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Abstract Previous joint/guided filters directly transfer
structural information from the reference to the target image.
In this paper, we analyze the major drawback—that is, there
may be completely different edges in the two images. Simply
considering all patterns could introduce significant errors.
To address this issue, we propose the concept of mutual-
structure, which refers to the structural information that is
contained in both images and thus can be safely enhanced by
joint filtering.We also use an untraditional objective function
that can be efficiently optimized to yield mutual structure.
Our method results in important edge preserving property,
which greatly benefits depth completion, optical flow esti-
mation, image enhancement, stereo matching, to name a few.
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1 Introduction

Imagefilters are fundamental toolswidely used in image edit-
ing He et al. (2010), denoising Gastal and Oliveira (2012);
Carlo and Roberto (1998), optical flow Xu et al. (2012a);
Xiao et al. (2006), stereo matching Ma et al. (2013); Hosni
et al. (2013); Yang (2014) and image restoration Petschnigg
et al. (2004); Yan et al. (2013). Several filters process single
images to either preserve edges Carlo and Roberto (1998);
Gastal and Oliveira (2011); Yang et al. (2009); He et al.
(2010); Yang (2012); Paris and Durand (2006); Fattal (2009)
or remove texture Zhang et al. (2014a); Xu et al. (2012b).
Another group of filters, involving the joint bilateral filter
Carlo and Roberto (1998) and guided filter He et al. (2010),
can take extra images as reference or guidance.

Joint filters are helpful in several tasks. For example, in
stereo matching, joint filter can aggregate the cost volume
Yang (2014); Hosni et al. (2013). For depth refinement and
completion, corresponding RGB images were used in joint
filtering Park et al. (2011). The common property is that the
reference image provides structural guidance of how the fil-
ter should perform. Thus edge preserving or removal on the
target image can be achieved locally.
Analysis of Joint Filter Joint filter makes a basic assumption
on the reference image, i.e., it should contain correct struc-
tural information. Otherwise, the guidance could be either
insufficient or wrong.

However, many practical taskswith images in RGB/ depth
Lu et al. (2014), flash/ no-flash Petschnigg et al. (2004), opti-
cal flow field/ RGB Xu et al. (2012a), disparity map/ RGB
Ma et al. (2013); Hosni et al. (2013), RGB/ NIR Yan et al.
(2013), day/ night Raskar et al. (2004) commonly contain
inconsistent structure, such as noise, holes, texture, shadow,
highlight andmulti-spectrumdata. They cause trouble during
filtering.
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Fig. 1 Examples of joint image filtering on structure-inconsistent
image pair. a, b Are the target and reference images respectively. c, d
Are the results of bilateral and guided image filters respectively, which

transfer color image structure to depth. e Is our result that contains less
erroneous patterns from b. f Is the ground truth (Color figure online)

One example is shown in Fig. 1, where (a) and (b) are
the input and reference images. Because (b) includes extra
edges not related to depth and the input image (a) is noisy,
joint filter generates unwanted structure as shown in (c) and
(d).
Our Mutual-Structure for Joint Filtering In this paper, we
address the structure inconsistency problem and propose the
concept ofmutual-structure to enhance the capability of joint
processing in restoring structure based on common informa-
tion in target and reference images. The main contribution
is the principle not to completely trust the reference image.
Instead, we take possible difference into account and esti-
mate mutual structure as a new reference for joint filtering.
Our result is shown in Fig.1e, which does not transfer those
erroneous reference edges and texture.

This goal is achieved via a new objective function con-
sidering the common information between the target and
reference images, which will be detailed later. This frame-
work is able to handle images with diverse structure or in
different spectral configurations. It optimally suppresses dis-
similar information.

Our method benefits a large group of applications, includ-
ing depth/RGB image restoration, stereo matching, shadow
detection, matching outlier detection, joint segmentation and
cross-field image restoration. Our code is publicly available.

The manuscript is an extension of its conference version
Shen et al. (2015) published in ICCV’15. The change is four-
fold.We givemore analysis why the algorithmworks in Sect.

5.1. We then propose a more efficient numerical solution in
Sect. 5.2. More evaluation on joint depth/RGB restoration
and stereo matching is conducted. Finally, we present more
applications, including joint shadow detection, in experiment
sections.

