
A Closed-Form Solution to Tensor Voting for

Robust Parameter Estimation via

Expectation-Maximization

Tai-Pang Wu†‡ Jiaya Jia‡ Chi-Keung Tang†

† The Hong Kong University of Science and Technology
‡ The Chinese University of Hong Kong

Abstract

We prove a closed-form solution to second-order Tensor Voting
(TV), and employ the resulting structure-aware tensors in Expectation-
Maximization (EM). Our new algorithm, aptly called EM-TV, is an
efficient and robust method for parameter estimation. Quantitative
comparison shows that our method performs better than the conven-
tional second-order TV and other representative techniques in param-
eter estimation (e.g., fundamental matrix estimation). While its im-
plementation is straightforward, EM-TV will be available as a down-
loadable software library.

Keywords

Tensor voting, expectation-maximization, closed-form solution, pa-
rameter estimation.

1 Introduction

This paper re-introduces tensor voting (TV) [12] for robust parameter esti-
mation, by developing a new algorithm for computing an optimal structure-
aware tensor at a given site in the feature space. When integrated with
expectation maximization (EM), our new algorithm, aptly called EM-TV,
demonstrates better performance than the conventional second-order tensor
voting (first-order augmentations to tensor voting was investigated in [18]).

1

We performed quantitative studies to demonstrate the remarkable noise ro-
bustness of EM-TV compared to the original TV and other representative
techniques, using challenging synthetic and real data sets. The technical
contributions of this paper are twofold:

• Closed-form solution to tensor voting. We first carry out theoretical
studies to develop a closed-form solution to second-order tensor voting.
This new solution promises a continuous, efficient and exact solution
to computing an optimal structure-aware tensor at each site without
discrete approximation using precomputed voting fields.

• Robust and accurate parameter estimation. By integrating the optimal
tensor obtained at each site into an Expectation-Maximization (EM)
framework, we can produce accurate parameters by combining the
advantages of EM and TV. No random sampling consensus is required
which is quite time consuming for a large input data set. Our new
algorithm is called EM-TV.

The technical section of this paper consists of two parts: First, we de-
velop a closed-form solution to computing an optimal structure-aware tensor
at each site. The main result is Eqn (12). Next, we integrate the structure-
aware tensor into a new Expectation-Maximization framework that allows
for propagating neighborhood information. This EM-TV framework, where
the E-step and the M-step are respectively defined in Eqns (19) and (23),
permits robust and accurate parameter estimation in any number of dimen-
sions. Overall, Eqns (12), (19), and (23) have more rigorous mathematical
foundation and are easier to implement than the second-order TV.

2 Related Work

Robust techniques have been used in computer vision for many decades, and
an excellent review of the theoretical foundations of robust methods in the
context of computer vision can be found in [13].

The Hough transform [8] is a robust voting-based technique operating
in a parameter space which is able to extract multiple models from noisy
data. The most popular robust methods in computer vision remain the
class of random sampling consensus (RANSAC) procedures proposed in the
1980s [4] which have spawned a lot of follow-up work. On the other hand,
mean shift [3] has been widely used since its introduction to computer vision
for robust feature space analysis. Adaptive mean shift [6] with variable

2

bandwidth in high dimensions was introduced in texture classification and
has since been applied to other vision tasks.

Like RANSAC [4], robust estimators including LMedS [14] and the M-
estimator [9] adopted a statistical approach. LMedS, RANSAC and the
Hough transform can be expressed as M-estimators with auxiliary scale [13].
The choice of scales and parameters related to the noise level are major is-
sues. Existing work on robust scale estimation used random sampling [17],
or operate on different assumptions (e.g., more than 50% of the data should
be inliers [15]; inliers have a Gaussian distribution [10]). Rather than using a
Gaussian distribution, a two-step method was proposed in [20]: first, a non-
Gaussian distribution is used to model inliers where local peaks of density
are found by mean shift [3]. This is followed by scale parameter estima-
tion (called TSSE in [20]). Then outliers are rejected using a RANSAC-like
algorithm. The projection-based M-estimator (pbM) [2], a recent improve-
ment on the M-estimator, uses a Parzen window for scale estimation, so the
scale parameter is automatically found by searching for the normal direc-
tion (projection direction) that maximizes the sharpest peak of the density.
This does not require an input scale from the user. While these recent meth-
ods can tolerate more outliers, most of them still rely on or are based on
RANSAC and a great deal of random sampling is required to achieve the
desired robustness.

To reject outliers, a multi-pass method using L∞-norms was proposed to
successively detect outliers which are characterized by maximum errors [16].

2.1 Expectation Maximization

Expectation-Maximization (EM) has been used in handling missing data
and identifying outliers [5]. EM has been widely used and shown success
in computer vision, and its convergence properties were studied [11]. In
essence, EM consists of two steps:

1. E-Step. Computing an expected value for the complete data set using
the incomplete data and the current estimates of the parameters.

