance introduces a set
of graph edit operations, such as insertion, deletion,
merging, splitting, and substitution of nodes and edges.
Given a set of graph edit operations and a cost func-
tion, the objective is to find the lowest cost sequence of
graph edit operations that transform one graph into the
other. The edit distance between two graphs critically
depends on the costs of the underlying edit operations;
typically, lower costs are assigned to the most fre-
quent edit operations. A number of approaches have
addressed the problem of defining an appropriate cost,
e.g., [3].

Many-to-many graph matching has also been stud-
ied in the context of spectral methods by examining
the spectral properties of graph adjacency matrices.
In [4], the authors present an approach based on
renormalization projections of vertices into a common
eigensubspace of two graphs. Instead of finding the
overall similarity of two graphs from the positions
of vertex projections, this approach uses an agglom-
erative hierarchical clustering technique to produce
many-to-many vertex correspondences.

Another spectral method is due to [18, 19], which
constructs a low-dimensional “signature” of a directed
graph’s “shape” from the magnitudes of the eigenval-
ues of the graph’s adjacency matrix. The eigenvalues
are invariant to the reordering of a graph’s branches
and are shown to be robust under minor structural per-
turbation of the graph. This vector can be used for
both structural indexing and for matching in the pres-
ence of noise and occlusion. If two signatures (vectors)
are close, their corresponding (sub)graphs, possibly
having different cardinalities, are in many-to-many
correspondence.

Recently, the approach presented in [20] formu-
lates the many-to-many graph matching problem as
a discrete optimization problem. The algorithm starts
by extending the optimization problem for one-to-one
matching to the case of many-to-one matching. The
algorithm then obtains many-to-many vertex cor-
respondences through two many-to-one mappings.
Since this formulation of the many-to-many matching
requires the solution of a hard optimization prob-
lem, the authors propose an approximate algorithm
based on a continuous relaxation of the combinatorial
problem.

The concept of a low-distortion graph embed-
ding has been used to obtain many-to-many vertex
correspondences [6]. Specifically, low-distortion graph
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embedding is employed to transform the problem of
many-to-many graph matching to a many-to-many
point matching problem in a geometric space. This
transformation maps nodes to points and edge weights
to interpoint distances, not only simplifying the orig-
inal graph representation (by removing the edges),
but also retaining important local and global graph
structure; moreover, the transformation is robust under
perturbation. Representing two graphs as sets of points
reduces the many-to-many graph matching problem to
that of many-to-many point matching in the geometric
space, for which a number of efficient distribution-
based similarity measures are available. The authors
use the Earth Mover’s Distance [15] algorithm to
find such correspondences and show that the result-
ing many-to-many point matching realizes the desired
many-to-many matching between the vertices of the
input graphs.

A number of researchers, e.g., [10, 12] and [5], have
explored many-to-many graph matching in the context
of model-based abstraction from images. The work
presented in [10] starts by forming a region adjacency
graph from each image. The approach then searches
the space of pairwise region groupings in each graph,
forming a lattice. Each input image yields a lattice
such that its bottom node represents the original region
adjacency graph and its top node represents the silhou-
ette of the object. The framework defines a common
abstraction as a set of nodes, one per lattice, such that
for a pair of nodes, their corresponding graphs are iso-
morphic. The lowest common abstraction (LCA) is
defined as the common abstraction whose underlying
graph has the maximum number of nodes. Thus, the
resulting LCA carries the most informative abstraction
common to each image. Although effective, this tech-
nique does not find a match between two graphs whose
common abstraction does not exist.

The two algorithms presented in [12] and [5] use
the many-to-many graph matching technique of [6]
for automatically constructing an abstract model from
examples. The work in [12] computes the multi-
scale ridge/blob decomposition (AND-OR) graph for
each input image and obtains the many-to-many node
correspondences between each pair of graphs, yield-
ing a matching matrix. By exploring this matrix, the
algorithm first finds features that match one-to-one
across many pairs of input images. The many-to-many
matchings between these features are then analyzed
to obtain the decompositional relations among them.

The extracted features and their relations are used to
construct the final abstract model.

After obtaining many-to-many node correspon-
dences based on [6], the algorithm in [5] computes
the abstracted medial axis graph by first computing
the averages of the corresponding pairs of subgraphs
to yield the nodes in the abstracted graph, and then
defining the overall topology of the resulting abstract
parts to yield the relations. Each matching pair of sub-
graphs corresponds to a single node in the abstracted
graph, and two abstracted nodes are connected by an
edge if the corresponding subgraphs are adjacent in the
original graphs. This procedure forms the basis of an
iterative framework in which pairs of similar medial
axis graphs are clustered and abstracted, yielding a set
of abstract medial axis graph class prototypes.

In the domain of grammars, objects are represented
as variable hierarchical structures. Each part in this
representation can be defined in terms of other parts,
allowing an object to be modeled by its coarse-to-fine
appearance. Overall, grammar-based models includ-
ing AND-OR graphs support structural variability. To
represent intra-category variation and to account for
many-to-many correspondence, the grammar creates a
large number of configurations from a small vocabu-
lary set. To scale to a large number of object categories,
the AND-OR graph, learning, and inference algorithms
are defined recursively. Some examples of this type of
approach include [1, 21].

Experimental Results

In this section, some example results from some of
the many-to-many matching approaches described in
the Related Work section are illustrated. After rep-
resenting silhouettes as skeleton graphs in Fig. 2,
the algorithm proposed in [6] obtains many-to-many
node correspondences through metric embedding, as
discussed earlier. Based on the many-to-many cor-
respondences of this algorithm, Fig. 3 demonstrates
an example for the abstract shape created by the
approach presented in [5]. The left part presents input
silhouettes, their skeleton graphs, and many-to-many
correspondences. The right part presents the abstract
skeleton graph and its shape reconstructed from this
graph.

Graph edit distance is another important class of
many-to-many graph matching algorithms. Figure 4
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Many-to-Many Graph Matching, Fig. 2 Example many-to-
many correspondences computed by [6]. After representing two
silhouettes as skeleton graphs, the graphs are embedded into
geometric spaces of the same dimensionality. The embedded

points are then matched using the Earth Mover’s Distance algo-
rithm. The right part illustrates the many-to-many correspon-
dences between the vertices of the input graphs. Each dashed
ellipsoid represents a set of vertices from the original graph

Many-to-Many Graph Matching, Fig. 3 A shape abstrac-
tion example of [5] based on many-to-many correspondences
obtained by [6]. The left image shows input silhouettes and their
skeleton graphs in which the same color is used to show the

corresponding parts. Using these correspondences, the abstract
skeleton graph and its silhouette are created as shown on the
right

Many-to-Many Graph Matching, Fig. 4 Graph edit distance
algorithms compute many-to-many correspondences of a pair of
graphs by finding the lowest cost sequence of graph edit opera-
tions needed to transform one graph into another. In the example,

same colors indicate the matching skeleton parts, while gray col-
ors show spliced or contracted edges (The example is taken from
Ref. [16])
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shows the result of matching the skeleton graphs for
two input shapes using the graph edit distance algo-
rithm described in [16]. Same colors indicate the
matching skeleton parts while gray colors show spliced
or contracted edges. Observe that the many-to-many
correspondences are intuitive in these figures.

References

1. Bunke H (1982) Attributed graph grammars and their appli-
cation to schematic diagram interpretation. IEEE Trans
Pattern Anal Mach Intell 4:574–582

2. Bunke H (1997) On a relation between graph edit distance
and maximum common subgraph. Pattern Recognit Lett
18(8):689–694

3. Bunke H, Shearer K (1998) A graph distance metric based
on the maximal common subgraph. Pattern Recognit Lett
19:255–259

4. Caelli T, Kosinov S (2004) An eigenspace projection clus-
tering method for inexact graph matching. IEEE Trans
Pattern Anal Mach Intell 26:515–519

5. Demirci F, Shokoufandeh A, Dickinson S (2009) Skeletal
shape abstraction from examples. IEEE Trans Pattern Anal
Mach Intell 31:944–952

6. Demirci F, Shokoufandeh A, Keselman Y, Bretzner L,
Dickinson S (2006) Object recognition as many-to-many
feature matching. Int J Comput Vis 69(2):203–222

7. Dickinson S (2009) The evolution of object categorization
and the challenge of image abstraction. In: Dickinson S,
Leonardis A, Schiele B, Tarr M (eds) Object categoriza-
tion: computer and human vision perspectives. Cambridge
University Press, New York, pp 1–37

8. Ferrari V, Jurie F, Schmid C (2010) From images to
shape models for object detection. Int J Comput Vis 87(3):
284–303

9. Fischler MA, Eschlager RA (1973) The representation
and matching of pictorial structures. IEEE Trans Comput
22(1):67–92

10. Keselman Y, Dickinson S (2005) Generic model abstrac-
tion from examples. IEEE Trans Pattern Anal Mach Intell
27(7):1141–1156

11. Lamdan Y, Schwartz J, Wolfson H (1990) Affine invariant
model-based object recognition. IEEE Trans Rob Autom
6(5):578–589

12. Levinshtein A, Sminchisescu C, Dickinson S (2005) Learn-
ing hierarchical shape models from examples.In: Proceed-
ings of the EMMCVPR, St. Augustine. Springer, Berlin,
pp 251–267

13. Lowe D (1985) Perceptual organization and visual recogni-
tion. Academic, Norwell

14. Lowe D (2004) Distinctive image features from scale-
invariant keypoints. Int J Comput Vis 60(2):91–110

15. Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s
distance as a metric for image retrieval. Int J Comput Vis
40(2):99–121

16. Sebastian T, Klein P, Kimia B (2004) Recognition of shapes
by editing their shock graphs. IEEE Trans Pattern Anal
Mach Intell 26:550–571

17. Shokoufandeh A, Bretzner L, Macrini D, Demirci MF,
Jönsson C, Dickinson S (2006) The representation and
matching of categorical shape. Comput Vis Image Underst
103(2):139–154

18. Shokoufandeh A, Macrini D, Dickinson S, Siddiqi K,
Zucker SW (2005) Indexing hierarchical structures using
graph spectra. IEEE Trans Pattern Anal Mach Intell
27(7):1125–1140

19. Siddiqi K, Shokoufandeh A, Dickinson S, Zucker S (1999)
Shock graphs and shape matching. Int J Comput Vis 30:
1–24

20. Zaslavskiy M, Bach F, Vert J (2010) Many-to-many
graph matching: a continuous relaxation approach. Lecture
Notes in Computer Science, http://arxiv.org/abs/1004.4965,
DBLP, http://dblp.uni-trier.de 6323:515–530

21. Zhu S, Mumford D (2006) A stochastic grammar of images.
Found Trends Comput Graph Vis 2:259–362

Matte Extraction

Jiaya Jia
Department of Computer Science and Engineering,
The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong, China

Synonyms

Digital matting; Pulling a matte

Definition

An alpha matte has the same size as the input image.
It contains respective weights to linearly blend latent
foreground and background colors for each pixel to
form the observed color. Estimating the alpha matte
together with the foreground color image is generally
referred to as matte extraction or digital matting.

Background

Classifying each pixel in an input image to either fore-
ground or background is called binary segmentation,
which is a fundamental computer vision problem. Dig-
ital matting relaxes the hard separation assumption

http://arxiv.org/abs/1004.4965
http://dblp.uni-trier.de
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and takes ubiquitous foreground and background
color blending in image formation, which happens
along almost all object boundaries, into consideration.
Results from matte extraction can be used to generate
a new composite.

Color blending in natural images has a variety
of causes, such as color interpolation during image
production and light photons received by the cam-
era sensor containing both background and foreground
color for some pixels. Without additional informa-
tion, digital matting is an ill-posed problem with many
unknowns. So generally, either multiple frames are
taken or a certain amount of user interaction is involved
to sample foreground and background color in image
and video matting.

Theory

In the digital matting framework, separating the back-
ground image B and foreground image F with respect
to an alpha matte ˛ from an input natural image I is
expressed as

I D ˛F C .1 � ˛/B: (1)

If ˛.x; y/ D 1, the pixel with coordinate .x; y/ is def-
initely in the foreground. ˛.x; y/ being 0 defines an
absolutely background pixel. ˛.x; y/ can also be in
between 0 and 1, indicating a certain level of color
mixing. Digital matting aims to estimate ˛ and F

(sometimes also B) from I . Existing methods follow
one of the following lines.

Blue ScreenMatting
Blue screen matting [1], which is widely employed
in movie and commercial production, needs to set up
a controlled environment and uses a single or multi-
ple constant-color backgrounds (as shown in Fig. 1).
The blue screen matting problem is directly solv-
able. Its triangular matting technique, which captures
images with two backgrounds containing different
shades of the backing color, is particularly noteworthy
because a closed-form solution exists. This technique
can produce very accurate matting results usable as
ground truth data. Blue screen matting can be applied
in a frame-by-frame fashion to video foreground object
extraction.

Natural Image Matting
In natural image matting, background B is generally
unknown and possibly contains complex structures.
In this case, simultaneously estimating ˛, F , and B

becomes an ill-posed problem. Several methods [3–5]
need user input of additional segmentation informa-
tion to constrain it. Trimap is a popular format that
partitions the image into three regions, i.e., “defi-
nitely foreground” (DF for short), “definitely back-
ground” (DB for short), and “unknown region”, as
shown in Fig. 2b. In DF and DB, ˛ is set to 1 and 0,
respectively. Digital matting only estimates ˛, together
with the foreground and background color, in the
unknown region by gathering color information from
DF and DB.

There have been several methods proposed to sam-
ple color from DF and DB. In knockout [6], F is
computed as the weighted average of foreground color
along the perimeter of the DF region. B is computed
similarly but with a final refinement step. Ruzon and
Tomasi [3] sample F and B from local windows and
then parameterize them as a mixture of unoriented
Gaussians. Alpha values are computed by maximiz-
ing a function that interpolates the mean and variance
of the Gaussians. Bayesian matting [4] gathers color
samples from DF and DB using sliding windows and
fits them with oriented Gaussian distributions. A max-
imum a posteriori (MAP) estimation of ˛, F , and B

is applied. The final ˛ values are chosen from the
foreground and background color pairs that maximize
the probability. Global Poisson matting [5] contributes
a gradient-domain alpha matte estimation. When the
condition of locally smooth color change in DF and
DB is violated, user interaction is involved to improve
the matting result with the supply of a group of filters.