2 Background and Motivation

We review joint/guided image filters, which are categorized
into local and global classes.
Local Joint Methods Local joint filters are mostly the joint
extension of single-image edge-preserving filters. Those cal-
culating weighted mean include anisotropic diffusion Farb-
man et al. (2010), bilateral filter Carlo and Roberto (1998);
Frédo and Julie (2002); Paris and Durand (2006); Chen et al.
(2007); Yang (2012); Yang et al. (2009), guided filter He
et al. (2010), and geodesic distance based filter Criminisi
et al. (2010); Gastal and Oliveira (2011). They define vari-
ous affinities between neighboring pixels considering color
difference and spatial distance. The affinity is then set as
weights to locally smooth images. Edges can be preserved
because large affinities are yielded in low contrast regions
while low affinities are set along edges. The joint extension
sets affinity weights according to another reference image.

Another line is with weighted median Ma et al. (2013);
Zhang et al. (2014b), which imposes weights for different
pixels under an affinity definition when computing medians.
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A joint weighted median filter can be constructed by com-
puting weights from the reference image. The general mode
filter is presented in van de Weijer and van den Boomgaard
(2001).
Global Joint Schemes Global methods optimize functions.
They include total variation (TV) Rudin et al. (1992),
weighted least squares (WLS) Farbman et al. (2008), and
scale map scheme Yan et al. (2013). These methods restore
images by optimizing functions involving all or many pixels
and containing regression terms defined in the weighted L1

or L2 norm. Similar to local filter, joint global optimization
is yielded after calculating weights based on the reference
image.

To summarize related work, almost all joint image filters
identify important structure based on the reference image.
These methods work best when the reference data only con-
tains useful information. Contrary to these approaches that
are based on the perfect-reference-structure assumption, our
method considers possibly inconsistent edges, noise, texture,
shadow and highlight. These issues are common for natural
and special-type images. We describe our method in follow-
ing sections.

3 Mutual-Structure for Joint Filtering

Images of different modalities, even paired and registered,
are hardly with the same structure. We roughly categorize
the difference into three types using the illustration in Fig. 2
where a day/night image pair is presented.

– Mutual structure As shown in (c), mutual structure can
be intuitively understood as common edges in the cor-
responding two patches. These edges are not necessarily

(a) (b)

(c) (d) (e)

Fig. 2 Examples of image structure correlation in a day/night image
pair. a, b Day and night images respectively. c Mutual structure close-
up. d Inconsistent structure patches. e Smooth patches. The images are
from the time-lapse video of Shih et al. (2013)

with the samemagnitude. The gradient direction can also
be reversed.

– Inconsistent structure Inconsistent structure represents
different patterns in twopatches.Theremaybemany such
structures in an image pair as shown in Fig. 2d. When an
edge appears only in one patch but not the other, it is
regarded as inconsistent.

– Smooth regions There are common low-variance smooth
patches in images. They are easily influenced by noise
and other visual artifacts as shown in (e).

Among these types of joint structure, inconsistent edges
generally cause big problems if we transfer erroneous pat-
terns to the target image. In this paper, we aim to find
mutual-structure and let it guide the joint filtering process.
Accordingly, we not only filter the target image, but optimize
the reference as well based on a structure similarity measure.

We give definitions that will be used later in this paper.We
denote I0 and G0 as the target and reference images respec-
tively. The filtering output and updated reference image with
mutual structure are denoted as I andG respectively.We also
denote by p = (x, y)T pixel coordinates. I0,p,G0,p, Ip and
Gp are pixel intensities in I0,G0, I andG. We process chan-
nels separately and use N (p) to denote the set of pixels in
the patch centered at p. The number of pixels in N (p) is |N |.

4 Mutual-Structure Formulation

We measure structure similarity between corresponding
patches in I and G, and then define corresponding con-
straints. An objective function to jointly optimize I and G is
finally described.

4.1 Structure Similarity

Patch similarity between I and G regarding central pixel p
cannot be simply measured by summed gradient difference
in the two patches. This problem has been studied for years
in many fields. One effective measure is the normalized cross
correlation (NCC), expressed as

ρ(Ip,Gp) = cov(Ip,Gp)√
σ(Ip)σ (Gp)

, (1)

where cov(Ip,Gp) is the covariance of patch intensity
denoted as

cov(Ip,Gp) = 1

|N |
∑

q∈N (p)

(Iq − Ī p)(Gq − Ḡ p). (2)

N (p) is the set of pixels in patch p and |N | is the number of
pixels in N (p). Ī p and Ḡ p are the mean intensity of patch p
in I and G respectively. σ(Ip) denotes variance of patch p
in I as
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σ(Ip) = 1

|N |
∑

q∈N (p)

(Iq − Ī p)
2, (3)

and σ(Gp) is the variance of patch p in G that is similar to
σ(Ip) in definition.

