
Multispectral Joint Image Restoration via
Optimizing a Scale Map

Xiaoyong Shen, Student Member, IEEE, Qiong Yan, Li Xu,Member, IEEE,

Lizhuang Ma,Member, IEEE, and Jiaya Jia, Senior Member, IEEE

Abstract—Color, infrared and flash images captured in different fields can be employed to effectively eliminate noise and other visual

artifacts. We propose a two-image restoration framework considering input images from different fields, for example, one noisy color

image and one dark-flashed near-infrared image. The major issue in such a framework is to handle all structure divergence and find

commonly usable edges and smooth transitions for visually plausible image reconstruction. We introduce a novel scale map as a

competent representation to explicitly model derivative-level confidence and propose new functions and a numerical solver to

effectively infer it following our important structural observations. Multispectral shadow detection is also used to make our system more

robust. Our method is general and shows a principled way to solve multispectral restoration problems.

Index Terms—Image restoration, image denoise, joint filtering, shadow detection, multispectral image, depth enhancement

Ç

1 INTRODUCTION

IMAGES captured in dim light are hardly satisfactory. They
could be noisy when increasing ISO in a short exposure

duration. Using flash might improve lighting; but it creates
unwanted shadow and highlight, or changes tone of the
image. The methods of [1], [7], [20] restore a color image
based on flash and no-flash inputs of the same scene.
Recently, because of the popularity of other imaging devi-
ces, more computational photography and computer vision
solutions based on images captured under different config-
urations were developed.

For example, near infrared (NIR) images are with a single
channel recording infrared light reflected from objects with
the spectrum ranging from 700-1,000 nm in wavelength.
NIR images contain many similar structures as visible color
ones when taken from the same camera position. This ena-
bles a configuration to take an NIR image with less noisy
details by dark flash [15] to guide corresponding noisy color
image restoration. The main advantage is on only using
NIR flash invisible to naked human eyes, making it a suit-
able way for daily portrait photography and of remarkable
practical importance.

In previous methods, Krishnan and Fergus [15] used gra-
dients of a dark-flashed image capturing ultraviolet (UV) and
NIR light to guide noise removal in the color image. Consid-
ering rich details in NIR images, Zhang et al. [31] enhanced
the RGB counterpart by transferring contrast and detail via

Haar wavelets. In [32] and [23], the detail layer was manipu-
lated differently for RGB and haze image enhancement.

Methods exploring other image fusion applications are
two-image deblurring [30], matting [24], tone mapping [8],
upsampling [14], context enhancement [21], relighting [2],
to name a few. Bhat et al. [3] proposed GradientShop to edit
gradients, which can also be used to enhance images.

We note existing methods work well for their respective
applications by handling different detail layers or gradients
from multiple images. But in terms of two-image high-qual-
ity image restoration, there remain a few major and funda-
mental issues. We take the RGB-NIR images shown in Fig. 1
as an example to reveal issues generally existing in multi-
spectral images. In this example, an NIR image differs from
the corresponding RGB one in detail distribution and inten-
sity formation. Structure inconsistency on many pixels can
be categorized as follows.

� Gradient Magnitude Variation. In Fig. 1c (first row),
letter “D” is with different contrast due to varied
reflectance to infrared and visible light.

� Gradient Direction Divergence. In the second row,
edge gradients are in opposite directions in the two
images, causing structural deviation.

� Gradient Loss. In the last row, the characters
are completely lost in the NIR image but not in the
color one.

� Shadow and highlight by flash. If one uses flash
only for the NIR image, it inevitably generates high-
light/shadow that is not contained in the other
image. Examples are presented later.

These issues are caused by inherent discrepancy of struc-
tures in the two different types of images. The algorithms to
address them can be generally referred to as multispectral
image restoration. Simple joint image filtering [12], [25] could
blur weak edges, not to mention the inherent smoothing
property. Directly transferring guidance gradients to the
noisy field also results in notable appearance change.
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In this paper, we propose a framework via novel scale
map construction. This map captures the nature of struc-
ture discrepancy between images and has clear statistical
and numerical meaning. Based on its analysis, we design
functions to form an optimal scale map considering adap-
tive smoothing, edge preservation and guidance strength
manipulation. All aforementioned multispectral issues are
discussed and addressed in this framework. We also
develop an effective and fast solver via advanced robust
function approximation and problem decomposition,
which converges in less than five passes compared to
other solutions that may need tens or hundreds of itera-
tions. For high robustness, we also develop a multispectral
shadow detection algorithm. Good quality results are
produced.

This manuscript extends its conference version [29] with
the following differences. First, we provide more analysis
and understanding of the scale map in solving the multi-
spectral image restoration problem. Second, a robust joint
shadow detection method is developed. Third, we propose
a multispectral image restoration framework considering
shadow influence. Finally, more restoration applications are
presented.

The rest of the paper is organized as follows. Section 2
describes modeling and formulation of multispectral joint
image restoration. A multispectral shadow detection
method is elaborated on in Section 3. In Section 4, we intro-
duce an efficient numerical solution for the framework. We
conduct experiments and present several applications in
Section 5.