The quality of results of these methods partly
depends on how accurate the trimap is since color
is sampled and the alpha matte is estimated within
windows. Many later approaches instead require the
user to only draw several foreground and background
scribbles to coarsely indicate DF and DB and leave
all unspecified pixels in the unknown region. This
scheme simplifies user interaction but provides looser
constraints for digital matting, as shown in Fig. 3.
Representative work that can robustly solve for
alpha mattes based on it includes (1) the iterative-
optimization method [2], which samples color from
user-drawn scribbles, builds the Markov Random
Field (MRF), and solves for segmentation and matte
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Matte Extraction, Fig. 1
Blue screen matting [1]. (a)
Object against known
constant blue. (b) Object
against constant black.
(c) Pulled foreground. (d)
New composite

Input

a b c

Trimap Alpha matte

Matte Extraction, Fig. 2 A trimap matting example. (a) Input
image. (b) The user-provided trimap where definitely foreground
and background are in white and black, respectively. The gray

pixels are unknown ones. (c) Alpha matte estimate by global
Poisson matting

extraction using belief propagation, and (2) closed-
form matting [7] that introduces a color line model
and based on it derives a quadratic cost function only
involving ˛ and a matting Laplacian, enabling linear
optimization. In addition, Rhemann et al. [8] extract
high-resolution mattes by trimap segmentation and
by employing gradient preserving alpha priors. The
soft-scissor method of Wang et al. [9] can achieve real-
time matting along with user painting the foreground
boundary.

There are also automatic image matting meth-
ods. A soft color segmentation method was proposed
in [26], where a global objective function is mod-
eled by global and local parameters. These param-
eters are alternately optimized until convergence. It
can be applied to matting without intensive user
interaction. Spectral matting [10] is a single image
approach. It shows that the smallest eigenvectors of

the matting Laplacian span individual matting com-
ponents, making their estimation equivalent to finding
linear transformation of the eigenvectors. Flash mat-
ting [11] captures a pair of flash/no-flash images and
assumes only the foreground region is lit by flash. This
method can automatically extract foreground in a joint
Bayesian matting framework.

Albeit some inevitable limitations as described in
respective papers, all the above techniques advance
image matting from different aspects. Other recom-
mended readings also include [12–14].

Video Matting
Digital matting was extended to videos in vari-
ous ways. Typical video matting methods deal with
foreground regions with hair, trees, or smoke, where
color blending exists for a large amount of pixels.
To preserve temporal coherence among frames, with
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Matte Extraction, Fig. 3 Matting with scribbles. (a) Input image with user-drawn scribbles. (b) The initial trimap. (c) Alpha matte
result of Wang and Cohen [2]

the input of a monocular video, Bayesian video mat-
ting [15] propagates manually specified trimaps from
keyframes to other frames using optical flow and
suggests completing background using mosaic con-
struction. This method is improved in [16] by incor-
porating stronger prior terms. The geodesic matting
method [17] introduces temporal neighbors for each
pixel and infers foreground and background scribbles
in the video based on user input in only sparse frames.
With the setup of special devices or systems, defocus
matting [18] and the camera-array method [19] make
use of multiple cameras that take pictures with differ-
ent focus settings and with the existence of parallax
respectively to profit video matting.

The other set of methods [20, 21] adopt video mat-
ting in a refinement step to improve foreground bound-
ary estimation after video cutout where unknown
regions are generally narrowbands around the bound-
aries.

Application

Digital matting exploits pixel-wise color blending and
is an indispensable technique for high-quality object
extraction from images and videos. The matte esti-
mate together with the computed foreground color can
then be used to form a new composite with another
background image. Simple composition applies linear
color blending again based on (Eq. 1), while sev-
eral other approaches, include drag-and-drop pasting
[22], context-sensitive blending [23], and composi-
tional matting [24], explore the structure relationship
between the source and target images and combine
color blending with other schemes.

Matte extraction and the corresponding compos-
ite construction are fundamental tools for image/video
editing and finds many applications in computer graph-
ics and vision. Movie and commercial production
relies on it to naturally insert objects into a virtual or
real scene. Digital matting can possibly be combined
with other decomposition, recognition, and tracking
techniques to further improve the performance and
expand the usability.

Experimental Results

Rhemann et al. [25] established a digital matting
evaluation website containing data classified into
high, strong, medium, and little transparency groups.
Training data are also provided. This website contains
updated experimental results of many approaches.
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Synonyms

Maximum likelihood estimator

Definition

Maximum likelihood estimation seeks to estimate
model parameters that best explain some given, inde-
pendent measurements according to a noise model.

Background

Many problems in computer vision can be formulated
as finding the parameters of a predefined model given
measurements or training examples.

For example in image segmentation one may want
to describe a region by a simple region model, e.g., by
a constant intensity value �. There are many measure-
ments, namely all the pixel intensities in the region.
Assuming that these pixel intensities are independently
generated from the constant intensity model according
to a Gaussian distribution, the goal is to find the most
likely parameter � given these measurements. In this
simple example, the optimal parameter � is the mean
of all intensities.

There are many more similar problems in computer
vision, for instance, in the scope of optical flow estima-
tion, camera calibration, image denoising, or pattern
recognition. In the special case of a Gaussian noise
model, maximum likelihood estimation comes down
to a least squares approach.

Maximum likelihood estimation is often criticized
because it ignores a-priori information, which can be
interpreted as assuming a uniform prior density on the
parameter space. This becomes especially problematic

http://dx.doi.org/10.1007/978-0-387-31439-6_100244


M 482 Maximum Likelihood Estimator

when the model is described by many parameters and
there are relatively few measurements. In cases where
good a-priori assumptions can be made, maximum
likelihood estimation should be replaced by maximum
a-posteriori estimation, which takes the prior density
into account.

Theory

Given a probabilistic model that is described by a
parameter vector w 2 R

D and given N indepen-
dent measurements xn 2 R

K , N � D, one aims at
maximizing the likelihood

p .x1; : : : ; xN jw/ D
NY

nD1

p .xnjw/ : (1)

For numerical reasons, rather than maximizing this
probability, it is common to maximize its logarithm,
the so-called log-likelihood:

w� D argmax
w

logp.x1; : : : ; xN jw/

D argmax
w

NX

nD1

logp.xnjw/: (2)

Application

Applying this to a simple regression problem, where
a line is to be fitted to a couple of points, one has the
constraints

w1x1;n C w2 D x2;n; n D 1; : : : ; N: (3)

Assuming a Gaussian distribution with constant
covariance yields

NX

nD1

logp.xnjw/ /
NX

nD1

.w1x1;n C w2 � x2;n/
2: (4)

The connection to least squares estimation can be seen
immediately, but one could as well assume a Laplace
distribution, which is more robust to outliers among the

measurements and would lead to

NX

nD1

logp.xnjw/ /
NX

nD1

jw1x1;n C w2 � x2;nj: (5)

A necessary condition for a maximum of this expres-
sion is that the gradient with respect to the parameter
vector must vanish:

@
@w1

PN
nD1 jw1x1;n C w2 � x2;nj D 0

@
@w2

PN
nD1 jw1x1;n C w2 � x2;nj D 0

(6)

leading to the nonlinear system

PN
nD1

1

2

.w1x1;n C w2 � x2;n/x1;n

jw1x1;n C w2 � x2;nj D 0

PN
nD1

1

2

.w1x1;n C w2 � x2;n/

jw1x1;n C w2 � x2;nj D 0;

(7)

which can be solved by iteratively keeping the denom-
inators fixed, solving the resulting linear system and
updating the denominator. Gaussian distributions lead
to linear systems that can be solved directly. More
details and examples on maximum likelihood estima-
tion can be found in [1, 2].
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Definition

A mirror is an optical device used for beam-forming or
imaging based on the directional reflection of electro-
magnetic radiation.

Background

Computer vision applications apply mirrors in a
twofold manner: for optical imaging and for illumina-
tion purposes. Furthermore, mirrors themselves could
be test objects in visual inspection systems. This leads,
with regard to the 3D shape of the mirror, to the shape-
from-specular-reflection problem, and in the context of
visual inspection systems to deflectometry.

Theory and Application

Mirrors consist of a smooth substrate with a metal coat-
ing (e.g., Au, Ag, Al) and/or dielectric layers. In the
case of a surface mirror, the reflection takes place at a
metal coating on the front side that has to be protected
against scratches. The main advantage of a surface mir-
ror is the lack of beam displacement due to the glass
substrate. Alternatively, the backside of a glass sub-
strate can be coated with a metal layer and with an
additional protection against humidity and mechanical
damage. Backside mirrors are usually more robust than
surface mirrors, but lack their optical characteristics
mentioned above.

The physical effect leading to the reflection of elec-
tromagnetic waves on metal surfaces can be simply
described as “short circuit” of the electrical field.

Dielectric mirrors are composed of multiple thin
layers of dielectric materials. They exhibit very high
reflectance values, whereas the reflectance depends
on wavelength, incident angle, and polarization.
Advanced multilayer structure designs can be used to
obtain certain functionality [10]:
• A broader reflection bandwidth
• A combination of desirable reflectivity values in

different wavelength ranges
• Special polarization properties (for non-normal

incidence, thin-film polarizers, polarizing beam
splitters)

• Non-polarizing beam splitters
• Edge filters, e.g., long-pass filters, high-pass filters,

band-pass filters
• Tailored chromatic dispersion properties
Such mirrors are especially used in laser applications.

Furthermore, thin metal layers allow semitranspar-
ent mirrors to be realized for coaxial illumination.

The electromagnetic theory of light is fundamen-
tal for the physical understanding of specular reflec-
tions [3]. Thereby, the law of reflection describes
the geometric aspects, and the Fresnel equations the
reflection coefficients, i.e., the radiometric behavior.

The law of reflection states the relationship of the
incident si and reflected sr light rays with the normal
of the specular surface n :

si � n D sr � n ; (1)

with ksik D ksrk D knk D 1.

http://dx.doi.org/10.1007/978-0-387-31439-6_711
http://dx.doi.org/10.1007/978-0-387-31439-6_263
http://dx.doi.org/10.1007/978-0-387-31439-6_539
http://dx.doi.org/10.1007/978-0-387-31439-6_538
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Equation 1 leads, with ksi � nk D sin �i D sin �r D
ksr � nk, directly to the following two conditions:
• The angle of the incident ray equals that of the

reflected ray .�i D �r/.
• The incident and reflected ray are coplanar with the

surface normal.
In computer graphics and ray-tracing the law of

reflection is often used in the form of a Householder
transformation:

sr D H si with H WD I � 2nnT ; (2)

with the identity matrix I .
The bidirectional reflectance distribution function

(BRDF; �.�i; 'iI �r; 'r/) describes the reflectance char-
acteristics of a surface, i.e., the ratio of incident and
reflected radiance in dependency of incident and obser-
vation angles, Nicodemus et al. [9]. According to
Horn and Sjoberg [5] the BRDF for an ideal mirror is
according to Horn and Sjoberg [5] (c.f., Fig. 1):

�.�i; 'iI �r; 'r/ D dLr

Li cos �i d˝i

D 2 ı.sin2�r � sin2�i/ ı.'r � ..'i C �/ mod 2�// :

(3)

In general, the amount of reflected light intensity
depends on the wavelength, incident angle, and polar-
ization of the incident light and on the characteristics
of the surface itself, e.g., refraction index, shape and
roughness.

The Fresnel equations describe the relationship
between reflected intensity, incident angle, and polar-
ization state of the incident electromagnetic wave of a
smooth surface. These formulas are applicable in the
two cases of dielectric and strongly absorbing materi-
als (metals), and establish the theoretical basis for the
creation of polarized light with mirrors.

In Fig. 2, the reflectance of some metals is plot-
ted against the wavelength. Most metals have a strong
reflectance in the infrared spectrum. For laser applica-
tions, mirrors with gold coatings are often sufficient.

With dielectric films even higher reflectance values
can be achieved.

Furthermore, the reflectance depends on the sur-
face quality. The dependency on surface roughness
� (root-mean-squared roughness), wavelength �, and
the reflectances R� for rough and R for ideal smooth

x

y

z

dLr

dEi

dW i

qi
qr

jr

ji

Li

dA

Mirrors, Fig. 1 Geometry of reflection and the BRDF, thereby
d˝i denotes an infinitesimal solid angle of the incident radiation,
Li; Lr the incident and reflected radiance, and dEi the irradiance
on the surface element dA

surfaces can be stated as [2]:

R� D R exp

"
�
�
4�� cos �i

�

�2
#
: (4)

The roughness requirements in the far-infrared spec-
trum are lower than in the visible range. With large
incident angles �i and surfaces with very small rough-
ness, mirrors applicable even for X-radiation applica-
tions can be manufactured.

The most familiar type of mirror is the plane mirror,
which has a flat surface. This mirror is mostly used for
beam deflection purposes. In Fig. 3a, the geometry of
reflection on a plane mirror is shown.

Thereby the image of an object is virtual with mag-
nification equal to one, upright, right-left inversed,
without aberrations, and symmetric to the mirror plane.

Figure 3b shows two plane mirrors in an angu-
lar mirror setup, whereby � D 2ı. A special case
is a triple mirror with three pairwise orthogonal
planes (ı D 90ı), which is used as a retroreflecting
element.

Curved mirrors are also used, such as spherical,
ellipsoid, paraboloid, or conical mirrors. Figure 4
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Mirrors, Fig. 2 Reflectance
vs. wavelength curves for gold
(Au), silver (Ag), and copper
(Cu) at normal incidence [1]
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Mirrors, Fig. 3 Plane (a) and
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shows convex and concave mirrors for optical imaging.
The focal distance of a spherical mirror with radius r
is given by:

f D r

2
: (5)

The mirror equation:

2

r
D 1

s
C 1

s0
(6)

describes the relationship between object and image
distances .s; s0/ with the mirror radius r .

A big advantage of mirrors above lenses is the lack
of aberrations, but with the disadvantage of higher
centering and adjustment requirements.