When twopatches share the same edges, even under differ-
ent magnitudes, |ρ(Ip,Gp)| = 1. Otherwise, |ρ(Ip,Gp)| <

1. |ρ(Ip,Gp)| is large when patch structures are similar.
Albeit ideal in measurement, NCC is hard to use directly

due to its nonlinearity. We provide the following derivation
to establish the relationship betweenNCC and a simple least-
square regression.

First, the well known least square regression function
f (I,G, a1p, a

0
p) of local patches N (p) is expressed as

f (I,G, a1p, a
0
p) =

∑

q∈N (p)

(
a1p Iq + a0p − Gq

)2
, (4)

where a1p and a
0
p are the regression coefficients. This function

linearly represents one patch inG according to that in I . Then
we define e(Ip,Gp)

2 as the minimum error with the optimal
a1p and a

0
p. It is expressed as

e(Ip,Gp)
2 = min

a1p,a
0
p

1

|N | f
(
I,G, a1p, a

0
p

)
. (5)

We prove in the following that e(Ip,Gp) is tightly related to
the NCC measure.

Claim The relation between themean square error e(Ip,Gp)

and NCC measure ρ(Ip,Gp) is

e(Ip,Gp) = σ(Gp)(1 − ρ(Ip,Gp)
2), (6)

where σ(Gp) is the variance of the patch centered at p in G.

We refer readers to Appendix for the complete proof. The
claim explains when |ρ(Ip,Gp)| = 1, which means the two
patches only contain mutual structure, e(Ip,Gp) reaches 0.
Following the same procedure, we construct

e(Gp, Ip)
2 = min

b1p,b
0
p

1

|N | f
(
G, I, b1p, b

0
p

)
, (7)

and also conclude e(Gp, Ip) = 0 when |ρ(Ip,Gp)| = 1. In
this case, we take the I as the guidance image and G is the
target, which is unconventional in filter design.
Our Patch Similarity MeasureWe define our final patch sim-
ilarity measure as the sum of above two functions as

S(Ip,Gp) = e(Ip,Gp)
2 + e(Gp, Ip)

2. (8)

According to Eqs. (5) and (6) and considering ρ(Ip,Gp) =
ρ(Gp, Ip), this measure boils down to

Fig. 3 1D Example. aMutual structure in two patches. b Inconsistent
structure. c Smooth regions

S(Ip,Gp) =
(
σ(Ip)

2 + σ(Gp)
2
) (

1 − ρ(Ip,Gp)
2
)2

.

(9)

We analyze its property in what follows based on the 1D
signal example illustrated in Fig. 3.

– Mutual-Structure PatchesWhen |ρ(Ip,Gp)| approaches
1,S(Ip,Gp) moves towards 0 in Eq. (9) indicating the
two patches are with common edges as shown in Fig. 3a.

– Inconsistent Structure Patches As shown in (b), when
NCC |ρ(Ip,Gp)| outputs a small value for patches con-
taining edges [i.e., at least σ(Ip) or σ(Gp) is large in
Eq. (9)], these edges must be inconsistent. In this case,
S(Ip,Gp) outputs a large value.

– Smooth PatchesWhen the patches do not contain signif-
icant edges, as shown in (c), σ(Ip) and σ(Gp) are both
small. S(Ip,Gp) therefore outputs a small value. This
special case can also be treated as the mutual-structure
patches since they are similarly smooth.

According to the above analysis, optimizing Eq. (9) to
minimize S(Ip,Gp) can almost achieve our goal in the
patch level. We propose image-level optimization to glob-
ally search mutual structure.
Final Image Structure Measure Based on the patch-level
analysis, we propose the essential image similarity term as

ES(I,G, a, b) =
∑

p

(
f (I,G, a1p, a

0
p

)

+ f
(
G, I, b1p, b

0
p)

)
, (10)

which is the sum of patch-level information. a and b are the
coefficient sets of {a1p, a0p} and {b1p, b0p} respectively. This
term only contains simple least square regression functions.
We consider regression on a single image channel due to the
efficiency in optimization. It is also straightforward to make
it work in multiple channels.

4.2 Other Terms in Global Optimization

We note optimizing only the mutual structure function
ES(I,G, a, b) on I andG may not produce expected results.
It is because it can produce the trivial solution where the
resulting corresponding patches or the whole images of I
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and G contain no edge at all. This trivial result is naturally
the global optimum of ES(I,G, a, b). We thus incorporate
more constraints to avoid it.