2 MODELING AND FORMULATION

Our system takes the input of a noisy RGB image I0 and a
guidance image G captured from the same camera position.
G can be a dark-flashed NIR image or others with possible
structure variation as discussed above. Other multispectral

configurations are allowed in our framework, presented in
Section 5. Pixel values in each channel of the images are
scaled to ½0; 1�. G and I0 could have different number of
channels. Our goal is to recover an image from I0 with noise
removed and structure retained under guidance G. We pro-
cess all channels separately.

With aforementioned issues, using G to guide restoration
is non-trivial. We introduce an auxiliary map s with the
same size as G, which is key to our method, to adapt struc-
ture of G to that of I�—the expected ground truth noise-free
image. The smap is defined with relation

minkrI� � s � rGk: (1)

Here r is an operator forming a vector with x- and y-direc-
tion gradients. Each element si in map s, where i indexes
pixels, is a scalar, measuring robust difference between cor-
responding gradients in the two images. Simply put, s is a
scale or ratio map between the guidance and ground truth.
The optimal s corresponding to the multispectral example
in Fig. 1 is shown in Fig. 2, visualized as a color image after
pixel-wise value normalization to [0,1].

We analyze the unique properties of s with regard to
structure discrepancy between rG and rI�, and present
them as follows with the facilitation of illustration in Fig. 3.

Property of s. First, sign of each si can be either positive or
negative. A negative si means the ground truth edge exists
also in the guidance, but edge direction is reverted, as dem-
onstrated in Fig. 3c. Second, when the guidance image G
contains extra shadow and highlight caused by flash, which
do not exist in rI�, si with value 0 can help ignore them.
Finally, si can be any value whenrGi ¼ 0. That is, guidance
edge does not exist (the red letters in Fig. 3a). Under local
smoothness, making si ¼ 0 is a good choice.

In short, if the s map is constructed optimally, all struc-
ture discrepancy problems can be addressed. We will dis-
cuss it more in Section 4.2. This map is first-of-a-kind to
avail solving this set of multispectral restoration problems.
Its additional and notable benefit is the role as latent varia-
bles in developing an efficient optimization procedure.

More of the function. Denoting by I our estimate towards
I�, Eq. (1) is updated to

minkrI � s � rGk: (2)

As it involves unknowns rI and s, which correlate, the
function is ill-posed. We take its variation as a possible data

Fig. 1. Appearance comparison of RGB and NIR images. (a) RGB
image. (b) Corresponding NIR image. (c) Close-ups. The four columns
are for channels R, G, B, and NIR.

Fig. 2. Optimal scale map s computed from images in Fig. 1 according to
Eq. (1). Dark to bright pixels correspond to negative to positive values in
different scales.
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term expression, together with regularization on s, to con-
struct an objective function.

2.1 Data Term about s

In jsirGi �rIij, where i indexes pixels, rGi can be analo-
gously regarded as a scale map for si due to the dual rela-
tion between si and rGi. It controls the penalty when
computing si for different pixels. The final cost resulted
from jsirGi �rIij is dependent of the value of rGi. For
example, if rGi and rIi are doubled simultaneously,
although s remains the same, the cost from jsirGi �rIij
will get twice larger.

To stabilize costs w.r.t. si, we perform normalization

X
i

si � rxIi
rxGi

����
����þ si � ryIi

ryGi

����
����; (3)

by dividing the two components of rGi respectively. It
removes the unexpected scaling effect caused by rGi. Fur-
ther to avoid the extreme situation when rxGi or ryGi is
close to zero, and enlist the ability to reject outliers, we
define our data term as

E1ðs; IÞ ¼
X
i

�
rðjsi � pi;xrxIijÞ þ rðjsi � pi;yryIijÞ

�
; (4)

where r is a robust function defined as

rðxÞ ¼ jxja; 0 < a < 1: (5)

It is used to remove estimation outliers. We set a ¼ 0:9 in
experiments. pi;k, where k 2 fx; yg, is a truncation function

pi;k ¼ 1

signðrkGiÞ �maxðjrkGij; "Þ ; (6)

where signðxÞ is the sign operator, outputting 1 if rkGi is
positive or zero and outputting -1 otherwise. maxðjrkGij; "Þ
returns the larger value between jrkGij and ". The

threshold " is used to avoid division by zero and is set to
0.004 empirically.

2.2 Data Term for I

The data term for I is simply set as

E2ðIÞ ¼
X
i

rðjIi � I0;ijÞ; (7)

where r is the same robust function and I0;i is the color of
pixel i in I0. E2ðIÞ requires the restoration result not to
wildly deviate from the input noisy image I0 especially in
important and salient edge areas. The robust function r

helps reject part of the noise from I0.

2.3 Regularization Term

Our regularization term is defined with anisotropic gradient
tensors [4], [19]. It is based on the fact that s values are
locally similar only in certain directions. For instance, s val-
ues should change smoothly or be constant along an edge
more than those across it. As shown in Fig. 4, uniformly
smoothing s in all directions blurs sharp edges.