Torrance and Sparrow [13] and Phong [11] have,
among many others, introduced surface models which
can be used to describe specular reflections. Modeling

of mirrors or partially reflecting surfaces is of ongoing
interest for computer graphics applications.

Open Problems

The main principle for the visual inspection of mirrors
is to use a highly controllable environment, where a
screen presenting a well-designed pattern is observed
via the specular reflecting surface. Knowing that pat-
tern, it is possible to inspect the surface qualitatively
and – at least with certain additional knowledge – to
reconstruct the surface quantitatively. This reconstruc-
tion problem is ill-posed in a mathematical sense,
and several regularization approaches have been pro-
posed. The reconstruction of large and complex formed
mirrors is still a challenge in the field of computer
vision [6–8, 14, 15].
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Although the reconstruction problem is ill-posed,
humans can usually estimate the shape of mirrors quite
well, c.f., Fleming et al. [4]. The visual perception of
mirror-like objects is an ongoing research effort.

Another area of ongoing research is the develop-
ment of mirrors for the extreme ultraviolet (EUV)
spectral range, used in EUV lithography tools. These
mirrors can be standard Mo/Si mirrors or multilayer
setups [12].
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Definition

A mobile (visual) observer is an agent or a system that
perceives its environment using vision. In computer
vision this typically is a mobile device such as a robot
carrying one or more cameras.
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Background

Gibson [1] claimed that a mobile observer is a pre-
requisite for natural vision. He discriminated between
ambient or ambulatory vision, when the observer
can move its head or body, and snapshot or aper-
ture vision in cases when one or several images are
recorded momentarily at certain fixation points. All
those aspects are treated in computer vision, although
current trends are on processing static images in the
spirit of snapshot or aperture vision. Computer vision
researchers began to study visual motion in the 1970s,
when it became possible to connect video cameras to
computers. This work did not really concern mobile
observers, but such existed even earlier, when cam-
eras were used as input devices to robots, e.g., in the
work on “Shakey” [2]. Nowadays, mobile observers
most often occur in the context of mobile robots, but
recent developments on wearable vision have widened
the interest in the topic. Ambient vision is what you
have for instance in the case of pan-tilt heads, which
are used in a large range of applications.

Theory

There have been attempts to find the notions of active
and mobile observers theoretically. In biological vision
Gibson’s work is of a landmark nature, but there are
many other proposals as well, e.g., relating to func-
tionalism [3]. In computer vision the problem has been
considered from the point of view of active vs. passive
vision [4–6]. In [7–9] the theoretical aspects are more
directly addressed. However, even with these attempts,
one can hardly say that there exists any complete
theory for a mobile observer.

Problems and Applications

The mobile observer obtains a stream or sequence of
images as input rather than single images. This pro-
vides rich information about the environment as well as
of the movements of the observer. However, observer
motion also implies that there is image motion in
almost every point in the sequence. In a static world,
observer motion creates essentially all the variations
over time in the images, i.e., those that are due to
change of viewpoint and not, e.g., in illumination. If
there are things in the environment that also move, the
two types of motion are confounded in the images.

A mobile observer can derive (static) scene geom-
etry through structure-from-motion algorithms. More-
over, ego-motion, i.e., the motion of the observer,
can be estimated. Generally such methods assume a
static background that is prominent in the field of
view. Independently moving objects can then also be
detected, and under certain conditions their motion can
be estimated. Ego-motion estimation obviously plays
an important role here. There are many types of algo-
rithms for this, e.g., based on optical flow, monocular
or binocular feature tracking, or image stabilization.
There also exist algorithms for using omnidirectional
or composite cameras, which highlights the fact that
effects of ego-motion are manifested in a wide field
of view. For instance, small rotations of an observer
moving straight ahead can be estimated from periph-
eral flow, something that is useful in driving and in
guiding of autonomous robots.

A mobile observer can be active or passive. In
the first case, it purposively guides its motion and/or
the way it directs its gaze on the basis of tasks it
is involved in and as a reaction to what it observes.
Gaze control and fixation in dynamic situations have
been studied extensively in the field of active vision.
In some cases these mechanisms have been used to
control observer motion, e.g., for exploring a scene or
an object and to facilitate recognition. Then viewpoint
planning becomes an issue. However, a more gen-
eral case is when the observer motion is only loosely
dependent of what is seen, except for possible control
of gaze. For instance, a mobile observer can induce
depth cues through parallax by (small) camera motions
that are not pure rotations. Another example is given
by a robot moving from one point to another while
observing an object along its path, analogously to a
person riding in a car. Many applications contain ele-
ments of both active and passive observations, for
instance in robot navigation including obstacle avoid-
ance and mapping (as in SLAM), hand-eye control in
grasping and manipulation, and in general for an ambu-
lant observer, such as those studied in the context of
wearable or egocentric vision.

Open Problems

The study of mobile observers from a computa-
tional perspective involves a broad range of problems
traditionally addressed in computer vision. However,
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there are certain issues that become central. For
instance, the correspondence problem is ubiquitous. In
applications such as those described above, the tight
connection between perception and action is apparent.
Visual sensing involving motor control raises prob-
lems on time criticality and real-time computations
[9]. Other problems arise because the mobile observer
continuously samples the visual world. Meaningful
behavior based on the huge amounts of information
requires methods for attention and visual search. In
all, although some of the problems encountered in the
study of mobile observers largely overlap those gener-
ally treated in computer vision, there are others that are
specific to this area.
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�Motion Capture

Model-Based Object Recognition

Min Sun and Silvio Savarese
Department of Electrical and Computer Engineering,
University of Michigan, Ann Arbor, MI, USA

Synonyms

Object models; Object parameterizations; Object rep-
resentations; Visual patterns

Related Concepts

�Human Pose Estimation; �Object Class Recognition
(Categorization); �Object Detection

Definition

Model-based object recognition addresses the problem
of recognizing objects from images by means of a suit-
able mathematical model that is used to describe the
object.

Background

In model-based object recognition, an object model is
typically defined so as to capture object’s geometri-
cal and appearance properties at the appropriate level
of specificity. For instance, an object model can be
designed to recognize a generic “face” as opposed to
“someone’s face” or vice versa. In the former case,
which is often referred to as the object categorization
problem, the main challenge is to design models that
are capable of retaining key visual properties for rep-
resenting an object category, such as a “face,” at the
appropriate level of abstraction. Such models can be
then used to recognize novel object instances from a
query image. Moreover, a model must be able to gen-
eralize across variations in the object’s visual charac-
teristics due to viewpoint and illumination changes as
well as due to occlusions or deformations. Meeting all
of these desiderata can be extremely challenging. This
makes object recognition an open, yet key, problem in
computer vision.

Object Models for Recognition

The design of an object model must reflect its ability to
(i) capture geometrical and appearance characteristics
of the object at the appropriate level of specificity and
(ii) generalize across variations in viewpoint, illumina-
tion, occlusions, and deformations. The complexity of
the representation can be reduced by making assump-
tions on the type of object specificity or the degree
of viewpoint, occlusions, and deformation variability.
Ultimately, the strategy in designing an object model
will depend on the relevant application scenario.
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Object models that are designed to recognize
objects at the highest level of specificity – e.g., “my
face” as opposed to “a face” – are often referred to
as single-instance object models. These models are
capable of recognizing a specific object instance while
guaranteeing the ability to handle occlusions and a
large degree of viewpoint variability. Research on 3D
object recognition, from early contributions [1–9] to
the most recent ones [10–13], follows these assump-
tions. Since single-instance object models do not need
to accommodate any intra-class variations, they often
consist of a rigid collection of visual features associ-
ated to a number of 2D or 3D templates. In recognition,
by matching features of the query image with those
associated to the models, it is possible to identify
the object of interest and determine its 3D pose with
respect to a common reference system. This matching
process is usually subject to a geometrical validation
phase that helps verify that the appearance, and geo-
metric properties of the query object are consistent
with the estimated pose transformation between obser-
vation and object model. While critical for ensuring
sufficient discrimination power for recognizing single-
instance objects as well as for enabling large viewpoint
variability, tight geometrical constraints become inad-
equate when shape and appearance intra-class variabil-
ity must be accounted for.

Object models that are designed to recognize
objects at a lower level of specificity – e.g., “a
face” as opposed to “my face”– are often referred
to as categorical object models. The ability to
generalize across instances in the same category
is critical and is typically achieved by character-
izing the object as a collection of features whose
appearance and geometrical properties tend to sys-
tematically occur in the category of interest. For
instance, if the goal is to recognize a car, appear-
ance properties such as the “color of the body” are
not adequate to help obtain the right level of gen-
eralization (abstraction), whereas the orientation of
edges associated to a wheel can capture more gen-
eral appearance cues across instances. Appearance
properties are typically captured by image descrip-
tors such as [10, 14] associated to interest points that
are detected at different locations and scales of the
image. A popular design choice is to describe the
object appearance by histograms of vector-quantized
descriptors [15–17]. The ability of image descriptors
such as [10] to be invariant to affine illumination
transformations makes the appearance models robust

to variability in illumination conditions. Geometri-
cal properties are captured by retaining the spatial
organization of features in the image and include
simple characterizations based on the 2D location
of either feature points or aggregation of features
(e.g., edges, parts, fragments) with respect to a
given object reference point [18–22]. Object mod-
els constructed upon constellation of parts such as
[18–20] are suitable to accommodate object vari-
ations due to occlusions and simple 2D planar
geometrical deformations (isometries or affinities).
Suitable machine learning and probabilistic inference
techniques such as expectation maximization (EM)
[23], latent SVM (LSVM), [54] Markov random field
(MRF) [24, 25], conditional random field (CRF) [26],
generalized Hough voting [27], and RANdom SAmple
Consensus (RANSAC) [28] are used to automatically
select appearance and geometrical properties so as
to reach the appropriate level of generalization and
discrimination power.

Most of the object models for object categoriza-
tion mitigate the complexity of the representation by
assuming that objects are viewed from a limited num-
ber of poses and learn an object model that is spe-
cialized to identify the object from a specific view-
point. These are often referred to as view-dependent
object models. If similar views in the training set
are available, the recognition problem is reduced to
match the new query object to one, or a mixture,
of the learnt view-dependent object models [29, 30].
The drawback of view-dependent object models is
that (i) they can accommodate very limited viewpoint
variability – mostly changes in scale or 2D rotation
transformations – and (ii) different poses of the same
object category result in completely independent mod-
els, where neither features or parts are shared across
views. Because each single-view models are indepen-
dent, these methods are often costly to train and prone
to false alarms, if several views need to be encoded.

Object models that can accommodate both large
viewpoint changes and large intra-class variability
(low degree of specificity) overcome the above lim-
itations by introducing a representation that seeks
to effectively captures the intrinsic three-dimensional
nature of the object category. These models are typ-
ically divided into two types: 2-1/2D layout models
and 3D layout models [33]. In the 2-1/2D layout
models [31, 32, 34], object diagnostic elements (fea-
tures, parts, contours) are connected across views to
form an unique and coherent 2-1/2D model for the
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Model-BasedObject Recognition, Fig. 1 Example of 2-1/2D
layout models as introduced in [31] and generalized in [32].
Left panel: An image of an object category of interest. Right
panel: In the 2-1/2D layout model, object parts are connected
to form a graph structure. Each node Pi captures diagnostic

appearance of the object part which is assumed to be locally
planar. Each edge describes an homographic transformation that
captures the viewpoint transformation between parts. The homo-
graphic transformation is illustrated by showing that some parts
are slanted with respect to others

object category (Fig. 1). Relationships between fea-
tures or parts capture the way that such elements are
transformed as the viewpoint changes. These meth-
ods share some key ideas with pioneering works in 3D
object recognition [1–6, 8, 9] as well as with the the-
ory of aspect graphs [7, 35]. In the 3D layout models
[36–41], object elements are organized in a common
3D reference frame and form a compact 3D represen-
tation of the object category. Such 3D structures of fea-
tures (parts, edges) can give rise, for instance, to either
a 3D generalization of 2D pictorial structures or con-
stellation models or to hybrid models where features
(parts or edges) lie on top of 3D object reconstructions
or CAD volumes.

Open Problems

Although object recognition has been a core problem
in computer vision for more than four decades and
several powerful models have been proposed, state-of-
the-art methods are still far from the level of accuracy,
efficiency, and robustness that the human visual system
achieves in recognizing, detecting, and categorizing
objects from images. Recently, several new paradigms
have been explored to address the above limitations.
One major effort involves large-scale object recogni-
tion. With the introduction of ultra-large-scale datasets
such as the ImageNet [42] – a collection of millions
of images organized into a hierarchical ontology of
thousands of categories – it is now possible to evaluate

methods for object categorization that seek to (i) effi-
ciently process these many images and categories and
(ii) understand objects at different level of specificity;
this is also referred to as to the fine-grain categoriza-
tion problem [43–45]. Another major effort is related
to the introduction of a recent paradigm whereby
objects are modeled and recognized by means of their
attributes. As pioneered by [46–48], visual attributes
such as “it is metallic”; “it has wheels” can be used to
obtain more effective and descriptive characterizations
of object categories (i.e., a car or a truck). This has
the benefit of (i) making the “boundaries” between dif-
ferent categories more fluid than in traditional param-
eterizations, (ii) enabling more powerful methods for
fine-grained categorization [44], and (iii) providing
critical building blocks for transferring visual prop-
erties across categories (transfer learning, one short
learning) [46, 48].

Other important problems for future work include
the ability to (i) overcome the traditional paradigm
whereby objects are identified as just bounding boxes
in images but rather provide a richer characterization
in terms of their accurate outlines or segments, 3D
properties (pose or 3D shape) [36, 41], as well as
attributes; (ii) find a common ground between bottom-
up representations (from pixels to features), akin to
recent developments on convolutional neural networks
[49, 50], and top-down models as recently advocated
in [51] and (iii) describe the interplay between objects
and their components at different levels of semantic
resolution [52, 53].
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Monte Carlo Annealing

�Simulated Annealing

Morphology, Form Analysis

�Statistical Shape Analysis

Motion Blur

Neel Joshi
Microsoft Corporation, Redmond, WA, USA

Synonyms

Camera-shake blur; Object motion blur

Related Concepts

�Blur Estimation; �Defocus Blur

Definition

Motion blur is due to motion of scene objects or the
camera while the camera shutter is open, thus causing
scene points to be imaged over a large area of cam-
era sensor or film. The motion blur is a projection of
the motion path of the moving objects onto the image
plane. The motion path of a point can be due to transla-
tion and rotation of the camera or scene objects in three
dimensions. There can be different paths for different
parts of the scene, and in light-limited situations, when
using long exposures, these paths can be quite large,
resulting in very large blurs.