The trivial solution can be circumvented by requiring I
and G not to wildly deviated from I0 and G0 respectively. It
thus leads to our image similarity prior function

Ed(I,G) =
∑

p

λ‖Gp − G0,p‖ + β‖Ip − I0,p‖, (11)

where λ and β are two parameters. We apply the l2-norm
distance on intensity due to its fast computation.

Further to introduce reasonable ability to smooth the target
image by removing noise,we reduce patch intensity variance.
In Eq. (8), the two patches in I and G are linearly regressed
by each other. Zero variance is yielded when a1p = 0 and
b1p = 0. So the last smoothing term is written as

Er (a, b) =
∑

p

(
ε1a

1
p
2 + ε2b

1
p
2
)

, (12)

where ε1 and ε2 are very small values, which control smooth-
ness strength on G and I respectively. Note that this term is
related to the ridge regression applied by guided image filter
He et al. (2010). But our form is different on incorporating
two-direction regression errors.

4.3 Final Objective

According to the mutual-structure, our final objective func-
tion for jointly estimating I and G combines the above three
terms:

E(I,G, a, b) = ES(I,G, a, b) + Ed(I,G) + Er (a, b).

(13)

a and b are regression coefficient sets, which are also solved
for. The optimization is a process to get filtering output I and
mutual-structure G from I0 and G0 after reasonable smooth-
ing. We use alternating optimization based on the derivatives
and Jacobi method Yan et al. (2013) to solve it. We detail our
numerical solution below.

5 Numerical Solution

Our alternative updating scheme is sketched in Algorithm 1.
The major steps are the following two.

– Given G(t) and I (t), update a(t) and b(t).
– Fix a(t) and b(t), optimize G(t+1) and I (t+1).

t indexes the number of iterations. By decomposing the prob-
lem into two sub ones, each update only needs to solve a
quadratic problem in closed form.

Algorithm 1Mutual-Structure Estimation
Require: I0, G0, N iter, λ, β, ε1, ε2
Ensure: I , G
1: Estimate a1

(0)
and b1

(0)
by Eq. (24).

2: Compute a0
(0)

and b0
(0)

via Eqs (15) and (16).
3: Update I (0) and G(0) by Eq. (17).
4: for t:= 0 to N iter do
5: Update a(t) and b(t) according to Eqs. (14), (15) and (16).
6: Optimize G(t+1) and I (t+1) by Eq. (17).
7: end for
8: I ← I (N iter), G ← G(N iter)

Update a(t) & b(t) Given I (t) and G(t), we update a(t) and
b(t) by setting their derivatives to zeros, yielding

a1p
(t) =

cov
(
I (t)
p ,G(t)

p

)

σ(I (t)
p ) + ε1

, b1p
(t) =

cov
(
G(t)

p , I (t)
p

)

σ(G(t)
p ) + ε2

, (14)

a0p
(t) = μ(G(t)

p ) − a1p
(t)

μ(I (t)
p ), (15)

b0p
(t) = μ(I (t)

p ) − b1p
(t)

μ(G(t)
p ), (16)

where μ(I (t)
p ) and μ(G(t)

p ) are the mean intensity of I (t) and
G(t) in N (p).
OptimizeG(t+1) & I (t+1) Witha(t) andb(t),weupdateG(t+1)

and I (t+1) similarly. It yields the linear system as
⎧
⎪⎨

⎪⎩

G(t+1)
p = 1

M(t)
G

(
J (t)
G I (t+1)

p + K (t)
G + λG0,p

)
,

I (t+1)
p = 1

M(t)
I

(
J (t)
I G(t+1)

p + K (t)
I + β I0,p

)
,

(17)

where M (t)
G , J (t)

G , K (t)
G , M (t)

I , J (t)
I and K (t)

I are coefficients

computed from a(t) and b(t). Among them, J (t)
G and J (t)

I are
the coefficients expressed as

J (t)
G = μ(b1p

(t)
) + μ(a1p

(t)
),

J (t)
I = μ(b1p

(t)
) + μ(a1p

(t)
). (18)

K (t)
G and K (t)

I are the constant denoted as

K (t)
G = μ(a0p

(t)
) − μ

(
b1p

(t)
b0p

(t)
)

,

K (t)
I = μ(b0p

(t)
) − μ

(
a1p

(t)
a0p

(t)
)

. (19)

M (t)
G and M (t)

I are the normalization terms written as

M (t)
G = λ

|N | + μ
(
b1p

(t)
b1p

(t)
)

+ 1,

M (t)
I = β

|N | + μ
(
a1p

(t)
a1p

(t)
)

+ 1. (20)

The update stages only contain the simple mean opera-
tion and multiplication. They can be implemented efficiently
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Fig. 4 Result updated in iterations. Given the noisy natural image in e and imperfect depth layer in a, b, f show results of I and G in the first
iteration. c, g Are the results after ten iterations. d, h Are the final results after 20 iterations

employing the box filter. We apply the fast box filter based
on the integral image implemented in He et al. (2010).