Our anisotropic tensor scheme is able to preserve sharp
edges according to gradient directions of G. After a few
algebraic operations, an anisotropic tensor is expressed as

DðrGiÞ ¼ 1

ðrGiÞ2 þ 2h2

��rG?i ��rG?i �T þ h21
�
; (8)

where rG?i ¼ ðryGi;�rxGiÞT is a vector perpendicular
to rGi, 1 is an identity matrix and scalar h controls the
isotropic smoothness. When rGi is much smaller than h,
Eq. (8) reduces to 0:5 � 1 and the structure tensor is there-
fore isotropic. In all our experiments, h is set to 0.1
empirically.

Generally, the two orthogonal eigenvectors of DðrGiÞ
are

vi;1 ¼ rGi

jrGij ; vi;2 ¼ rG
?
i

jrGij ; (9)

with corresponding eigenvalues

mi;1 ¼
h2

ðrGiÞ2 þ 2h2
; mi;2 ¼

ðrGiÞ2 þ h2

ðrGiÞ2 þ 2h2
: (10)

Fig. 3. 1D illustration. (a) contains patches in the color image, NIR image
and s map. Plot (b) contains gradients along the vertical line in the top
two patches. (c) shows corresponding s values. Most of them are zeros;
positive and negative values are also allowed.

Fig. 4. Isotropic versus anisotropic smoothing of the s map. Result in
(b) resulted from anisotropic smoothing contains clearer and higher con-
trast structure. The input images are shown in Figs. 7a and 7b.

2520 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 12, DECEMBER 2015



This decomposes the tensor to

DðrGiÞ ¼ vi;1 vi;2ð Þ mi;1 0
0 mi;2

� �
vT
i;1

vT
i;2

 !
: (11)

This form makes it possible to express regularization for
eachrsi as

E3ðrsiÞ ¼ mi;1

�
vT
i;1rsi

�2 þ mi;2

�
vT
i;2rsi

�2
: (12)

Different smoothing penalties are controlled by mi;1 and mi;2

in directions vi;1 and vi;2, across and along edges respec-
tively. Stronger smoothness is naturally imposed along
edges. The final smoothing term is thus defined as

E3ðrsÞ ¼
X
i

mi;1ðvT
i;1rsiÞ2 þ mi;2ðvT

i;2rsiÞ2
� �

: (13)

2.4 Objective Function without Special Shadow
Treatment

The objective function involving the above terms for esti-
mating the smap and restoring image I is written as

Eðs; IÞ ¼ E1ðs; IÞ þ �E2ðIÞ þ bE3ðrsÞ; (14)

where � controls the confidence on noisy image I0, and b

corresponds to smoothness of s.
This function with the scale map s is already sufficiently

powerful to produce reasonable restoration results for
many data. However, when strong shadow exists in only
one image and the noise level is high, the inherent structure
discrepancy still brings trouble due to the possibly affected
s estimation. An example is shown in Fig. 5.

3 MULTISPECTRAL SHADOW DETECTION

Many shadow detection methods [9], [11], [17], [26], [27]
exist for color images. Employing these methods for multi-
spectral images face challenges since the input can be gray-
scale images. There are methods using additional color
information to help detect shadow. Zhuo et al. [32] detected
shadow in the NIR image only using the intensity difference
in NIR and color images and finally set threshold to get the
shadow mask. R€uenacht et al. [22] presented a method to
detect shadow appearing in both the NIR and color images.
These methods rely heavily on the intensity values and
assume dark regions are more likely to be shadow. Because
noise could be strong and shadow regions in NIR images
are not always dark, shadow detection in multispectral
images is hardly satisfactory. We propose a method in this
section to deal with this problem.

To illustrate the difficulty in multispectral shadow detec-
tion and show how our framework works, the multispectral
RGB/NIR image pair in Fig. 6 is used. The noisy RGB image
in (a) is captured under ambient light with a high ISO while
the NIR image in (b) is obtained with NIR flash, which
reduces noise. But unwanted shadow in the NIR image is
produced.

Our multispectral shadow detection algorithm is
depicted in Algorithm 1. The main idea is to take the
slightly de-noised RGB image as a guidance one to back fil-
ter the NIR image. This step is different from common resto-
ration where structures in the NIR image are used as the
aiding information. It can effectively find shadow because
most edges in the two images are coincident and strong
shadow inevitably yields notable discrepancy when mark-
ing structure difference. We describe our method below.

Fig. 5. A shadow handling example. (a) is a high-noise-level RGB image
and (b) is the corresponding NIR image with shadow. (c) is the result
restored without shadow handling while (d) is the result considering
shadow.

Fig. 6. Multispectral shadow detection. Given noisy RGB image (a) and NIR image (b), our algorithm detects shadow regions in (b). (c) is the denois-
ing result of (a) with the help of (b). (d) is the shadow removed and smoothed result of (b). (e) is the rough shadow map while (f) is obtained by apply-
ing labeling to (e). (g) is the exacted small structures of I0 and (h) shows the final shadow detection result.
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Algorithm 1.Multispectral Shadow Detection

1: input:multispectral image pair (noisy I0 and clean G);
2: denoise I0 with the guidance G by Eq. (15);
3: smooth G by Eq. (16);
4: get rough shadow map S by Eq. (18);
5: label shadow by computing Eq. (19);
6: final process by DoG and median filter;
7: output: shadow map.