Background

Image blur can be described by a point spread function
(PSF). A PSF models how an imaging system captures
a single point in the world – it literally describes how
a point “spreads” across an image. An entire image
is then made up of a sum of the individual images of
every scene point, where each point’s image is affected
by the PSF associated with that point. For an image to
be “sharp” means that one ideally does not want any
image blur. Thus, the PSF should be minimal, i.e., a
delta function, where each scene point should corre-
spond only to one image point. In practice, PSFs can
take on a range of shapes and sizes depending on the
properties of an imaging system. When this PSF is

http://dx.doi.org/10.1007/978-0-387-31439-6_680
http://dx.doi.org/10.1007/978-0-387-31439-6_778
http://dx.doi.org/10.1007/978-0-387-31439-6_100168
http://dx.doi.org/10.1007/978-0-387-31439-6_100169
http://dx.doi.org/10.1007/978-0-387-31439-6_509
http://dx.doi.org/10.1007/978-0-387-31439-6_511
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Motion Blur, Fig. 1 With motion blur, the amount of blur
depends on the relative motion between the camera and the
scene objects; it depends on the focal length and of the lens
and the scene depth and motion trajectories. An example of

camera motion blur is shown in the middle, where the blur ker-
nel is drawn for each corner of the image (From Joshi et al. [3]).
An example of object motion blur is shown on the right (From
Jia [11])

large relative due to camera or scene motion and rel-
ative to the image resolution and pixel size, an image
with motion blur is captured.

The fundamental cause of motion blur is that a cam-
era does not sample light from a single moment in time,
but instead captures images by integrating the light
over an exposure window. The relative motion between
camera and scene objects is the primary factor in
motion blur, as illustrated in Fig. 1. The path of motion
during exposure affects the PSF and thus the blur shape
and size. Properties such as exposure duration, lens
focal length, and pixel size play an additional role.

Theory

Image blur is described by a point spread function
(PSF). The PSF models how an imaging system cap-
tures a single point in the world.

The most commonly used model for blur is the lin-
ear model, where the blurred image b is represented as
a convolution of a kernel k, plus noise:

b D i ˝ k C n; (1)

where n � N .0; �2/, which represents and addi-
tive Gaussian noise model. In this model, the blur is
assumed to be constant over the entire image, i.e.,
spatially invariant; however, that is often not true in
practice [1, 2]. If there is depth variation in the scene,
the motion blur can change with that depth due to par-
allax. In these cases, one can think of the blur kernel,
k, as being a function of image position, i.e., k.x; y/.

To model spatially varying blur, the spatially invari-
ant kernel and convolution in (Eq. 1) can be replaced

by a sparse re-sampling matrix that models the spa-
tially variant blur, and the convolution process is now
a matrix-vector product:

b D Ai C i : (2)

Each column of A is the unraveled kernel for the pixel
represented by that column. Thus, the blurred response
at a pixel in the observed image is computed as a
weighted sum, as governed by A, of the latent sharp
image i formed into a column vector.

Representation
To model motion blur, first, let us consider the image
a camera captures during its exposure window. The
intensity of light from a scene point .Xt ; Yt ; Zt / at an
instantaneous time t is captured on the image plane at
a location .ut ; vt /, which is a function of the camera
projection matrix Pt . In homogenous coordinates, this
can be written as

.ut ; vt ; 1/
T D Pt.Xt ; Yt ; Zt ; 1/

T : (3)

If there is camera motion, Pt varies with time as a
function of camera rotation and translation causing
points in the scene to project to different locations at
each time. If there is scene motion, .Xt ; Yt ; Zt / also
varies with time, which also affects where the points
project on the image plane. The integration of these
projected observations creates a blurred image, and the
projected trajectory of each point on the image plane
is that point’s point spread function (PSF). The camera
projection matrix can be decomposed as

Pt D K˘Et; (4)
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where K is the intrinsic matrix, ˘ is the canonical
perspective projection matrix, and Et is the time-
dependent extrinsic matrix that is composed of the
camera rotation Rt and translation Tt . In the case of
image blur, it is not necessary to consider the abso-
lute motion of the camera, only the relative motion and
its effect on the image. This can be modeled by con-
sidering the planar homography that maps the initial
projection of points at t D 0 to any other time t [3],
i.e., the reference coordinate frame is coincident with
the frame at time t D 0:

Ht.d/ D
�
K.Rt C 1

d
TtN

T /K�1

�
(5)

.ut ; vt ; 1/
T D Ht.d/.u0; v0; 1/

T ; (6)

for a particular depth d , where N is the unit vector that
is orthogonal to the image plane.

If the scene is not moving, given an image I at time
t D 0, the pixel value of any subsequent image is

It .ut ; vt / D I.Ht .d/.u0; v0; 1/
T /: (7)

This image warp can be rewritten in matrix form as

It D At.d/I ; (8)

where It and I are column-vectorized images and
At.d/ is a sparse re-sampling matrix that implements
the image warping and re-sampling due to the homog-
raphy. Each row of At.d/ contains the weights to
compute the value at pixel .ut ; vt / as the interpolation
of the point .u0; v0; 1/T D Ht.d/

�1.ut ; vt ; 1/T . Thus,
an alternative formulation for image blur is the inte-
gration of applying these homographies over time [3]:

B D
Z s

0

ŒAt .d/Idt	 : (9)

This leads to the spatially variant blur matrix in (Eq. 2):

A.d/ D
Z s

0

At.d/dt: (10)

For camera motion blur, A is a function of depth. If
there is scene motion, the full model can be extended
to handle the time-varying mapping of scene points,
.Xt ; Yt ; Zt /, to the image plane.

Application

Estimation of camera motion blur [1, 3–9] and esti-
mation of object motion blur [10–13] are extensively
researched areas.

Estimated blur kernels are typically used for
improving image quality by reducing blur using image
deblurring and deconvolution methods [1, 10, 14, 15].
There are also methods that reduce motion blur or
make the blur more easily removable but changing how
images are captured [13, 16].
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Motion Capture

Nils Hasler
Graphics, Vision & Video, MPI Informatik,
Saarbrücken, Germany

Synonyms

MoCap; Motion capturing; Motion tracking; Perfor-
mance capture

Related Concepts

�Kinematic Motion Models; �Multiview Stereo

Definition

Motion capture is the process of recording the motion
of a subject, processing it on a computer, and mapping
it onto a virtual character.

Background

Parameterizing human motion is not just of academic
interest, e.g., for studying the muscoskeletal system
of humans, but has many applications in the indus-
try. Historically, the first motion capture systems have
been developed in the 1970s and 1980s to perform
gait analysis in clinical settings. Today, however, sports
sciences and the entertainment industry make heavy
use of the technology as well. The setups are also not
constrained to human gait analysis any longer. Instead,
full-body motion of several humans, animals, stage

props, and virtual cameras can be processed in real
time.

When capturing motion, it is commonly assumed
that the body or object can be decomposed into rigidly
moving parts connected by joints. That way, the pose
of a human, animal, or mechanical stage prop can be
parameterized by a small set of joint angles organized
in a hierarchical tree, the skeleton. This hierarchy can
be inferred given trajectories of markers attached to the
body. Yet, since this step is computationally expensive,
the skeleton is normally supplied and scaled to the size
of the actor beforehand.

Classification
Motion capture systems can be categorized by their use
of sensors. Optical systems use cameras operating in
the visible or infrared spectrum, whereas nonoptical
systems are based on various other modalities.

Nonoptical Systems
Various nonoptical motion capture systems have been
proposed using different sensors. They are grouped
here because compared to optical motion capture, they
occupy a marginal position. Yet, all approaches dis-
cussed here, have in common that they solve the
main disadvantage of optical systems, the sensitivity
to occlusion.

Mechanical tracking systems measure the angles
of the joints mechanically, i.e., by attaching goniome-
ters to the joints of the subject. Estimating the pose
given the joint angles is straightforward, but several
problems exist with the approach. The mechanical
alignment of the goniometers with the body joints can
be difficult, especially for joints with more than one
degree of freedom, e.g., the shoulder, the devices are
cumbersome, and limb lengths have to be measured
very accurately for every subject to prevent drift.

Magnetic fields can be used to estimate the orien-
tation of a magnetic sensor relative to the source of
the field. By modulating magnetic coils in the vicin-
ity of the capture volume and measuring the field at
different points in time, position and orientation of the
sensor can be inferred. The approach has the advan-
tage that it does not suffer from occlusion because the
human body is transparent to magnetic fields. How-
ever, magnetic fields attenuate rapidly over distance
and are sensitive to interference with electrical equip-
ment. The latter is a severe shortcoming as motion

http://dx.doi.org/10.1007/978-0-387-31439-6_100050
http://dx.doi.org/10.1007/978-0-387-31439-6_587
http://dx.doi.org/10.1007/978-0-387-31439-6_203
http://dx.doi.org/10.1007/978-0-387-31439-6_100047
http://dx.doi.org/10.1007/978-0-387-31439-6_100048
http://dx.doi.org/10.1007/978-0-387-31439-6_100049
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capture systems are frequently used in conjunction
with other equipment such as motion picture cameras,
computers, or stage lights.

Inertial sensors measure acceleration and angu-
lar velocity of the limbs they are attached to. Aside
from the acceleration of the body, accelerometers mea-
sure the gravitational acceleration. After compensating
for gravitation, integrating measurements over time
yields the pose of the subject. This approach is, like
the previous methods, invariant to occlusion, but the
numerical integration of measurements leads to drift
in position and orientation. It can, however, be used
effectively in conjunction with a drift-free method to
compensate for drift and bridge occlusions with the
acceleration data.

Optical Systems
The most common systems today are optical, i.e.,
they use one or more calibrated camera(s) to esti-
mate the pose of the subject. Most commercial systems
today require the actor to wear markers to simplify the
tracking. One of the first marker-based systems used
pieces of paper that glow under ultraviolet illumina-
tion. Nowadays, either small retroreflective balls or
light-emitting diodes (LEDs) operating in the visible
or infrared spectrum are used.

Passive systems are normally equipped with
infrared lights located in rings around the cameras.
This setup evokes a distinct dot for each retroreflec-
tive marker in the captured video frames. To further
improve image quality, infrared filters in front of the
cameras help to reduce spurious highlights in the visi-
ble spectrum. There are two main drawbacks of passive
marker-based systems. Since all markers look alike,
their trajectories can easily be confused, and all opti-
cal systems have in common that they suffer from
occlusions.

Active markers, e.g., pulsed LEDs, have the advan-
tage that markers can be identified by the blinking pat-
tern. That way, confusing marker trajectories becomes
impossible. Additionally, active marker systems are
not restricted to studio environments because the blink-
ing patterns can be distinguished effectively from inter-
ference introduced by sunlight. One disadvantage of
active markers is that they have to be powered. Carry-
ing a battery pack is not a big burden for an actor, but
some stage props such as arrows cannot easily be fitted
with batteries.

Markerless systems are subject of intense scien-
tific research. However, first commercial systems are
available as well. Yet, it is still unclear, which of the
proposed approaches will prove to be the most effec-
tive in the long run. Most vision-based approaches
today use a combination of edge features, silhouette
constraints, texture analysis, and feature tracking or
optical flow. Pose optimization is performed using
gradient descent, particle filters, simulated annealing,
belief propagation, or a combination of these methods.
The main advantage of markerless systems is that the
amount of preparation of the subject is minimal. Com-
mon drawbacks of current systems are that they lack
robustness or restrict the setting in other ways than by
adding markers, e.g., it is assumed that the background
is static. Markerless systems also tend to be computa-
tionally expensive. The most advanced systems today
are able to capture a single actor in real time, compared
to five actors with a marker-based system.

Theory

Generally, the different motion capture systems require
different workflows to set up the system and then to fit
a skeleton to the captured data. Since optical systems
are the most common, in the following, the procedure
for this particular pipeline is outlined.

As a first step, all camera-based systems today need
to be calibrated. That is, the relative positions of the
cameras, their orientations, and their internal param-
eters (distortion) have to be estimated. This is com-
monly achieved by either placing a three-dimensional
calibration object with known dimensions inside the
capture volume or by covering the volume with a cali-
bration wand, a typically one-dimensional object with
known dimensions and marker positions. The advan-
tage of wand-based calibration is that it is easier to
cover the entire capture volume using only a small
object. Covering the capture volume as exhaustively as
possible is important to ensure accuracy of the cali-
bration. Calibration objects, in contrast, tend to be as
large as possible for a similar reason. In either case,
the parameters of the cameras are extracted using a
variation of Structure from Motion.

When using marker-based systems, the next step
is to extract marker positions in the video frames.
Normally, centroids and extents of the markers are
extracted. The extents can be used as a measure of
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quality of the marker. For example, distant mark-
ers tend to be smaller and should be considered less
reliable. For large systems, with dozens of cameras
running at high framerates (>[100]Hz) and high res-
olution (>[4]Megapixel), doing this processing close
to the cameras is essential because the required band-
width for transmitting the entire frames to a central
processing unit would be prohibitively expensive.

Subsequently, the 2D dots can be combined into
3D markers using the calibration matrices of the cam-
eras. For passive markers, this step is ambiguous. So
additional heuristics have to be taken into account. For
example, dots can be tracked in 2D or 3D to propa-
gate the identity of a marker, established in a previous
frame to the current frame. 3D markers should also
be consistent with as many of the 2D dots as possi-
ble. Finally, skeleton fitting can be posed as a nonlinear
minimization problem

argmin



MX

iD1

.mi � si .
//
2; (1)

where mi is an estimated 3D marker position and si .
/

is the corresponding marker attached to the skeleton, as
a function of the pose parameters 
. This problem can
be solved in many different ways. Commonly, gradi-
ent descent, Gauss-Newton, or Levenberg-Marquardt
optimization is used. These approaches make use of
the tracking assumption, i.e., the solution of the previ-
ous frame is used as a starting point for the current
frame. Other methods, like particle filters or simu-
lated annealing, are less likely to lose track by getting
stuck in a local minimum but are computationally more
expensive.