5.1 Algorithm Analysis

We first update a(t) and b(t) according to Eqs. (14), (15) and
(16). Then G(t+1) and I (t+1) are optimized by Eq. (17). ε1
and ε2 play important roles for extracting mutual-structures
and removing inconsistent ones. We in what follows analyze
the effect according to various types of structure correlation.

– Inconsistent Structure Patches Since covariance between
inconsistent structure patches moves to zero, ε1 and ε2

defined in Eq. (14) make a1p
(t)

and b1p
(t)

close to zeros.

According to the optimization form forG(t+1)
p and I (t+1)

p

defined in Eq. (17), we achieve

G(t+1)
p ≈ |N |

λ + |N |
(
μ(μ(G(t)

p )) + λG0,p

)
, (21)

I (t+1)
p ≈ |N |

λ + |N |
(
μ(μ(I (t)

p )) + β I0,p
)

, (22)

by omitting the terms related to a1p
(t)

and b1p
(t)

in Eq.

(17). Thus we get the updated G(t+1)
p as the linear com-

bination of the filtered G(t)
p and the original input G0,p.

This update not only helps removing inconsistent struc-
tures but also makes output still similar to the original
image.
Similar analysis applies to the updating process of I (t+1)

p .

Moreover, larger ε1 and ε2 make a1p
(t)

and b1p
(t)

go closer

to zeros, which is desirable as discussed. Relatively large
λ or β preserves input image appearance.

– Mutual-Structure Patches For a1p
(t)

and b1p
(t)

defined in
Eq. (14), they do not go to zero because of structure
covariance cov(I (t)

p ) and non-zero variance of σ(I tp) and

σ(Gt
p). Taking derivatives on G(t+1)

p and I (t+1)
p in Eq.

(17), we get ∇G(t+1)
p = η∇ I (t+1)

p where η = J (t)
G /M (t)

G .

η is not zero because a1p
(t)

and b1p
(t)

are not in mutual-
structure patches. So structure correlation is preserved in
iterations because of the gradient relation.

– Smooth Patches Similar to inconsistent structure patches,

a1p
(t)

and b1p
(t)

generally are not with small values.

Update of G(t+1)
p and I (t+1)

p corresponds to fusion of

G(t)
p and I (t)

p . This process reduces artifacts and noise in
smooth regions.

To demonstrate the iterative updating effect, we show an
example in Fig. 4 where the input is a captured depth image
with noticeable noise. The reference image is the correspond-
ing color one. Inconsistent edges and texture exist. We show
the results of our method in iterations 1 and 10 where incon-
sistent edges are removed gradually. After convergence in
20 iterations, our results are only with edges existing in both
images under proper smoothing to remove noise and incon-
sistency.

5.2 Initialization

As discussed in Sect. 5.1, a1p
(t)

and b1p
(t)

are important
to remove inconsistent structures and preserve mutual-
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structure. Good initialization of a1p and b
1
p is essential for fast

convergence and avoiding local minima. Since both a1p
(t)

and

b1p
(t)

converge to zeros for inconsistent and smooth region
patches, initializing them to zeros is a good choice. We
roughly find mutual-structure patches between I0 and G0 by
a generalized normalized cross correlation (NCC) measure,
which is defined as

ζ(I0,p,G0,p) = cov(I0,p,G0,p)
2

(
σ(I0,p) + ε1

) (
σ(G0,p) + ε2

) , (23)

where ε1 and ε2 are very small values to avoid deviation by
zero. For simplicity, we define them the same as the param-
eters in Eq. (12). ζ(I0,p,G0,p) is close to square of NCC
since ε1 and ε2 are very small values. Thus, ζ(I0,p,G0,p)

approaches 1 for mutual-structure patches and is close to

Fig. 5 Comparison with other iterative joint filters. a, b Show the
input and reference images respectively. c, d Are the results of iter-
ative joint bilateral filter and rolling guidance filter. e Is obtained by

alternatively applying guided filter using Eq. (25). These three results
all have unwanted structure transferred from the color image to depth.
f Is our result (Color figure online)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6 Noisy RGB/depth image restoration by different methods. a, b Show the input and reference images respectively. c Is the ground truth
depth. d–h Are the results of different methods. Among them, g is shown in paper Lu et al. (2014). PSNRs are reported for all results
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Fig. 7 More Examples of noisy RGB/depth image restoration. a, bAre the inputs. c Shows the ground truth. d, eAre results of bilateral filter Paris
and Durand (2006), guided filter He et al. (2010) and method of Lu et al. (2014). g Is our result. h Shows our estimated mutual-structure
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Table 1 Comparison of different methods for RGB/depth restoration on the dataset of Lu et al. (2014)