3.1 Nonlocal Image Smoothing

We first weakly denoise the RGB image by nonlocal smooth-
ing. The objective function is defined as

EðI 0Þ ¼
X
p

		I 0p � I0;p
		2 þ �1

X
q2NðpÞ

vp;q

		I 0p � I 0q
		2; (15)

where I0 is the input noisy image and I 0 is our target. NðpÞ
is the neighborhood of pixel p. �1 is the weight to control
smoothness. vp;q is the affinity weight between p and q,
which is defined as

vp;q ¼ exp �kGp �Gqk2
s2
G

� kp� qk2
s2
x

 !

like bilateral filter [4]. It helps keep edges and remove noise.
sG and sx are two parameters to control spatial and range
influence.

This function slightly smoothes I0 aware of inherent
structure. It would not strongly damage edges. The nonlocal
image smoothing can be efficiently solved iteratively by fast
bilateral filtering [18]. In our experiments, we set �1 to 0.01.
sG and sx are set to 0.01 and 6 respectively. Size of NðpÞ is
set to ð2sx þ 1Þ � ð2sx þ 1Þ. One initial denoising result is
shown in Fig. 6c.

3.2 Shadow Map Detection

Our shadow detection uses the denoised I 0 to guide NIR
image G smoothing. It is particularly suitable and effective
because I 0 does not contain any flash shadow information
and thus can naturally eliminate shadow in the NIR image
without assuming dark-pixel or light-direction prior
knowledge.

Our joint shadow removal is achieved by solving the
function similar to Eq. (15), written as

EðG0Þ ¼
X
p

		G0p �Gp

		2þ�2

X
q2N 0ðpÞ

v0p;q
		G0p �G0q

		2; (16)

v0p;q is the affinity again taking the denoised I 0 as the guid-
ance. It is expressed as

v0p;q ¼ exp �kI
0
p � I 0qk2
s2
I

� kp� qk2
s02x

 !
: (17)

Obviously, if shadow is not presented at one pixel in I 0,
smoothing will not stop at it in the NIR image. This effect
results in automatic shadow removal in the filtered G0. Set-
ting of s0x relates to the shadow region size. It is not sensi-
tive. The size of N 0ðpÞ is twice of s0x. Both sI and �2 are set
to 0.01 in our experiments.

In general, intensity change in G0 in shadow regions is
much larger than others. An example is shown in Fig. 6d.
The difference between G and G0 primarily represent
shadow inmany of our experiments. Therefore, we compute

S ¼ maxð0; G0 �GÞ; (18)

as the rough shadow map. maxð:; :Þ is the max function to
return the larger value. As smoothing shadow increases
intensity values, a positiveG0 �G becomes a good indication.

Note this map may not be accurate and possibly contains
several errors, as illustrated in Fig. 6e. Problems in S mainly
originate from two aspects. First, the guidance I 0 still con-
tains a level of noise since our denoising process is not
strong in order not to damage underlying structures. Sec-
ond, small structures of G are smoothed out. We remedy
them in the next two steps.

Shadow labeling. We refine the shadow map S by graph
cuts. The graph is set as G ¼ hV; Ei, where V is the set of all
nodes and E is the set of all edges connecting adjacent
nodes. Here, the nodes are pixels, and the edges depict the
adjacency relationship under four- or eight-connection
between neighborhood pixels. The energy is defined on G as

EðXÞ ¼
X
i2V

EDðxiÞ þ �s

X
ði;jÞ2E

ESðxi; xjÞ; (19)

where xi is the binary label with 1 denoting shadow pixels
and 0 for others. EDðxiÞ is the likelihood cost when the label
of node i is xi. ESðxi; xjÞ denotes the cost when the labels of
adjacent nodes i and j are xi and xj respectively. EDðxiÞ is
defined as

EDðxiÞ ¼ ð1�xiÞ �K 8i 2 S
EDðxiÞ ¼ xi �K 8i 2 N
EDðxiÞ ¼ ð1�xiÞbsjSi�Fcj þ xijSi�Bcj 8i 2 U;

8<
:

where S and N denote shadow and non-shadow pixel
seeds. In our experiments, S and N contain the top 2 per-
cent and bottom 20 percent pixels with highest and lowest
shadow values respectively based on the fact that shadow
generally occupies a small portion of area in the whole
image.K is a sufficiently large constant.
U ¼ VnðS [ N Þ is the set of uncertain pixels. For these

pixels, we do not know whether they are shadow or not.
Thus, we set their respective cost assigned to shadow and
non-shadow as the difference of shadow costs, i.e., jSi � Fcj
and jSi �Bcj where Fc and Bc are center shadow map value
in S and N respectively. bs is a parameter decided by the
relative difference between shadow and non-shadow
regions. Setting bs to 10 is good enough in our experiments.

The regularization term ESðxi; xjÞ imposing smoothness
between labels xi and xj is defined as

ESðxi; xjÞ ¼ jxi � xjj � expðjSi � SjjÞ: (20)

The shadow labeling result is obtained by optimizing
Eq. (19) by graph cuts. One result is shown in Fig. 6f.