Alternatively, the 3D marker reconstruction step can
be skipped. Instead, the nonlinear optimization is per-
formed in image space of the cameras. That is, the
distances between the projections of the skeleton’s
markers and the 2D markers are minimized rather than
their distance in world space.

Markerless systems have to solve a very similar
optimization problem. Only their method of acquir-
ing correspondences between 2D image features and
the tracked object is more sophisticated. Frequently,
different characteristics are combined. Common fea-
tures include edges, silhouettes, texture statistics, and
corners.

Application

Historically, the first applications of motion analysis
can be found in biomedicine. Gait analysis is used to
assess pathological conditions of patients and to plan
treatment such as orthopedic surgery and for follow-
up monitoring. Similarly the methodology is applied
in sports science, where the motion of athletes is
optimized or monitored and automatically evaluated
during endurance exercises.

More recently, motion analysis and motion cap-
ture have been applied in the entertainment industry.
In its earliest form this involved a process called
rotoscoping, i.e., an artist traced the outline of an
actor in every frame of a reference video to create
2D animations of a subject. Nowadays, marker-based
systems are frequently used to capture motions for
use in both computer games and motion picture pro-
ductions because creating animations by hand with
the fidelity required in this industry is a very time-
consuming task. Most commercial marker-based sys-
tems are still limited to controlled studio environments.
Although recently, systems using active markers have
been proposed that can be used outdoors or in onset
conditions.

Open Problems

Although the main challenges of marker-based motion
capture are generally considered solved, there is still
room for improvement. Directors ask for ever more
actors to be tracked simultaneously in real time; sys-
tems that work in outdoor settings are still only
available using active markers or do not support
real-time feedback. Retroreflective markers cannot be
used outdoors because interference with other light
sources prevents detecting markers reliably. Vision-
oriented systems may be able to solve these issues
and in most cases make less assumptions about the
scene. Many approaches use no markers and sig-
nificantly fewer cameras. In some cases, even mov-
ing backgrounds can be handled, or cameras are not
assumed to be static. However, vision-based systems
tend to be computationally expensive and less robust.
Overall, combining the general capabilities of vision
systems with the speed and robustness of marker-
based approaches would significantly advance the
state-of-the-art.



M 498 Motion Capturing

References

1. Sutherland DH (2002) The evolution of clinical gait analysis:
part II kinematics. Gait Posture 16(2):159–179

2. Zhou H, Hu H (2008) Human motion tracking for rehabilita-
tion – a survey. Biomed Signal Process Control 3:1–18

3. Moeslund TB, Hilton A, Krüger V (2006) A survey of
advances in vision-based human motion capture and analysis.
Comput Vis Image Underst 104(2):90–126

4. Menache A (1999) Understanding motion capture for com-
puter animation and video games. Morgan Kaufmann, San
Diego

Motion Capturing

�Motion Capture

Motion Deblurring

�Blind Deconvolution

Motion Tracking

�Motion Capture

Multi-baseline Stereo

David Gallup
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Definition

Multi-baseline stereo is any number of techniques
for computing depth maps from several, typically
many, photographs of a scene with known camera
parameters.

Background

The goal of any stereo algorithm is to reconstruct
the 3D surface geometry of a scene from multiple

photographs. Multi-baseline stereo can be seen as
a generalization of binocular stereo, and it is one
instance of a broader class of multi-view stereo algo-
rithms. The classic binocular stereo problem focuses
on using two views of a scene (the minimal case),
whereas multi-baseline stereo uses more than two and
typically many more views of the scene. More views
not only provide a better signal to noise ratio but also
eliminate most repetitive structure errors and offer new
ways to handle occlusions.

Another type of multi-view stereo is volumetric
stereo, which explicitly models the scene’s surface in a
volume, and is sometimes called object-based. Multi-
baseline stereo on the other hand is image-based, and
seeks to reconstruct the scene by assigning depth val-
ues to the pixels of one or more of the input images.
Often this leads to better sampling of the input data and
greater memory efficiency. The disadvantage is that
special care must be taken at depth discontinuities.

Theory

Multi-baseline stereo shares the same theoretical con-
cepts as other stereo problems. The inputs consist of a
set of n input images with camera parameters. Camera
parameters define a projection function which projects
a 3D point into a pixel in the image. The goal is to com-
pute a depth map for one or more of the input images.
For simplicity we will focus on computing a depth map
for a single view called the reference view.

Computing a depth map from images can be viewed
as a maximum a posteriori estimation problem. Given
images I1; : : : ; In, compute the depth map Z that max-
imizes P.ZjI1; : : : ; In/ D P.I1; : : : ; InjZ/P.Z/.
The likelihood P.I1; : : : ; InjZ/ describes how well
the depth map fits the input data, and the prior P.Z/

describes desired properties of the depth map such as
smoothness. This formulation can be expressed as an
energy function:

E.Z/ D
X

p2Z
Edata.Z.p//

C
X

.p;q/2N
Esmooth.Z.p/;Z.q//: (1)

The data term Edata measures how well the depth
value Z.p/ matches the input images. These matching

http://dx.doi.org/10.1007/978-0-387-31439-6_21
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http://dx.doi.org/10.1007/978-0-387-31439-6_21
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scores can be computed by comparing the intensity
value in the reference view Iref.p/ to the intensity
values of the projections of Z.p/ in the matching
views, Ik(projk.Z.p///. Some views may be occluded,
meaning that Z.p/ may not be visible from that view
and Ik(projk.Z.p/// will not match Iref.p/. Occlu-
sion handling aims to remove the influence of these
occluded views and is a critical part of stereo. The
smoothness term Esmooth penalizes variations between
neighboring depth values (given by the set N ).

Matching Scores
Consider a known 3D point X on the surface of the
scene as shown in Fig. 1. Let x0; : : : ; xk be the projec-
tions of X into each image. The image intensities at
these points should be photo-consistent (have the same
appearance) since they are all images of the same point
on the surface. This will not necessarily be true for
3D points off the surface of the scene. Brightness con-
stancy is the assumption that the intensity of light does
not change from viewpoint to viewpoint, a property of
Lambertian surfaces. This can be measured by taking
the absolute difference or squared difference between
the intensity value in the reference view and the inten-
sity value in matching view. Typically a single pixel
does not carry enough information to make an infor-
mative matching score, and so often the differences
between patches of nearby pixels are also incorporated
into the matching score. This yields the sum of abso-
lute differences (SAD) and sum of squared differences
(SSD) scores.

The brightness constancy assumption can be vio-
lated for many reasons, for example, different exposure
settings between images and specular surfaces that
reflect light at different intensities depending on the
angle. To account for some of these changes, patches
can be normalized by removing the mean intensity
of the patch and scaling the values so that variance
is 1. This yields the normalized cross-correlation score
(NCC). Let M and N be two rectangular image
patches of size w � h. These patches can be flattened
to form vectors m and n of size w � h. The NCC score
is then

NCC.M;N/ D .m � Nm/ � .n � Nn/
var.m/var.n/

; (2)

where Nm is the mean of m and var.m/ is its variance.

When patches originate from highly slanted sur-
faces, they may need to be corrected before being
correlated. The surface’s tangent plane can be defined
given the point’s surface normal, and images can be
aligned by projecting them onto this plane. This trans-
formation can be expressed as a homography. This
adds two additional angle parameters per pixel to the
problem. One method to account for the surface nor-
mal is to compute the matching score as the best score
over all surface normals [1]. A much faster alternative
is to consider only a small number of likely candidates
[2]. Another is to iteratively estimate a depth map,
using surface normals given by the depth map from the
previous iteration.

Summing the SAD, SSD, or NCC scores from mul-
tiple views reduces the influence of noise as well as
disambiguates mismatches due to repetitive structures
since it is less likely that a mismatch will occur in all
views simultaneously [3].

Occlusion Handling
Summing scores from multiple views treats all images
equally. In fact some images may be occluded, mean-
ing a different surface is seen from that viewpoint, and
the matching score is arbitrarily bad. Handling these
cases is important for stereo, and multi-baseline stereo
has advantages in this regard. One method based on
robust statistics is to assume that at least k views are
unoccluded and to discard the rest. The sum of the
best k views can be obtained by sorting and sum-
ming. Another method is to assume an object will be
occluded from one side and not another. Assuming
cameras are arranged in a line, the unoccluded half-set
will be either the left or right half-set of cameras [4].
See Fig. 2.

Other methods seek to detect occlusions explicitly
by using the reconstruction itself to identify occluded
views. This is a chicken and egg problem: the occlu-
sions must be known to reconstruct the scene, and the
reconstruction of the scene must be known to detect
the occlusions. Some methods model occlusions prob-
abilistically [5], and others start with a safe configura-
tion and update the reconstruction convervatively [6].

Optimization
Optimizing Eq. 1 is difficult due to the non-convex
data and smoothness terms. Some methods ignore the
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Multi-baseline
Stereo, Fig. 1 A surface
point X is projected into the
images. Matching view 2 is
occluded and should not
contribute to the matching
score

Multi-baseline Stereo, Fig. 2 Simple occlusion geometry.
Typically, either the left half-set or the right half-set will be free
of occlusion

smoothness term, and each pixel is optimized inde-
pendently by exhaustive search. The Z function is
discretized into points along viewing rays that project
to individual pixels in the matching views. Testing all
points for each pixel can be done efficiently using
graphics hardware which is well suited for this type
of embarrassingly parallel computation [12]. Methods

that do use the smoothness term obtain better results,
and if the benefits of normalization (NCC) are not
needed, patches need not be used and single pixels
can be used. The ambiguity of single pixel matching
is resolved because the smoothness term regularizes
the solution. The optimization problem is NP-hard, but
there are effective approximation algorithms based on
graph cuts [8] and belief propagation [9].

Depth Resolution
The resolution of stereo as a depth sensor depends on
the distance of the surface from the cameras. The depth
resolution is the distance between pixels in a match-
ing view projected onto a viewing ray in the reference
view. In the binocular case, the resolution is

�z D z2

bf
; (3)

where�z is the resolution, z is the distance to the refer-
ence view, b is the baseline or distance between camera
centers, and f is the focal length of the cameras.
Depth measurement uncertainty depends on the match-
ing uncertainty which describes how precisely the two
observed patterns can be registered and depends on



Multi-camera Human Action Recognition 501 M

M

factors like texture and image noise. Depth measure-
ment uncertainty is proportional to depth resolution.
With enough views, multi-baseline stereo has the
advantage that the baseline can be treated as a vari-
able rather than a constant. This gives greater control
over the depth resolution and computation time of the
stereo algorithm [10].

Application

Multi-baseline stereo is applied to many 3D recon-
struction problems such as 3D city modeling [11], view
synthesis [12], and digital archiving. Multi-baseline
stereo is often used in real-time applications where
high-quality depth can be computed from a large num-
ber of views without the need for computationally
intensive optimization techniques. This is especially
true for video applications, where the camera moves in
a fairly linear manner, and so more general multi-view
stereo techniques are unnecessary.
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Definition

Multi-camera human action recognition deals with
using multiple cameras to capture several views of
humans engaged in various activities and then combin-
ing the information gleaned from the cameras for the
classification of those activities.
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Background

Research on human activity recognition gathered
momentum in the mid- to late 1990s; much early
work is summarized in a review by Aggarwal and Cai
[1]. There emerged two dominant approaches during
this period: (1) state-space modeling of human actions
[2, 3]; and (2) template matching [4, 5]. The focus
during that early phase of this research was primar-
ily on recognizing human activities on the basis of
the images collected by a single camera. While this
is still an active research area in computer vision (see
Aggarwal and Ryoo [6] for a survey), it unfortunately
suffers from several serious shortcomings, many of
them owing to the limitations inherent to images that
are recorded from just one viewpoint. Human activ-
ities, in general, are much too complex in 3D to be
described by cues extracted from single-viewpoint 2D
projections. While it is true that the human eye (even
just a single eye) can do a wonderful job of catego-
rizing human activities, trying to replicate that in a
computer would be far too ambitious a research project
for a long time to come. It is not yet fully understood
how the human brain fills in the information that it
cannot see directly in order to recognize objects and
movements despite severe occlusion and noise. While
it is a proper exercise in humility to be awed by the
capabilities of the human brain, it is nonetheless good
to keep in mind that even a human can be fooled in its
perception of an activity when the perception is lim-
ited to a single viewpoint. Magicians frequently take
advantage of such limitations of human perception in
order to produce their magical effects.

In addition to the problems caused by the fact that
a single camera provides only single-viewpoint 2D
projections of the scene, other reasons for the more
recent interest in multi-camera approaches to activity
recognition stem from the current global interest in
wide-area surveillance, on the one hand, and in the
design of intelligent environments for the living spaces
of the future on the other. In both of these applica-
tions, the goal is to characterize a human activity as
it is evolving with time and as it is occupying space
that may not be limited to the coverage provided by a
single camera. Consider a habitat of the future for the
aged and the infirm where you may wish to use a net-
work of cameras that silently watch for any undesirable
human behavior, such as someone suddenly collaps-
ing on the floor or tripping over a piece of furniture.

To recognize such human activities, the camera system
would need to analyze the sensed data over a period
of time and, even more particularly, over some a span
of physical space. Multi-camera imagery would obvi-
ously lend itself much better to the sort of data analysis
that would need to be carried out for the required
inferences.

With a view to gaining insight into the various
aspects of multi-camera human action recognition,
in the remainder of this chapter, section “Theory”
describes the theoretical details of the different types
of approaches that have been proposed by researchers
to accomplish multi-camera action recognition. Owing
to this chapter’s intent of providing accessibility to
the general readers, significant details about the algo-
rithms are not discussed; rather, only the distinguishing
highlights of the different approaches are presented.
Section “Application” presents a discussion on some
of the application areas that will benefit from multi-
camera action recognition as compared to the single
camera modality. Since human action recognition is
a complex and challenging problem, there are quite a
few open problems that need to be addressed before
this research becomes useful for mainstream society.
Section “Open Problems” enumerates some of these
open problems related to human action recognition in
general and also those that are specific to the area
of multi-camera action recognition. Finally, in sec-
tion “Experimental Results,” this chapter is concluded
with a performance comparison between the differ-
ent multi-camera approaches on a common benchmark
dataset.