Methods 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

Bilateral filter 31.59 29.18 35.36 38.77 39.37 37.35 32.69 34.86 44.51 40.66 39.93 33.61 35.00 39.67 41.39

Guided filter 31.40 28.97 35.24 38.56 39.13 37.16 32.63 34.65 44.89 40.21 39.71 33.55 34.70 39.47 40.87

Weighted median 33.92 31.48 37.10 41.32 40.73 39.84 35.67 37.22 45.86 42.75 41.95 36.90 37.43 41.99 43.49

Lu et al. 35.24 33.10 39.00 42.70 42.66 41.13 38.05 39.78 46.23 42.39 42.62 37.72 39.03 42.01 44.08

Ours 35.48 33.34 39.11 43.05 42.84 41.25 38.17 39.67 46.46 42.79 42.89 37.85 39.44 42.19 44.07

Methods 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Bilateral filter 34.35 34.86 33.96 36.74 36.13 37.56 33.73 39.11 33.66 42.76 44.28 38.44 36.90 36.83 38.14

Guided filter 34.23 34.74 33.61 36.30 35.81 37.43 33.56 38.64 33.24 42.84 44.32 38.06 36.82 35.82 37.07

Weighted median 38.87 39.35 37.69 39.27 39.05 40.23 36.20 43.78 36.10 44.61 45.50 39.59 41.83 39.12 41.15

Lu et al. 39.13 38.88 38.59 39.91 39.12 41.40 37.16 42.35 36.15 45.26 46.13 40.78 39.97 40.32 41.26

Ours 39.40 39.65 38.62 39.87 39.60 41.72 37.10 43.49 36.93 45.33 46.67 40.64 41.54 40.51 41.63

We report PSNRs of joint bilateral filter Paris and Durand (2006), guided filter He et al. (2010), joint weighted median Zhang et al. (2014b) and
ours. The best results are highlighted

0 for others. Our initialization for a1p
(t)

and b1p
(t)

is set
to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1p
(0) = 0, b1p

(0) = 0, when ζ(I0,p,G0,p) < τ,

a1p
(0) = cov(Ip,0,Gp,0)

σ (Ip,0) + ε1
,

b1p
(0) = cov(Gp,0,Ip,0)

σ (Gp,0) + ε2
,

otherwise,
(24)

where τ is the threshold, set to 0.8 in all our experiments. For

mutual-structure patches, a1p
(0)

and b1p
(0)

are directly esti-
mated from input by Eq. (14). Computation of ζ(I0,p,G0,p)

can be incorporated into our algorithm since it equals to

a1p
(t)
b1p

(t)
when I (t)

p and G(t)
p are I0,p and G0,p respectively.

With a1p
(0)

and b1p
(0)

, a0p
(0)

and b0p
(0)

are computed via Eqs.

(15) and (16) respectively. We estimate G(0)
p and I (0)

p by Eq.
(17). The complete Algorithm 1 involves the initialization
step.

Compared with our algorithm presented in the conference
version Shen et al. (2015) where initialization is performed
by rolling guidance filtering Zhang et al. (2014a), our new
schemeachieves faster convergence. In our experiments, only
14 iterations are enough on average to produce compelling
results while the original scheme needs 20 iterations. The
running time is also shortened.

5.3 Relationship with Other Methods

Our method is different from other existing filters and from
naively applying joint filters in two directions to update the
reference and target images in iterations.

We first compare our solution with iterative joint bilateral
filter Paris et al. (2009), which iteratively filters the inputwith
the fixed reference image. Although both methods are edge

preserving, the iterative joint bilateral filter does not address
our aforementioned structure transfer problem. We show an
example in Fig. 5 where (a) and (b) are the input noisy depth
and corresponding color image with inconsistent structure.
We show the result of iterative joint bilateral filter in (c). Note
that other joint filters share similar properties.

Wecompareourmethodwith rollingguidancefilter (RGF)
Zhang et al. (2014b). We make RGF a joint form on two
images by merging channels of the two images into one and
employing the high dimensional bilateral filter Gastal and
Oliveira (2012). As shown in (d), it still cannot get themutual
structure and is hard to avoid incorrect structure transfer.