Final operations. Now the shadow map is with good
quality except for a few small regions still mistakenly
detected as shadow. It is because a few edges, such as the
character strokes in Fig. 6b, are removed from G during
smoothing, as shown in (d). This produces difference
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when comparing G with its smoothed version even if pix-
els are not shadow ones.

To redress this problem, we explicitly extract small struc-
tures in I0 by Difference of Gaussian, as illustrated in
Fig. 6g. This simple operation is fast to separate out most
small structures. Then we apply the relative complement of
(g) in (f) to keep non-zero pixels in (f) when they are zeros
in (g). This process can remove more than 98 percent of the
errors in our experiments since nearly all small regions not
belonging to shadow are eliminated. Note small shadow
regions could also be discarded. It is acceptable in all our
experiments because small shadow would not influence
much the quality of final restored images.

Median filtering is applied afterwards to remove isolated
noise. We denote the final shadow detection result as Sr,
shown in Fig. 6h.

3.3 Final Objective Function Considering Shadow

After we get the shadow map Sr, it is straightforward to
update the energy function. We exclude shadow pixels in G
in the data term in Eq. (4) and employ single image restora-
tion separately for these pixels in the RGB image. Eq. (4) is
therefore updated to

E1ðs; IÞ ¼
X
i

ð1� Sr;iÞðrðjsi � pi;xrxIijÞ þ rðjsi � pi;yryIijÞÞ;

(21)
where Sr;i is the shadow map value of pixel i.

For shadow pixels, because the NIR image does not pro-
vide correct guidance, we employ single-image denoising
on I0 by BM3D [6]. Its result for these shadow pixels is

denoted as ~I. To make the objective function complete, we
introduce a new term requiring that the resulting shadow

regions are the same as those in ~I. This term is written as

E4ðIÞ ¼
X
i

Sr;iðrIi �r~IiÞ2; (22)

The final objective function Esðs; IÞ considering shadow is
expressed as

Esðs; IÞ ¼ E1ðs; IÞþ�E2ðIÞþbE3ðrsÞþgE4ðIÞ; (23)

where � and b are the same as those in Eq. (14). g controls
the influence of data term E4ðIÞ. In Section 5, we discuss
how to set these parameters.

Note when G does not contain extra shadow, all pixels in
Sr have value 0. Eq. (23) is thus almost the same as Eq. (14).
Small edge and structure discrepancy is naturally ignored
in the shadow map, as illustrated in Fig. 6. Close-up of the
result is shown in Fig. 5d.

This objective function is non-convex due to the involve-
ment of sparsity terms. Joint representation for s and I in
optimization further complicates the problem. Naively solv-
ing it by simple gradient decent cannot guarantee optimal-
ity and leads to slow convergence. We propose an iterative
method, which finds constraints sufficient for shaping the s
map according to its ideal characteristics and having the
effect to remove intensive noise from the input I0.

4 NUMERICAL SOLUTION

To solve the non-convex function Esðs; IÞ defined in
Eq. (23), we employ the iterative reweighted least squares

(IRLS) scheme [16], which converts the original problem to
solving a few corresponding linear systems without losing
the original properties. This process is not trivial however.

Initially, robust function rðxÞ in Eq. (5) for any scalar x is

written as x2=jxj2�a, further approximated as

rðxÞ � fðxÞ � x2; (24)

where fðxÞ is defined as

fðxÞ ¼ 1

jxj2�a þ �
: (25)

� is a small number to avoid division by 0. We set it to 1e� 4
empirically. This form enables splitting the robust function
into two parts where fðxÞ can be regarded as a weight for

x2. In our method, following tradition of IRLS, fðxÞ and x2

are updated alternatively because they form simpler repre-
sentation together with other necessary terms to profit
optimization.

Vector form. To ease derivation, we re-write Eq. (14) in the
vector form by taking the expression in Eq. (24) into compu-
tation. It yields

Eðs; IÞ ¼ ðs� PxCxIÞTAxðs� PxCxIÞ
þ ðs� PyCyIÞTAyðs� PyCyIÞ
þ �ðI� I0ÞTBðI� I0Þ þ bsTLs

þ gðI� I
0 ÞTDðI� I

0 Þ; (26)

where s, I, I0 and I
0
are vector representations of s, I, I0 and

I
0
. Cx and Cy are discrete backward difference matrices that

are used to compute image gradients in the x� and
y�directions. Px, Py, Ax, Ay and B are diagonal matrices,
whose ith diagonal elements are

ðPxÞii ¼ pi;x; ðAxÞii ¼ fðsi � pi;xrxIiÞð1� Sr;iÞ;
ðPyÞii ¼ pi;y; ðAyÞii ¼ fðsi � pi;yryIiÞð1� Sr;iÞ;

Bii ¼ fðIi � I0;iÞ:

Note Ax, Ay and B account for the re-weighting process and
are typically computed using estimates from previous itera-
tions; Px and Py are normalization terms from the guided
input. The first three terms in Eq. (27) correspond to E1 and