Theory

The first step in human action recognition involves cre-
ating a library of models for different human actions
to be recognized. An action model characterizes the
unique motion patterns associated with an action.
These models can be created from a temporal sequence
of either 2D images or 3D reconstructions obtained
by combining multiple camera images of a human
actor. Researchers have proposed different approaches
to creating the action models. For example, an action
model may comprise of a set of local motion fea-
tures extracted from the spatio-temporal volume of the
action image sequence. Another example of an action
model is a set of exemplar human poses represented
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either as 2D silhouettes or 3D reconstructions. Yet
another example is a set of spatiotemporal trajectories
of different human body parts. Once the action mod-
els are created, new instances of human actions can
be recognized. Given a test image sequence that con-
tains an unknown human action, the same technique
used for creating the action models is applied to the
test sequence to generate its action representation. This
action representation is then compared against each
action model in the library. Finally, the test sequence
is assigned the label of the most similar action model.
In terms of the underlying operating principle, there is
no difference between human action recognition and
any other type of object recognition: A test object
whose category label is to be ascertained is assigned
the label of the closest matching model whose category
is known.

A common assumption in single camera action
recognition is that the test action and the model actions
have been captured from identical or very similar cam-
era viewpoints. The quality of match between the test
action and the model actions is a function of the con-
formity between their camera views. As Souvenir and
Babbs [7] point out, it would be impractical for any
human motion analysis system to impose the constraint
that humans engaged in an activity are facing the same
direction relative to the camera view at all times. In
order to alleviate this problem, several methods have
been developed which use multiple cameras in the
training and/or testing phases of action recognition.
These methods provide viewpoint invariance, i.e., the
ability to perform matching between a pair of action
observations even if they have been acquired from
different camera views. A good overview of multiple
camera action recognition approaches can be found in
[8]. Based on the distinct fundamental ideas of these
methods, they have been categorized into the following
three classes:
1. Multi-view geometry-based methods
2. View-invariant representation-based methods
3. Exhaustive search methods

Multi-view Geometry-BasedMethods
The multi-view geometry-based approaches utilize the
epipolar geometric constraints between multiple cam-
eras for human action recognition. The intuition is that
if two actors perform the same action, then assum-
ing the same temporal rate of action execution, their

postures at all corresponding time instants are related
by epipolar geometric relationships. Such relationships
between the two views are applied to point correspon-
dences where the points are generally chosen as the
anatomical landmarks on the human body, e.g., head,
shoulders, hands, and feet (see Fig. 1). Action recogni-
tion is performed by measuring the similarity between
the postures of a test action sequence and a model
action sequence at every time instant. The similarity
measure can be expressed in terms of the point corre-
spondences and a matrix F known as the fundamen-
tal matrix that is computed using epipolar geometry
(Fig. 2). Given at least eight pairs of point correspon-
dences

�
xi ; x

0
i

�
, the fundamental matrix F satisfies the

relation xT
i F x0

i D 0; i D 1; : : : ; n � 8. In prac-
tical settings, the point correspondences between the
action representations in two different views will gen-
erally not be precise, and hence, the quantity xT

i F x0
i

will not be exactly zero. Nevertheless, the residualP
i

ˇ̌
xT
i F x0

i

ˇ̌2
can be used as the matching cost or

the similarity measure. If the matching cost is below
a certain threshold, then the point correspondences
come from the same action represented in the dif-
ferent views. Generally, the test action postures and
the action models are derived from different persons
with different body sizes and proportions; therefore,
certain anthropometric constraints may also need to
be imposed to normalize the landmark points to a
common coordinate frame before the epipolar geo-
metric constraints can be applied. Such and other
similar constraints on the point correspondences have
been used for matching of different action instances
in [9, 11–13].

View-Invariant Representation-BasedMethods
In addition to the multi-view geometry-based
approaches, there are other interesting methods that
accomplish viewpoint invariant action recognition
based on machine learning techniques. It is a conceiv-
able scenario that a discriminative model of an action
is available for one camera viewpoint (source view),
and the action recognition needs to be performed in
another view (target view) for which such a model is
not available. This issue has been addressed in [14],
where a transfer learning approach is used along with
examples of corresponding observations of actions
from both views in order to learn how the appearance
of an action changes with the change of viewpoint.
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Multi-camera Human
Action Recognition, Fig. 1
The posture of a human actor
at a specific time instant. It is
represented as a set of
anatomical land marks (Gritai
et al. [9], c�2004 IEEE)
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It is worth noting that such learning can be performed
with one set of actions and then applied to a new
unknown action for which the transfer model is not
explicitly built. Transfer learning is applied by split-
ting the source domain feature space using the action
descriptors and the action labels to produce certain
split-based features. These split-based features are
considered transferable between the source view and
the target view and therefore are used to construct an
action-discriminative split of the target domain feature
space. For a test action sequence in the target view, its
action descriptors are extracted, and action recognition
is performed by a nearest neighbor matching with the
action descriptors of the model actions which were
transferred from the source view.

In [7], the variation in the appearance of an
action with viewpoint changes is estimated by learning
low-dimensional representations of the actions using
manifold learning. The action descriptor used is the
R transform surface which is a temporal extension
of the well-known Radon transform (Fig. 3). In the
figure, the horizontal axes correspond to time t and
the polar angle � used in Radon transform computa-
tions. The R transform surface is a high-dimensional
data that lies on a non-inear manifold, and hence it can
be embedded into a lower dimensional space. In this
low-dimensional space, learning how the data varies as

a function of the viewpoint provides a representation
which allows to avoid storing action examples from all
possible viewpoints. Action recognition is performed
by obtaining a similarity measure between two R
transform surfaces S1 and S2, such as the L2 distance
kS1 � S2k. Another interesting approach has been
described in [15], where the temporal self-similarity
between the frames of an action sequence was shown
to be highly stable with a changing viewpoint (Fig. 4).
Specifically, for the same action sequence recorded
from very different views, the so-called temporal self-
similarity matrices (SSMs) corresponding to the differ-
ent views were shown to be very similar. This observa-
tion was consistent even when different image features
were used for computing the self-similarity matrix.
By constructing histogram-based descriptors from the
elements of the SSM (as described in [15], Sect. IV),
action recognition can be performed by applying clas-
sifiers like nearest-neighbor or support vector machine
on these descriptors. Recently, Kusakunniran et al. [16]
proposed a view transformation model based on sup-
port vector regression for solving the multi-view gait
recognition problem. This view transformation model
uses local regions of interest (ROIs) in one view to
predict the motion information of the corresponding
regions in a different view. In order to perform gait
recognition, the gait features from the different actors’
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Multi-camera HumanAction Recognition, Fig. 2 Landmark points (yellow) in one view. The other views show the epipolar lines
which contain the points corresponding to the landmark points (Sinha and Pollefeys [10], c�2009 Springer)

gait sequences and possibly different view angles are
first normalized to a common viewing angle using
the view transformation model followed by a similar-
ity measure calculation between the normalized gait
features using the Euclidean metric.

Exhaustive SearchMethods
The third popular approach in the multi-camera human
action recognition is to perform an exhaustive search
in the space of multi-view action poses to find the best
match for the test action poses. Such an exhaustive
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Multi-camera Human Action Recognition, Fig. 3 Kicking action from two different view points and their corresponding R
transform surface action descriptors. They are quite similar despite view point variation (Souvenir and Babbs [7], c�2008 IEEE)
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Multi-camera Human Action Recognition, Fig. 4 A golf swing action seen from two different views and their corresponding
temporal self-similarity matrices (Junejo et al. [15], c�2011 IEEE)

search can be performed in 2D or 3D. During the
training time, a set of multiple fixed cameras installed
around the actor is used to record the multi-view
sequences of his or her actions (Fig. 5). In the
2D exhaustive search approach, an observation is

recorded for the unknown action and matched against
each recorded view from the training session. The
matching can be performed using the shape features
derived from the 2D silhouettes, the motion features
obtained from the optical flow, or histograms of local
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Multi-camera Human
Action Recognition, Fig. 5
Acquiring simultaneous
multiview action sequences
for training (Ahmad and
Lee [17], c�2006 IEEE)
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View 1 (0°)

spatiotemporal cuboid features. In order to accomplish
action recognition, this 2D search is performed at every
time instant of the action sequence, and the model
action resulting in the smallest feature distance over all
the time instants is used to label the unknown action.
A limitation of the 2D approach is that the same spa-
tial configuration of cameras has to be used during
the training and testing sessions. Generally, during the
test time, the observations are recorded from a single
view, but more than one view can also be used with
the appropriate changes in the matching algorithm. The
2D approach has been used by several research groups
[17–19].

The 3D exhaustive search approach provides more
flexibility with regard to the placement of the cameras
in the monitoring environment. Different spatial con-
figurations of cameras can be used during the training
and testing sessions. Here, instead of storing all the dis-
crete views of the action during the training time, they
are combined to produce an action model based on 3D
reconstruction (Fig. 6). The key advantage of such a
strategy is that there is no restriction on what camera
view(s) can be used to record the test action sequence.
If the camera parameters of the arbitrary camera view
used during the testing session are known, then the
model 3D action representations can be projected into
that 2D view for matching with the observation. Some
examples of such an approach are [20, 21].

Application

Vision-based human activity recognition has diverse
applications. Generally, any practical application
related to monitoring human activities requires that
the monitoring can be done over an extended physi-
cal space beyond the viewing area of a single cam-
era. It may also be required to monitor an event
from several viewpoints simultaneously so as to obtain
richer descriptions of complex human activities. Such
requirements necessitate the use of multiple cameras
for capturing the events. In this section, some of the
application areas are briefly discussed where multi-
camera human activity recognition or multi-camera
event detection is currently being used or has strong
potential for use in the near future.
1. Wide area surveillance – Facilities like government

buildings, military installations, airports, subways,
power plants, dams, and so on require round-the-
clock surveillance. Some examples of the general
human-related activities that need to be monitored
are wide-area perimeter breaches by intruders, a
person approaching the doors after hours, leav-
ing of a suspicious unattended object by a person,
extended loitering around the facility perimeter, and
persons tampering with the facility security sys-
tems. In such scenarios, it is necessary to study not
only the isolated activities of the persons but also
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Multi-camera Human Action Recognition, Fig. 6 An action
model consisting of 3D exemplars that were selected based on 11
types of actions by 10 human actors [20]. Given a test sequence

of 2D action silhouettes, action recognition involves finding the
best matching exemplar sequence and the best matching 2D
projections ( c�2007 IEEE)

the patterns of their interactions with their surround-
ings, such as who are other persons they interact
with, are they carrying any objects, how long have
they been present or are they loitering around the
security systems.

2. Monitoring the elderly and children – Assisted liv-
ing homes and day care centers require constant
monitoring of the activities of the elderly and chil-
dren to avoid incidents such as an elderly person
tripping over a furniture and falling down or a child
playing too close to hazardous areas like a swim-
ming pool or an electrical appliance. Commercial
applications are available for day care centers that
allow the installation of multiple wireless surveil-
lance cameras in play areas, resting areas, or dining
areas, where the video and audio feed from the
cameras can be transmitted to a central computer
connected to the Internet. Parents can thus check on
the safety of their children at any time by viewing
over the Internet.

3. Three-dimensional human motion analysis for
sports and medicine – A 3D motion-based system
can be used to perform a marker-based or marker-
less capture of the human motion while performing
ordinary activities like walking or bending or sports
activities like a golf swing, swimming strokes, ten-
nis serves, gymnastics, and so on. In the field of
medicine, such human motion data is used to char-
acterize the dynamics of activities, discover the
fundamental principles that govern movement, and
understand the causes of movement disorders. In the
area of sports, the motion data of the athlete can be
analyzed by the coach for recommending changes
in the dynamics to achieve more energy-efficient
and agile performance, or it may be compared
with the 3D reference motion of another expert
athlete.

4. Enhanced sports viewing experience – Multiple
cameras are routinely used in sports like football,
cricket, and soccer to capture many views of a
dynamic event for providing an enriched fly through
experience of the scene to the viewers or for use by
the referees when it is difficult to make judgments
based on a single camera view.

Open Problems

In the last 15 years, substantial progress has been
made in the field of human action recognition. The
accomplishments have primarily been in the area
of single-person action recognition in an uncluttered
background and recognizing a set of simple activities
like walking, jumping, waving hands, punching, and so
on. This is evidenced by the popularity of datasets like
KTH, Weizmann, and IXMAS for benchmarking the
action recognition algorithms (please see [8], Sect. 6
for description of these datasets). These datasets cap-
ture simple actions performed by a single human, with
a clean background, and negligible variations in spatial
scale of the person or temporal speed of execution. The
challenge for the research community, in most simple
words, is to extend the current recognition algorithms
to work on datasets comprising of video sequences
captured in unconstrained settings such as the Hol-
lywood movie dataset [22] or the YouTube video
dataset [23].

Specifically in the area of multi-camera action
recognition, an open problem is to obtain nonrigid
point correspondences on the human body that are
needed for applying the geometric constraints. The
main underlying difficulty is the reliable detection and
tracking of human body parts in an unconstrained
visual setting. Similarly, a limitation on the view
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Multi-camera Human Action Recognition, Fig. 7 Action recognition performance of different algorithms on IXMAS dataset

invariant representations like self-similarity matrices
[15] and R transform surface [7] is that they are
constructed from the temporal variation of the fea-
tures; hence, they need the full video sequences to
be available offline. Real-time applications like video
surveillance and human-computer interaction will ben-
efit from the development of view-invariant features
that can be computed online.

Experimental Results

This chapter is concluded with a chronological sum-
marization of the different algorithms’ action recog-
nition performances on a benchmark dataset named
the INRIA Xmas Motion Acquisition Sequences
(IXMAS) [24].

The IXMAS dataset is the most commonly used
dataset for evaluating the multi-camera action recogni-
tion algorithms. It contains 13 daily-life actions, such
as check watch, cross arms, and scratch head. Each
action is performed three times by 11 actors. The
actions are captured using five calibrated and syn-
chronized cameras. The actors are free to perform
the actions in any orientation, making this a fairly
challenging dataset.