Another iterative filter to compare is alternatively chang-
ing the role of reference and target images and iteratively
applying guided image filter. The stages are denoted as

I (t+1) = GF(I (t),G(t)),

G(t+1) = GF(G(t), I (t+1)), (25)

where GF(I (t),G(t)) is the guided image filter with input
I (t) and guidance image G(t). We set the initialization I (0)

and G(0) as I0 and G0 respectively. The result is shown in
Fig. 5e, which suffers from the same problem.

Our result shown in (f) is better because we take both
removal of inconsistent structure and preservation of mutual
edges into account.

6 Experiments and Applications

Our method takes aligned target and reference images as
input. We employ the dense multi-modal and spectral match-
ing method Shen et al. (2014) to align them if there exists
non-rigid displacement between images.
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Fig. 8 Comparison on stereo matching. a–c Show results of bilateral filter, guided filter and tree filter. d Is our result. Pixel errors larger than 1
pixel are reported. The inputs are from the Mideleburry stereo matching dataset Scharstein and Szeliski (2002)

We extensively evaluate mutual-structure for joint filter-
ing. Our algorithm is easy to implement and the code is
publicly available in our website.1 The method has parame-
ters λ, β, ε1, and ε2. We set λ and β in range 30–300, which
control the deviation to G0 and I0 respectively. ε1 and ε2
control the smoothness of G and I . We set them around
1E − 5.

All our experiments are performed on a PC with an Intel
Core i7 3.4GHz CPU (one thread used) and 8GB memory.

1 http://www.cse.cuhk.edu.hk/leojia/projects/mutualstructure.

For an image with size 800 × 600, the running time is 5 s
with 20 iterations in MATLAB.

6.1 Applications

Our mutual-structure for joint filtering benefits several
important applications due to inconsistent-structure han-
dling and the high performance. We apply it to RGB/depth
image restoration, stereomatching, RGB/NIR image restora-
tion, joint structure extraction and segmentation, and image
matching outlier detection. Our method is generally com-
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Fig. 9 Joint structure extraction. a, b Are two inputs. c Is the estimated mutual-structure. d Shows the common structure of a, b extracted from
the mutual structure (c)

Fig. 10 Example of joint segmentation. a, b Are the night and day images respectively. c, d Are the results of MCG Arbeláez et al. (2014) on a,
b. d Is our estimated mutual-structure and f is the MCG result on our estimated mutual-structure

parable to or outperforms other filtering schemes due to its
unique mutual-structure property.

6.1.1 RGB/Depth Restoration

Our mutual-structure is suitable for RGB/depth image
restoration. While RGB/depth images are captured by depth

cameras (e.g. Microsoft Kinect), they always contain incon-
sistent structures and respective artifacts. Specifically, the
RGB image is often with rich details while the depth image is
noisy and with holes. Figure 6 shows the comparison of joint
bilateral filter Carlo and Roberto (1998), guided image filter
He et al. (2010), weighted median filter Zhang et al. (2014b),
the method of Lu et al. (2014) and our mutual-structure. (d–
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Fig. 11 Image matching outlier detection. a, b Are the reference and target images respectively. c Is the matching result of Xu et al. (2012a). d Is
the outlier by naively comparing a, c. f Shows our detected matching outlier by comparison of c and mutual-structure shown in e

f) are produced by joint bilateral filter, guided image filter,
and weighted median filter without mutual-structure compu-
tation. The result of Lu et al. (2014) in (g) is a bit blurry
because of the patch-based scheme. Our method achieves
decent results without transferring erroneous structure as
shown in (h). PSNR is calculated for each method. More
results are shown in Fig. 7.

We also evaluate our mutual-structure method for RGB/
depth restoration on the dataset of Lu et al. (2014), which
includes 30 pairs of RGB/depth images with ground truth
synthesized fromMiddleburrydataset Scharstein andSzeliski
(2002). Our method achieves 0.2% higher PSNR compared
with state-of-the-art solution on average as reported in Table
1. The speed is 55+ times faster because we only need a few
quick iterations.

6.1.2 Stereo Matching

Considering structure inconsistency between the cost vol-
ume and color image, ourmutual structure for joint filtering is
applicable to stereomatching.Weconduct experiments based
on the local stereo matching framework provided by Hosni
et al. Hosni et al. (2013). The framework mainly includes
cost volume computation, cost aggregation, disparity com-
putation (winner-take-all) and post processing. Joint image
filtering is employed for cost aggregation.