E2; s
TLs is created by E3 and the last one is the vector form

of E4.
The term sTLs controls the spatial smoothness of s,

where matrix L is a smoothing Laplacian, nontrivially
expressed as

L ¼ CT
x

�
S1V

2
x þ S2V

2
y

�
Cx þ CT

y

�
S2V

2
x þ S1V

2
y

�
Cy

þ 2CT
y ðS1 � S2ÞVxVyCx (27)

after derivations. S1, S2, Vx and Vy are all diagonal matrices.
Their ith diagonal elements are

ðS1Þii ¼ mi;1; ðVxÞii ¼ rxGi=maxðjrGij; "Þ;
ðS2Þii ¼ mi;2; ðVyÞii ¼ ryGi=maxðjrGij; "Þ:
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The last term ðI� I
0 ÞTDðI� I

0 Þ is the vector form of E4ðIÞ
with D ¼ CT

x SrCx þ CT
y SrCy. Sr is a diagonal matrix whose

ith diagonal element is Sr;i. This term helps restore I in

shadow regions with the constraint of ~I in gradient domain.
Analysis. L is actually an inhomogeneous term, reflecting

the anisotropic property of our smoothing regularizer. To
understand it, we consider the extreme case that rG
approaches zero. It leads to S1 ¼ S2 and Vx ¼ Vy ¼ 0, mak-
ing L a homogenous Laplacian. The resulting s map is
therefore smooth equally in all directions. But on natural
images, rG on an edge is not isotropic, which enlists differ-
ent regularization strength. Also, since Cx and Cy are sparse,
the Laplacian matrix L is also sparse that facilitates system
solving given that many mature sparse matrix solvers exist.

Algorithm 2.Multispectral Image Restoration

1 input: noisy image I0, guidance image G, parameters b

and �;
2 initialize I  I0, s 1;
3 repeat
4 estimate s according to Eq. (30);
5 estimate I according to Eq. (32);
6 until convergence
7 output: smap and restored image I.

4.1 Solver

We propose an alternating minimization algorithm to solve
for s and I based on above derivations. Results of s and I in

each iteration t are denoted as sðtÞ and IðtÞ. Initially, we set

sð0Þ ¼ 1, whose elements are all 1 and Ið0Þ ¼ I0.
By setting all initial si to 1, total smoothness is obtained.

It yields zero cost for E3ðsÞ, a nice starting point for optimi-
zation. This initialization also makes the starting rI same
as rG with many details. Then at iteration tþ 1, we solve
two subproblems sequentially

� Given sðtÞ and IðtÞ, minimize Eðs; IðtÞÞ to get sðtþ1Þ.
� Given sðtþ1Þ and IðtÞ, minimize Eðsðtþ1Þ; IÞ to update

Iðtþ1Þ.
The procedure is repeated until s and I do not change too
much. Usually, a small number of iterations (4-6) are
enough to generate visually compelling results. The algo-
rithm is depicted in Algorithm 2, with the solvers elabo-
rated on below.

Solve for sðtþ1Þ. The energy function with respect to s can
be expressed as

EðsÞ ¼ ðs� PxCxIÞTAxðs� PxCxIÞ
þ ðs� PyCyIÞTAyðs� PyCyIÞ þ bsTLs: (28)

Computation of Ax and Ay depends on estimates s and I

from the previous iteration. We denote by At;t
x and At;t

y the

matrices computed with sðtÞ and IðtÞ, which lead to

~EðsÞ ¼ ðs� PxCxI
ðtÞÞTAt;t

x ðs� PxCxI
ðtÞÞ

þ ðs�PyCyI
ðtÞÞTAt;t

y ðs�PyCyI
ðtÞÞþbsTLs: (29)

It is simply quadratic. Taking derivatives on s and setting
them to 0, we obtain the sparse linear system

�
At;t

x þAt;t
y þ bL

�
s ¼ At;t

x PxCxI
ðtÞ þAt;t

y PyCyI
ðtÞ: (30)

We solve it by pre-conditioned conjugate gradient (PCG).
The solution is denoted as sðtþ1Þ.

Solve for Iðtþ1Þ. Similarly, the energy function to solve for I
is given by

~EðIÞ ¼ ðsðtþ1Þ � PxCxIÞTAtþ1;t
x ðsðtþ1Þ � PxCxIÞ

þ ðsðtþ1Þ � PyCyIÞTAtþ1;t
y ðsðtþ1Þ � PyCyIÞ

þ�ðI�I0ÞTBtþ1;tðI�I0ÞþgðI�I0 ÞTDðI�I0 Þ; (31)

where Atþ1;t
x and Atþ1;t

y are calculated with available sðtþ1Þ

and IðtÞ. Btþ1;t depends on IðtÞ. The final linear system in the
matrix form is��

CT
x ðPxÞ2Atþ1;t

x CxþCT
y ðPyÞ2Atþ1;t

y Cy

�þ�Btþ1;tþgD
�
I

¼�CT
xPxA

tþ1;t
x þCT

yPyA
tþ1;t
y

�
sþ�Btþ1;tI0þgDI

0
: (32)

The linear system is also solved using PCG and the solution
is denoted as Iðtþ1Þ. The steps are included in Algorithm 2.