Figure 7 presents the reported average recognition
accuracies of several recent works on multi-camera
action recognition. It is important to note that not all
the approaches use the same evaluation methodologies,
and hence, it is difficult to compare them merely based
on these values.

For easier comparison, these works are categorized
into three groups based on their evaluation methodolo-
gies: (1) the methods, which use 3D representations
in the recognition stage [24–26], (2) the methods,
which report camera-specific recognition accuracies
[21, 27–29], and (3) the methods, which incorporate
results from multiple cameras (e.g., using simple vot-
ing) [19, 20, 30–35]. These groups are distinguished
by black, red, and blue markers in Fig. 7, respectively.
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Synonyms

Focus bracketing

Definition

Multi-focus images are a set of images of the same
scene focused at different depths in the scene.

Background

Conventional imaging systems have a finite depth of
field (DOF), which depends on the aperture size and
the focal length of the lens. The DOF is the depth
range within which the scene points appear sharp in the
captured image. For scene points within the DOF, the
size of the defocus blur is smaller than the minimum
acceptable circle of confusion. Often, a single photo is
unable to capture the entire scene in sharp focus.

DOF can be increased by decreasing the aperture
size (increasing the F-number). However, reducing the
aperture size decreases the light throughput, result-
ing in a dark and noisy image. Multi-focus images
offer a solution to increase the DOF without decreas-
ing light throughput. By capturing different photos
focused at different depths in the scene and combin-
ing them, the entire scene can be brought into focus.
This capture procedure is also called “focus bracket-
ing.” This is similar to “exposure bracketing,” where

images are taken under different exposures and com-
bined to obtain a high dynamic range image. However,
a disadvantage with focus bracketing is that the entire
scene has to remain static during the capture process.

Theory

For a thin lens with focal length f and lens to sensor
plane distance u, the plane of focus is at a distance v
from the lens, where

1

v
D 1

f
� 1

u
: (1)

Let c be the size of the acceptable circle of confusion
and A be the aperture diameter. Then, f-number N D
f=A. The DOF is then spanned between Dn and Df ,
where

Dn D vf 2

f 2 CNc.v � f /
; (2)

Df D vf 2

f 2 �Nc.v � f /
: (3)

As shown in Fig. 1 the DOF region in front of the
plane of focus is not equal to the DOF region behind it.
Multi-focus images can be obtained by capturing sev-
eral images, each under a different focus setting of the
lens (change of u). Note that other camera parameters
such as aperture size, exposure time, and zoom can also
be modified along with the focus setting of the lens
during the capture.

Minimizing the Capture Time
Since multi-focus images require the entire scene to
remain static during the capture process, it is impor-
tant to decrease the overall capture time. In [1], the
problem of imaging a scene with a given depth of
field at a given exposure level in the shortest amount
of time was considered. The criteria for optimal
capture sequence were derived. Since the light
throughput is quadratic with respect to the aperture size
but linear with respect to the exposure time, increas-
ing the aperture size is more beneficial to reduce the
overall capture time. Intuitively, one should use a large
aperture and sweep the focus such that all scene points
are sharp in at least one of the captured image.

http://dx.doi.org/10.1007/978-0-387-31439-6_100122
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Multi-focus Images, Fig. 1
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Combining Multi-focus Images
Multi-focus images can be combined to generate an
image with larger DOF than any of the individual
source images. This is also known as focus stacking
and is especially useful in macro photography and opti-
cal microscopy. The resultant image is equivalent to
the photo captured using a small aperture but will be
significantly less noisy. Haeberli [2] showed how to
combine multi-focus images by choosing each pixel
intensity from the image where it appears to be
the sharpest. The sharpness measure can be defined
using local variance or local image gradients. Recent
approaches have used an energy minimization frame-
work to combine multi-focus images using fast tech-
niques such as graph-cuts [3].

Depth from Defocus and Focus
An additional advantage of multi-focus images is that
they can be used to estimate the scene depths, since
the defocus blur of a scene point is related to its
depth. Depth from defocus is an active area of research
in computer vision. Depth from defocus techniques
model the relationship between depth and defocus blur
using a parametric function and use it to estimate depth
from several defocused images. See [4] for a review
on such techniques. On the other hand, depth from
focus [5, 6] approaches use a focus measure to iden-
tify the focus setting for each pixel, which is converted
to the metric depth via calibration.

Extended Depth of Field
Focus bracketing is an easy and practical solution to
increase the DOF of imaging systems without any
hardware modifications. The underlying problem of
extending depth of field has several other interesting
solutions such as (a) aperture modification [7, 8], (b)
light-field based digital refocusing [7, 9–12], (c) lens
modifications [13–15], and (d) sensor motion [16].

Application

Extending the DOF has applications in consumer
and sports photography, as well as scientific imag-
ing. Multi-focus images offer a viable solution if the
scene is changing slowly compared to the capture time
required for focus bracketing.

Open Problems

Applying multi-focus images to a dynamic scene is an
open and interesting problem.
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Synonyms

Multiplexed sensing

Definition

In multiplexed illumination, multiple light sources
are used simultaneously in different measurements of
intensity data arrays. Then, the intensity under individ-
ual sources is derived by computational demultiplex-
ing. This scheme enhances the results: it increases the
signal-to-noise ratio of intensity data arrays, without
increasing acquisition resources such as time. It also
improves dynamic range.

Background

Measuring a set of variables is a common task. For
example, in computer vision and graphics, there is a
need to acquire multiple images under various light-
ing conditions; in spectroscopy, there is a need to
measure several wavelength bands; in tomography,
measurements are taken at a set of different direc-
tions; in microscopy, there is a set of focal planes or
a set of measurements under several fluorescence exci-
tation wavelength bands. Usually these variables are
measured sequentially.

The measurements are subjected to noise, which
may yield a low signal-to-noise ratio (SNR). In many
cases, the SNR cannot be improved simply by
increasing the illumination of individual sources or
the exposure time. Simultaneously combining signals
corresponding to multiple variables into a single mul-
tiplexed measurement may be more efficient. This way,
in some cases, the total intensity of multiplexed signals
increases relative to the noise. The acquired multi-
plexed measurements are demultiplexed by a com-
puter, yielding an array of intensity values with a
higher SNR.

Theory

Basic Multiplexing
Often, sensors seek measurement of a vector of observ-
able intensity variables i. Generally, the acquired raw
measurements form a vector a of length Nmeasure. This
raw vector is related to i by

a D Wi C �; (1)

http://dx.doi.org/10.1007/978-0-387-31439-6_74
http://dx.doi.org/10.1007/978-0-387-31439-6_708
http://dx.doi.org/10.1007/978-0-387-31439-6_128
http://dx.doi.org/10.1007/978-0-387-31439-6_203
http://dx.doi.org/10.1007/978-0-387-31439-6_100188
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where � is a vector of measurement noise (the noise
is uncorrelated in different measurements). Here W is
a weighting matrix, referred to as a multiplexing code.
One case is W D I, where I is the identity matrix.
This special case is referred to as trivial sensing: only
a single component of i is acquired at a time. More
generally, multiple components of i can be simultane-
ously summed up (multiplexed) and acquired in each
raw measurement. The components of i included in the
mth measurement are determined by the mth row of
W. After the measurements are taken, the vector i of
intensities corresponding to the individual source can
be decoded from the vector of measurements a, using

Oi D W�1 a (2)

(when W is invertible) or by an estimator such as least
squares.

A simple case in which Nsources D 3 is depicted in
Fig. 1. There, two sources are used simultaneously per
acquired measurement. For general number of sources,
the vectors i and a are related by a linear superposition
as in Eq. (1). The elements wm;s of W represent [13]
the normalized radiance of source s in measurementm.
If wm;s D 0, then source s is turned off completely
at measurement m; if wm;s D 1, then this source
irradiates the object, at the source’s maximum power.
Generally, 0 � wm;s � 1:

The mean squared error (MSE) [5] of Oi is

MSEi D �2

Nsources
tr

h�
WTW

��1
i
; (3)

where tr is a trace operation and �2 is the variance
of �. Based on Eqs. (2) and (3), i can be reconstructed,
with a potentially higher SNR [5, 11, 13] than i which
is trivially sensed using I. The gain of using multi-
plexing (termed multiplex advantage) is defined [5] as

GAINi D
p
�2=MSEi : (4)

Most related studies have aimed to maximize the
SNR of the recovered images Oi. Thus, Refs. [5, 9,
11, 13] sought a multiplexing matrix that minimizes
Eq. (3):

OWi D arg min
W

MSEi : (5)

An optimal multiplexing code should yield the high-
est SNR of the demultiplexed values. When the
signal dependency of noise is not considered, the

optimal multiplexing codes are based on Hadamard
matrices [5].

According to the affine noise model [11], the detec-
tor noise variance is composed of two components,
signal dependent and signal independent. The gray-
level variance of the signal-independent noise is
denoted by 2gray. Considering a diffuse object, each
light source yields a similar object radiance. Therefore,
each source yields a similar level of noise. If C sources
are activated in their maximum power, the total noise
variance of the measured gray level is [11, 14]

�2 D 2gray C C�2 ; (6)

where �2 is the photon noise variance, caused by
object irradiance from a single source activated at its
maximum power. If photon noise dominates the noise
(C�2 	 2gray), Hadamard multiplexing codes degrade
the decoded images. The reason is that simultaneous
sources increase the image intensity, which in turn
increases the photon noise. Therefore, there is a need
for generalization of the multiplexing model to obtain
new and improved multiplexing codes.

Generalized Multiplexing
References [11, 12] derive optimal multiplexing codes
considering photon noise and saturation. Saturation
occurs when the total illumination radiance exceeds
a certain threshold. If all light sources yield a similar
object radiance, then this threshold Csat is expressed in
units of light sources (C D Csat). It is preferable to
exploit the maximum radiance for every measurement.
Thus, to account for saturation, the constraint

NsourcesX

sD1

wm;s D Csat (7)

is added to the optimization problem in Eq. (5). By
scanning a range of Csat values in Eq. (7) and using
C D Csat in Eqs. (3) and (6), the value that yields the
maximum gain Eq. (4) is found. This accounts both for
saturation and photon noise.

However, is a demultiplexed array i the true goal
of a vision system? Often not. Usually, the recovered
intensity or reflectance array i is by itself an input to
further analysis. For example, a multispectral imager



Multiplexed Illumination 515 M

M

Standard
illumination

Standard
illumination

Standard
illumination

Multiplexed
illumination

Multiplexed
illumination

Multiplexed
illumination

a

b

Multiplexed Illumination, Fig. 1 Three light sources illumination [13]. (a) Standard (trivial) illumination: single light source is
active in each measurement. (b) Multiplexed illumination: two light sources are active in each measurement

may recover a scene’s spectral datacube, and multi-
plexing is helpful in this. But the resulting multispec-
tral datacube itself is of little interest per se: usually
(e.g., in remote sensing) the user is interested in the
underlying spatial distribution of materials or objects
that created the spectral data. This is formulated as a
mixing model

i D X c ; (8)

where X is a mixing matrix. The end product of
interest in this example is not demultiplexed inten-
sities or spectral reflectance (i) but a distribution of
materials (c). Similarly, in multispectral imaging of
fluorescing specimen, intensities (i) are just a means
to obtain information about molecular distributions in
the specimen (c). Recovery of c based on i is called
unmixing.

Reference [2] showed that unmixing can (and
should) be fully integrated when optimizing the multi-
plexing codes. Otherwise, the true underlying variables
of interest may be harmed by multiplexing. Let multi-
ple sources be active in each measurement (intentional
multiplexing). Using Eqs. (1) and (8), c can be esti-
mated, for example, by using weighted least squares

Oc D �
.WX/T†�1

noise.WX/
	�1

.WX/T†�1
noisea ; (9)

where †noise is the covariance matrix of the raw mea-
surement noise �. Then, the MSE of c is

MSEc D 1

Nmaterials
tr

n�
.WX/T†�1

noise.WX/
	�1

o
;

(10)

where Nmaterials is the number of materials to unmix.
To multiplex measurements in a way that optimally
recovers c (multiplexed unmixing), a multiplexing
matrix W that minimizes the MSE of c Eq. (10) is
sought,

OWc D arg min
W

MSEc : (11)

Application

Multiplexed illumination is used in multispectral imag-
ing (array of spectral bands) [3, 9], spectroscopy [4],
and lighting (reflection from an array of light
sources) [8, 11, 13]. It also has analogue formulations
in coded apertures (array of spatial positions or view-
points) and coded shuttering [1, 6, 7, 10] (array of
spatiotemporal pixel values).
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Synonyms

Multiple view stereo

Related Concepts

�Dense Reconstruction; �Multi-baseline Stereo

Definition

Multiview stereo refers to the task of reconstructing a
3D shape from calibrated overlapping images captured
from different viewpoints. Various representations of
3D shape can be used. For example, dense 3D point
cloud or surface mesh representations are common
in applications that synthesize a new photorealistic
image of the scene using computer graphic rendering
techniques. The topics of multiview stereo and multi-
baseline stereo matching share key concepts related
to the recovery of dense 2D pixel correspondences in
multiple images.

Background

Reconstructing 3D geometry from images (often also
called 3D photography) involves using cameras or
optical sensors (and optionally illumination) to acquire
the 3D shape and appearance of objects and scenes
in the real world. Existing methods can be broadly
divided into two categories – active and passive

http://dx.doi.org/10.1007/978-0-387-31439-6_543
http://dx.doi.org/10.1007/978-0-387-31439-6_301
http://dx.doi.org/10.1007/978-0-387-31439-6_128
http://dx.doi.org/10.1007/978-0-387-31439-6_100041
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methods. Active methods usually require additional
special light sources, whereas passive methods work
with natural lighting. Active methods often use special-
purpose sensors such as laser range scanners and depth
sensors (Kinect, time-of-flight cameras) and can often
capture high-quality 3D models. However, developing
passive methods for ordinary cameras is also important
because of their greater ease, flexibility, and wider
applicability.