We compare our mutual-structure for joint filtering with
other commonly employed filters, such as bilateral filter

Carlo and Roberto (1998); Yang (2014), guided image fil-
ter He et al. (2010); Hosni et al. (2013), and tree filter Yang
(2014) in the cost aggregation step. According to the evalua-
tions onMiddleburry stereo matching dataset Scharstein and
Szeliski (2002) shown in Fig. 8, ourmethod achieves premier
performance.

6.1.3 Joint Structure Extraction and Segmentation

The mutual-structure in our algorithm is actually a solu-
tion when the goal is to extract common structures in two
images from two distinct domains. We conduct experiments
on multi-spectral image pairs, which are often with struc-
ture inconsistency because of shadow, highlight and moving
objects. Two examples are shown in Fig. 9 where (a) and (b)
are inputwith inconsistent edge structures. (c) shows our esti-
mated mutual-structure, which only includes common edges
detected by the traditional Canny edge detector as shown in
(d).

Our mutual-structure also benefits joint segmentation for
complex scenes as shown in Fig. 10 where (a) and (b) are
the night and day images respectively. (c) and (d) are the
MCG Arbeláez et al. (2014) segmentation results. (f) is the
result with MCG applied to our mutual-structure result (e),
which intriguingly is with better segmented objects common
in both images thanks to removal of complex and inconsistent
patterns. This is exactly what we aim to accomplish.
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Fig. 12 Example of RGB/NIR image restoration. a Is the noisy RGB image and b is the clean NIR image with shadow. c Is the result of Yan et al.
(2013), which transfers the shadow structure to the output. d Is our result without this problem. The inputs are from Krishnan and Fergus (2009)

Fig. 13 Example of joint shadow detection. a, b Are noisy no-flash and flash images respectively. c Is our estimated mutual structure of a, b. d
Shows our shadow detection result. The inputs are from Petschnigg et al. (2004)

6.1.4 Matching Outlier Detection

One very challenging problem in image matching is on how
to detect matching outliers. We handle it by finding com-
mon structures, so that the residual between warped images
can stand out in contrast to estimated mutual structure. This
forms an optimal matching-outlier map. We show an exam-
ple in Fig. 11 to illustrate the effectiveness to find mismatch.
(a) and (b) are the reference and target images respectively.
(c) is the matching result estimated by optical flow method
Xu et al. (2012a). (d) is the outlier by naively comparing (a)

and (c), which cannot reveal the matching outlier because
of structure discrepancy between (a) and (b). (f) shows our
detected matching outlier by comparison of (c) and mutual-
structure shown in (e). Our outlier map shows the matching
errors. Since we only consider mismatched structure, tex-
tureless regions cannot be dealt with (Fig. 12).

6.1.5 More Applications

Our joint filteringmethod can also dealwith structure transfer
in RGB/NIR image restoration. Compared with state-of-the-
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art method of Yan et al. (2013), our mutual-structure for joint
filtering produces comparable results. The running time is 20
times less because of the efficient iteration steps.

Our extracted mutual structure can also be applied to
joint shadow detection as shown in Fig. 13 where (a) is the
input with shadow while (b) is not. The mutual structure
shown in (c) contains common edges between (a) and (b).
For this example, the shadow in (a) can be directly obtained
by finding the difference between (a) and (c). Our coarse
shadow detection result is shown in (d), which manifests
that this could be a promising direction for further pursuit
(13)

7 Conclusion and Future Work

We have presented a new scheme for jointly processing
imageswhile addressing the common structure inconsistency
problem when applying two-image smoothing. It provides
new insight on how to avoid transferring unwanted struc-
ture from the reference to target images. We have discussed
that this type of structure discrepancy commonly exists in
almost all image pairs for finding useful information. Our
solution stems from maximizing mutual-structure similarity.
It leads to an algorithm-level scheme to optimize the mutual-
structure. Our future work will be to extend this framework
in other disciplines where the reference data can be obtained
from different sources.
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Appendix: Proof of Claim 4.1

Proof In Eq. (5), e(Ip,Gp) reaches the minimum when set-

ting the derivatives ∂e(Ip,Gp)
2

∂a1p
and ∂e(Ip,Gp)

2

∂a0p
to zeros, which

yields

a1p = cov(Ip,Gp)

σ (Ip)
, a0p = Gp − a1p I p, (26)

where I p andGp are themean intensities of patches centered
at p on I and G respectively. By simply substituting a1p and
a0p into Eq. (5) and arranging it according to Eq. (1), we
obtain

e(Ip,Gp) = σ(Gp)(1 − ρ(Ip,Gp)
2), (27)

as shown in Eq. (6). ��
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