4.2 Why Does It Work?

According to the linear system defined in Eq. (30), the result-
ing si for pixel i is a weighted average of pi;xrxIi �
rxIi=rxGi and pi;yryIi � ryIi=ryGi, whose weights are
determined by ðAxÞii and ðAyÞii. Even if the two weights are
quite different due to noise or other aforementioned issues in
Section 1, ourmethod can still find the optimum.

To understand it, we assume pi;xrxIi is larger than the
other term. In solving for I according to Eq. (32), si reduces
the gradient in the x-direction and increases the other so
that rIi lies closer to srGi. In the meantime noise is
reduced. After each iteration, a less noisy I is fed into
Eq. (30) to produce new values of pi;xrxIi and pi;xryIi,
which become closer than those in previous iterations.

Eventually when the two estimates meet each other, s
converges. I will accordingly be optimal when rI and srG
are close enough according to �. Considering the smooth-
ness term L in Eq. (30), it helps avoid discontinuities in the s
map along edges of G.

We show in Fig. 7e the initial constant s map. Figs. 7f, 7g
are maps produced in two iterations, and (h) shows the final
s. Initially the map is noisy because of erroneous gradient
magnitudes and directions in the input images. As of more
iterations being taken, it becomes better regularized follow-
ing our rules while not overly smoothed. Our final scale
map adapts the gradient field of G to match that of I0 with
noise removed.

Difference from previous methods. Our method is particu-
larly effective for multispectual joint image restoration. In
[12], a guided image filter was proposed in the form of a local
linear regression model, which involves estimating a param-
eter ai for each pixel i. Although ai is seemingly analogous to
our scale map si, they are by nature different. ai is estimated
based on patch regression which may not be accurate when
the input RGB image is with a high level of noise and inverse
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gradients. One example is shown in Fig. 8. The result differ-
ence is obvious. Note our si is defined for each pixel with the
robust data and regression terms optimized in a global func-
tion, which leads to the less-noise result.

Our method is also distinct from edge-aware filtering [1],
[10], [25], which employs weighted mean. The new scale
map is developed in gradient domain and considers possi-
ble relationship betweenrI andrG. We show the compari-
sons in Section 5.

5 EXPERIMENTS AND APPLICATIONS

The two input images—one is noisy and the other is clean—
are aligned. The two inputs can be a RGB/NIR pair, flash/
no-flash ones, RGB/depth pair, or other multispectral
images. We explain our algorithm on noisy RGB and flashed
NIR images due to its generality of structure discrepancy
and higher challenge than flash/no-flash images.

Experiment setting and running time. Our method has three
parameters b, � and g. b and � control smoothness of s and
confidence of noisy input respectively, which are more
important than g that controls the blending result in shadow
regions. We illustrate the influence of changing these two
parameters in Fig. 9. It shows a large � helps preserve struc-
ture close to the noisy RGB input. Smoother results can be
obtained with a larger b. By default we set � ¼ 5:0 and
b ¼ 0:5. To handle shadow influence, g is set from 50-100.
We implement our method in MATLAB. The implementa-
tion takes about 20 seconds in our restoration step and 3 sec-
onds for shadow detection when processing an image of
resolution 800� 600.

Multispectral shadow detection. As shown in Fig. 6, ourmul-
tispectral shadow detection can handle regions that are not
with the lowest intensities, which are challenging for other
single ormultiple imagemethods. Figs. 10c and 10d compare

Fig. 7. s map estimation in iterations. Given image pairs in (a) and (b), our method can get the high-quality restoration result in (c). The s maps in dif-
ferent iterations are shown in (e)-(h).

Fig. 8. Comparison with guided image filter [12]. (c) is the guided image
filter result with r ¼ 6 and � ¼ 0:032. (d) is our result computed with
� ¼ 2:5 and b ¼ 0:5.

Fig. 9. Restoration results by varying parameters. The inputs are shown
in Figs. 6a and 6b.
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shadow detection results produced by the state-of-the-art
RGB/NIR image method [22] and ours. These are challeng-
ing examples as the input images contain no color informa-
tion. With reasonable shadow detection in the NIR image,
our framework restores visually compelling results in (e).

Color and flashed NIR image restoration. In the example
shown in Fig. 7, some gradients of the guiding NIR image
are reverted or weak compared to those in the noisy color
image. It is dealt with by getting negative values in the scale
map s naturally in our framework.

Fig. 11 compares our result with those of state-of-the-art
guided non-local means [5], guided image filtering [12],
BM3D [6], and enhancement method [32]. Because generally
previous work does not handle explicitly gradient variation,
blurriness could be yielded. The result difference is obvious.

Experiments with images containing different levels of
noise are conducted. In Fig. 12, We add different levels of
noise to the ground truth RGB image and use the same NIR
image to help restore it. The ground truth image pair is
shown in the left of Fig. 12. PSNRs are calculated for quanti-
tative evaluation. We compare our method with single
image BM3D [6], non-local means [5] and guided image fil-
ter [12]. The PSNRs are plotted in Fig. 12. This set of experi-
ments show multispectral image restoration is achievable
and our framework is robust for it.