Multiview stereo is a popular and well-studied pas-
sive 3D reconstruction technique. It is based on the
principle that dense pixel correspondences in multi-
ple calibrated images captured from different view-
points makes it possible to estimate the 3D shape of
the scene via triangulation, which involves intersect-
ing rays backprojected from the corresponding pix-
els. Multiview stereo therefore requires the camera
calibration parameters to be known. These param-
eters can either be precomputed offline or can be
computed from the image sequence using structure
from motion algorithms. Figure 1 shows an exam-
ple of a 3D reconstruction obtained using multiview
stereo.

The main challenge in multiview stereo lies in com-
puting precise, dense pixel correspondence between
images. Difficulties arise due to ambiguities in match-
ing pixels in two images of the same scene. Multiview
stereo works best when surfaces are textured and Lam-
bertian, i.e., when the local appearance of a surface
patch does not depend on the viewing angle. Glossy
or specular surfaces are non-Lambertian and are more
difficult to handle compared to diffuse surfaces. Occlu-
sions can complicate the situation even further, espe-
cially in the wide baseline setting where the camera
viewpoints are farther from each other compared to the
narrow baseline setting, where the effect of occlusions
is less pronounced.

For reconstructing a static scene with multiview
stereo, a single camera can be used to capture
images from multiple viewpoints over time. Some-
times, images are captured with a static camera with
the object placed on a rotating turntable [1]. These
techniques can also be applied to dynamic scenes, pro-
vided multiview video is captured from a calibrated,
synchronized multi-camera rig. The Virtualized Real-
ity project at CMU [2] was the first to demonstrate
multiview 3D reconstruction of dynamic events within
a large scene.

Theory

A taxonomy was recently introduced to broadly cat-
egorize multiview stereo approaches [3]. It proposed
studying various methods based on the following prop-
erties: 3D shape representations, the photoconsistency
measure, visibility handling, shape priors, and the
reconstruction algorithm. A recent tutorial [4] and an
earlier survey [5] are also excellent sources of infor-
mation on this topic.

3D Shape Representation
Many multiview stereo methods represent the 3D
scene as a set of depth maps, one for each calibrated
viewpoint, and recover the 3D shape that is most con-
sistent with all the depth maps [6–8]. Other methods
use explicit surface-based representations. Polygonal
meshes are used both as an internal representation
in some methods [1] and as the representation for
the final 3D shape. Volumetric representations such
as a uniform 3D voxel grid where each voxel is
labeled as occupied or empty are common as well
for their flexibility in approximating a wide variety
of shapes [9–11]. Other volumetric representations
such as adaptive tessellation of 3D space into tetra-
hedral cells can be more compact [12, 13]. Finally,
patch-based representations are also possible [14, 15].
Recent multiview stereo methods represent scenes
using a finite set of locally planar, oriented 3D patches,
referred to as surfels. No connectivity information is
stored as in a surface mesh. While surface meshes and
volumetric representations are advantageous for recon-
structing closed surfaces or 3D objects, depth maps or
patch-based representations are often better choices
for reconstructing large open scenes [7, 8, 15, 16].

Photoconsistency
It is a key ingredient in multiview stereo methods.
It is a measure for the photometric similarity of the
2D projections of any 3D scene point in a set of
calibrated images. For 3D points on surfaces visi-
ble in a set of cameras, the 2D projections in those
images are expected to be similar or photometrically
consistent. Such points are said to have high photo-
consistency. On the other hand, arbitrary 3D scene
points are likely to have low photoconsistency in most
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Multiview Stereo, Fig. 1 Images captured with a camera rig. Calibrated cameras and the final 3d model produced by a state-of-
the-art multiview stereo method rendered as a triangulated mesh

Multiview Stereo, Fig. 2 (a) A pixel in a reference image and
and a square patch around it. (b) Corresponding pixels and asso-
ciated patches in the nearby images that lie on respective epipo-
lar lines. In calibrated images, the search for correspondences

reduces to 1D, i.e., along the epipolar line. (c) A horizontal
slice of the 3D cost volume is shown. It is constructed using
the photoconsistency measure described in [10]

situations. Some earlier methods used the variance in
pixel colors in images where a 3D point is visible, as a
measure of photoconsistency. However, since compar-
ing individual pixels can be ambiguous, a more reliable
approach is to compare the similarity of image patches
around the projections of a 3D point (see Fig. 2). For
narrow baselines, it is sufficient to compare image-
oriented square patches centered on pixels. However,
by incorporating the geometry of the 3D patch, the
matching windows can be correctly adjusted to account
for scale differences in the images and slanted surfaces.

A pair of 2D image patches can be compared using
normalized cross correlation (NCC) after resampling
a n D k � k 2D grid at each patch and comparing
the vector of color values denoted here as u and v,
respectively:

NCC.u; v/ D
Pn

jD0.uj � u/:.vj � v/
qPn

jD0.uj � u/2:
Pn

jD0.vj � v/2

(1)

The NCC-based similarity measure lies in the range
[�1,1] where a value closer to 1 indicates that the
vectors are similar in appearance. Other similarity
measures such as the sum of absolute differences
(SAD), the sum of squared differences (SSD), or
nonparametric measures can be used to compute pho-
toconsistency as well. Unlike NCC, SAD or SSD are
affected by brightness changes in different images.

Photoconsistency Volume Computation
Many multiview stereo methods require the photocon-
sistency function to be evaluated densely on a 3D voxel
grid for the volume containing the scene which is then
referred to as the cost volume. Figure 2 shows an exam-
ple. One simple way to construct this cost volume is to
evaluate the photoconsistency of all 3D points (or vox-
els) using a pairwise similarity measure such as NCC
and then compute the mean NCC score from multiple
pairs of nearby images. There also exist direct meth-
ods to compute the cost volume [17] or approaches that
are better at minimizing noise in the photoconsistency
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estimates [10]. Being able to estimate the visibility
of a 3D point allows one to select which images
contribute to its photoconsistency measure. A coarse
approximation of the shape such as the visual hull
reconstruction obtained from silhouettes is often suf-
ficient when reconstructing closed objects [1, 10, 12].
However, when a large number of images are available,
occlusions can also be treated as outliers and explicit
visibility reasoning is not required [10, 14].

Another general approach to construct the cost
volume involves first estimating depth maps from
each camera’s viewpoint using a state-of-the-art multi-
baseline stereo matching algorithm and then merging
them into a consistent volumetric representation. This
sort of aggregation incorporates visibility information
induced by the independently estimated depth maps.
Intuitively, this can be thought of as a way of proba-
bilistically carving out the 3D volume [6, 18], an idea
that is closely related to the problem of fusion of range
images [19].

Plane Sweep Stereo and DepthMap Fusion
A class of methods referred to as plane sweep stereo
methods avoid building the cost volume on a uni-
form 3D grid. Instead, they sweep the scene with a
set of parallel planes corresponding to the candidate
depths considered for pixels in the reference image.
These planes are typically fronto parallel to the refer-
ence camera, and their spacing is selected in uniform
intervals with respect to their inverse depth from the
camera. Neighboring images are warped on to these
planes using 2D homographies, and the photoconsis-
tency measure is computed at each pixel for each
candidate depth plane. Plane-sweeping strategies are
often chosen by incorporating some knowledge of
scene structure and are popular for 3D recontruction
in urban scenes [7]. Their main advantage over uni-
form voxel grids or other 3D tessellations lies in the
fact that they represent large working volumes more
efficiently, which is important for reconstructing large
open scenes. Plane sweep stereo can be combined with
depth map fusion which can be implemented using an
image space representation [8]. Artifacts in the origi-
nal depth maps are reduced in the fused depth maps
from which triangulated surface meshes can be directly
extracted. The fusion step works better when per-pixel
confidence estimates associated with the depth esti-
mates are available.

Optimization Methods
Broadly all multiview stereo methods formulate the
reconstruction task in terms of a local or global opti-
mization problem. A local method such as space carv-
ing [9] starts with an overestimate of the 3D scene,
and uses a greedy strategy to remove voxels that are
not photoconsistent one at a time. Similarly, in fast
plane sweep stereo [7], each pixel’s depth is com-
puted independent of other pixels. These local meth-
ods are susceptible to noise and outliers and cannot
easily reconstruct smooth geometric shapes. Part of
the difficulty is that the 3D reconstruction task is
inherently ill-posed since different 3D scenes can be
consistent with the same set of images. By assum-
ing that surfaces in the scene are primarily smooth,
various global optimization methods seek the optimal
3D shape which maximizes both photoconsistency and
smoothness. This is achieved by formulating multiview
stereo as a global optimization problem with geometric
regularization terms in the objective function or energy
function. These are minimized either in the discrete or
in the continuous setting.

Global methods for depth map estimation incor-
porate image-based smoothness constraints into the
formulation by designing suitable energy functions
that encourages neighboring pixels to take on identi-
cal or similar depth values. Such methods are often
based on a 2D Markov Random Field (MRF) frame-
work for which efficient optimization algorithms have
been developed in recent years. The MRF framework
can also be used for enforcing surface regularization in
volumetric methods on a 3D uniform grid [10] where
any binary labeling of voxels in the grid corresponds
to some 3D shape. The optimal surface correspond-
ing to the global minimum of the energy function can
be efficiently computed using graph cut algorithms in
many situations [1, 18]. In case of [12, 13], the min-
imal surface computed using graph cuts directly pro-
duces a triangulated mesh. These methods first solve
a discrete optimization problem to obtain a globally
consistent solution and then performs local refine-
ment using continuous optimization to recover finer
details in the structure [1, 12]. As an alternative, direct
continuous optimization methods based on convex
relaxations have also been developed to address dis-
cretization artifacts which can occur in graph cut-based
methods [11].

Variational methods can also be used to extract an
optimal smooth surface from the cost volume using
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multiple iterations that progressively minimize a global
objective function. In [1], this was achieved by evolv-
ing a deformable surface mesh using photoconsistency
cues. However, a good initial guess for the 3D shape
was required. Methods based on level sets are more
flexible as the surface topology is allowed to change
during the iterations. These approaches represent the
surface as the zero level set of an evolving implicit
function [20]. The energy function is minimized by
modeling the evolution of the function using partial
differential equations. These level-set methods have
the advantage of producing smooth surface recon-
structions but have the disadvantage of being suscep-
tible to local minima unless a good initialization is
available.

Patch-Based Multiview Stereo

Another class of popular multiview stereo approaches
represent surfaces as a set of oriented patches with-
out storing any connectivity information. This makes
the representation flexibile and suitable for recon-
structing both closed 3D shapes and open scenes. A
watertight surface mesh can be extracted using the
Poisson surface reconstruction algorithm as a post-
processing step. Patch-based methods are related to
region-growing methods as they typically start from
a few seed 3D points with known depth. The algo-
rithm proposed in [14] starts with a sparse structure
from motion 3D point cloud and iteratively optimizes
the depth and normals of the oriented patches using
an NCC-based photoconsistency measure. The pixels
in the reference image are processed in a matching
score-based priority order that ensures that confident
estimates are propagated first in the surface-growing
phase. This step produces semi-dense depth maps
which are then merged to generate a global set of ori-
ented 3D patches. This method was used to perform 3D
reconstruction from Internet images of popular land-
marks and showed that dense correspondences could
be reliably computed from such large heterogenous
image collections as well.

Patch-based multiview stereo (PMVS) [15] is
another popular algorithm that also uses a seed and
grow reconstruction strategy and consists of three
important steps. First, seed patches are created from
sparse 2D keypoint correspondences in neighboring

overlapping views which can be matched with high
confidence. These patches are iteratively expanded
using a locally planar model to generate new patches.
This is followed by a patch optimization and filter-
ing step which refines the position and orientation of
the patches and then removes noisy or outlier samples
based on photoconsistency and visibility constraints. A
publicly available implementation of this algorithm is
available as part of the PMVS library [15]. Recently,
this library was also extended to support large-scale
reconstructions from Internet collections [16].

EfficientMultiview Stereo on GPUs

Some multiview stereo methods strive for high-fidelity
reconstructions and can be very computationally inten-
sive especially when high-resolution images are pro-
cessed [1, 14–16, 21]. The main computational bottle-
neck in multiview stereo lies in the photoconsistency
computation or computing matching cost over many
pairs of windows. Typically, this can be accelerated
by orders of magnitude on massively parallel hardware
and is also perfectly suitable for the data-parallelism
supported on modern programmable graphics hard-
ware (GPUs) with SIMD architectures. Many vari-
ants of multiview stereo ranging from plane sweep
stereo [7], depth map fusion [8] to level-sets-based
methods [22] have been successfully ported to the
GPU, and one or two orders of magnitude speedup
have been demonstrated.

Benchmarks

The Middlebury multiview stereo datasets shown in
Fig. 3a contain ground truth 3D models created by
scanning the models using a laser stripe scanner and
registering the 3D mesh to the calibrated images
captured with a gantry. The benchmark has recently
been quite popular for evaluating multiview stereo
algorithms [3]. It uses two criteria to evaluate the
reconstructions – accuracy and completeness. The
model’s accuracy is calculated by computing the dis-
tance between the points sampled on the reconstructed
model and the nearest points on the ground truth model
and reporting the distance (in mm) such that 90% of
the points on the reconstructed model are within that
distance from the ground truth model. Similarly, the
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Multiview Stereo, Fig. 3 Multiview stereo benchmarks used
for quantitative evaluation: (a) Middlebury Dino and Tem-
ple datasets from the Middlebury multiview stereo benchmark

(http://vision.middlebury.edu/mview/). (b) Large scenes from
the outdoor multiview stereo benchmark (http://cvlab.epfl.ch/
strecha/multiview/denseMVS.html)

completeness measure is computed for a given thresh-
old by finding the nearest point on the reconstructed
mesh for each vertex in the ground truth mesh and the
percentage of points on the ground truth model that is
within a distance threshold (default value = 1.25 mm)
of the reconstructed model.

Another benchmarks for evaluating multiview
stereo reconstruction of large scenes is also avail-
able [23]. Precise laser scanned models are provided
for ground truth comparisons. Unlike Middlebury
where the scanned models are quite small (only
16 cm on the longest dimension), these datasets con-
sist of high-resolution images and much larger outdoor
scenes. Two of the scenes captured in this bench-
mark are shown in Fig. 3b. Several multiview stereo
methods have demonstrated accurate result on these
datasets.
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