We also compare our result with the one presented in
[15], which was generated by taking both UV and IR flashed
image as guidance. Our method, by only regarding the red
channel that records the IR light asG, achieves the compara-
ble result shown in Fig. 13. More results will be put onto the
project website.1

Flash and no-flash images. Our method is also applicable to
image restoration using flash/no-flash image pairs. Since
both the two images are color ones under visible light, we
use each channel from the flash image to guide image resto-
ration in the corresponding channel of the no-flash noisy
image. A result with comparison to that of [20] is presented
in Fig. 14. Overall, our recovered structures are sharp and

clean. Gradient reversion in input images also happens in
this configuration due to strong flash. Without handling it,
it is hard to preserve sharp edges as gradients averaging to
nearly zeros are commonly resulted in.

RGB and depth images. Depth images captured fromMicro-
soft Kinect or other devices contain strong noise caused by
missing or erroneous data for many pixels. We similarly
apply our restoration method with the corresponding RGB
images as guidance to refine raw depth data as shown in
Fig. 15. Compared with result produced by [12], ours is with
reasonable quality where background noise is mostly
removed and edges are not blurred toomuch.

Texture smoothing. Image texture smoothing benefits struc-
ture extraction. Our framework provides a decent solution for
texture smoothing. The result shown in Fig. 16c is obtained by
setting the guidance image as constant. Compared with the
result proposed by [28] (shown in Fig. 16b), ours preserves
the similar level of structurewhile removing texture.

Multispectral dehazing. We also apply our method to mul-
tispectral dehazing with color and NIR images captured in
haze. An image recovered from low visibility caused by
haze suffers from noise and compression artifacts due to
significant gradient enhancement in low contrast regions.
The NIR correspondence however is a hardware solution to
see more details in haze. By applying our method to single-
image dehazed noisy result and the NIR input, we can
much improve the quality. An example is shown in Fig. 17.
The single-image dehazing result by [13] contains noise.
The result of [23] however changes the original color. Our
restoration result with a NIR image as guidance G is
visually pleasing.

Day and night image enhancement. Our method is also
applicable to day/night image enhancement. Images cap-
tured at night are usually dark with many structures elimi-
nated. An example is shown in Fig. 18a. Brightening it by
increasing color contrast in Photoshop improves the image.
In the meantime, it boosts image noise, as shown in (c).
With a reference day image as proposed in [8], we can
remove the noise with high-quality edge preservation. The
output (d) contains fine details and keeps strong and clean
structures with the day image information.

Fig. 10. Shadow detection in multispectral restoration. Our shadow detection results in (d) are more accurate than those of [22] (shown in (c)). (e) are
results of our method after shadow detection.

1. http://www.cse.cuhk.edu.hk/leojia/projects/crossfield

2526 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 12, DECEMBER 2015



6 CONCLUSION AND LIMITATION

We have presented a complete system, showing a princi-
pled way for multispectral joint image restoration. Unlike
transferring details or applying joint filtering, we explicitly
take the possible structural discrepancy between input
images into consideration. It is encoded in a scale map s
involving all challenging cases to deal with. Our objective
functions and optimization process are tailor made to use

Fig. 12. Multispectral image restoration under different noise levels.

Fig. 13. RGB/flashed-NIR restoration. The input images and result of
[15] are obtained from the original paper. Note the result of [15] is out-
puted from two guidance images while ours is with only the IR image as
guidance. The parameters used to get our result are � ¼ 5:0 and b ¼ 0:5.

Fig. 11. Tea-bag example. The input RGB and NIR images are shown in Figs. 6a and 6b respectively. (a) is the result of guided non-local means [10].
(b) is denoised by the method of [12] with the NIR image as guidance (r ¼ 4 and � ¼ 0:012). (c) is the BM3D result while (d) is enhanced by the
method of [32] (s ¼ 35:0). (e) is our result (� ¼ 10:0 and b ¼ 1:5) and (f) shows the corresponding scale map.
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the guidance from other domains and preserve only neces-
sary details and edges.

The limitation of our current method is on the situation
that the guidance does not exist, corresponding to zero rG
and non-zero rI� pixels. One example is shown in Fig. 19.

Fig. 14. Image restoration from flash/no-flash image pairs. The input
images and result of [20] are obtained from the original paper. � ¼ 6:0
and b ¼ 0:6 are used in our method.

Fig. 15. Depth map restoration with RGB image as guidance. The
parameter settings are � ¼ 5:0 and b ¼ 0:5.

Fig. 16. Texture smoothing example. (b) is the result computed by [28]
and (c) is our result computed with � ¼ 5:0 and b ¼ 1:0.

Fig. 17. Image restoration from haze image. Close-ups shown in (d) are
from (a-c). The left two are NIR and haze images. The right three are
results of [23], [13] and ours.

Fig. 18. Day and night image pair enhancement. (c) is from (b) by
improving the color contrast in Photoshop. (d) is our result get from (c) in
our framework using (a) as guidance. The parameters used to compute
our result are � ¼ 3:0 and b ¼ 0:5.

Fig. 19. Limitation. There is no guidance structure in the rectangle of (b),
making restoration less-constrained. Our two-image restoration result is
shown in (c). These regions can be further single-image denoised, as
shown in (d).
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Because the guidance does not exist, image restoration natu-
rally degrades to single-image denoising.
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