2. M-Step. Maximizing the complete data log-likelihood using the ex-
pected value of the complete data computed in the E-step.

EM is a powerful inference algorithm, but it is also well-known [5] that:
1) initialization is an issue because EM can get stuck in poor local minima,
and 2) treatment of data points with small expected weights requires great
care. They should not be regarded as negligible, as their aggregate effect
can be quite significant.

3

z

ϕ

P

most likely

continuation O x

most likely normal

N

y

x

N

(a) (b)

A

B

stick vote received at B

(c) (d)

Figure 1: (a) Design of the 2D stick voting field. (b) 2D stick voting field.
(c) A casts a stick vote to B. (d) 2D ball voting field.

2.2 Tensor Voting

Tensor Voting [12] is a robust computational approach for grouping and
segmentation. The approach is non-iterative, and has been applied to and
demonstrated very good results in a variety of vision problems. In essence,
in tensor voting, input data points are first represented as second-order sym-
metric tensors, which communicate among each other via a voting algorithm
that uses a set of precomputed dense voting fields.

We will derive a closed-form solution for the voting algorithm, which
provides an optimal means for computing a structure-aware tensor at each
site in the feature space. Further, we employ such tensors to initialize the
EM algorithm, which is guaranteed to converge [11], to optimize each tensor
and parameter. As with EM-based method our focus is not on searching
for a global optimum. By incorporating TV to EM, outliers are suppressed,
inliers are reinforced, and accurate parameters are estimated.

3 Review of Tensor Voting

This section provides a concise review of tensor voting. In tensor voting
tensor is used for token representation, and voting is used for non-iterative

4

token-token communication. Tensor and voting are related by a voting field.

3.1 Voting fields for the basic case

Our goal is to encode the smoothness constraint that should effectively de-
termine if a point lies on some smooth surface in the feature space, or it is
in fact an outlier. Let us consider a basic case concerning 2D smoothness:
Suppose a point P in the plane is to be connected by a smooth curve to the
origin O. Suppose also that the normal N to the curve at O is given. What
is the most likely normal direction at P? [12]. Figure 1(a) illustrates the
situation.

We claim that the osculating circle connecting O and P is the most likely
connection, since it keeps the curvature constant along the hypothesized
circular arc. The most likely normal is given by the normal to the circular
arc at P (thick arrow in Figure 1(a)). The length of this normal, which
represents the vote strength, is inversely proportional to the arc length OP ,
and also to the curvature of the underlying circular arc.

To encode proximity and smoothness (low curvature), the decay of the
field takes the following form, which is a function of r, κ, c, and σ:

ηtv (r, κ, σ) = e
−(r2

+cκ2

σ2
) (1)

where r is the arc length OP , κ is the curvature, c is a constant which
controls the decay with high curvature. σ is the scale of analysis, which
determines the effective neighborhood size. Note that σ is the only free
parameter in the system.

If we consider all points in the 2D space, the whole set of normals thus
derived constitutes the 2D stick voting field, Figure 1(b). Each normal is
called a stick vote [vx vy], thus defined as

[

vx
vy

]

= ηtv (r, κ, σ)

[

sinϕ
cosϕ

]

(2)

where ϕ is the angle subtended by the radii of the circle incident at O and
P .

Given an input token A, how to use this field to cast a stick vote to
another token B for inferring a smooth connection between them? Let us
assume the basic case that A’s normal is known, as illustrated in Figure 1(c).
First, we fix the scale σ to determine the size of the voting field. Then, we
align the voting field with A’s normal (by translation and rotation). If B
is within A’s voting field neighborhood, B receives a stick vote from the
aligned field.

5

Surface

Unit sphere Unit sphere

Surface

Unit sphere Unit sphere

Surface

Unit sphere Unit sphere

x

(a) (b) (c) (d) (e) (f)

Figure 2: Inlier/outlier and tensor illustration. (a) The normal votes at
a surface point cast by points in x’s neighborhood. Three salient outliers
are present. (b) For a non-surface point, there is no preference to any
normals. (c) The tensor induced by the normal observations in (a), which
is represented by a d-D ellipsoid, where d ≥ 2. The orange curve (dashed
curve) represents the variance produced along all possible directions. (d)
The tensor sum of the received votes in (b). (e) and (f) correspond to the
inverse of (c) and (d), respectively.

3.2 Vote collection and representation

How does B collect and interpret all received votes? Other input tokens
cast votes to B as well. Denote a received stick vote by [vx vy]

T . The tensor
sum of all votes collected by B is accumulated by tensor addition, that is,
summing up the covariance matrices consisting of the votes’ second order

moments:

[

∑

v2
x

∑

vxvy
∑

vyvx
∑

v2
y

]

. This is a second order symmetric tensor.

By decomposing this tensor into the corresponding eigensystem, we obtain
the most likely normal at B, given by the eigenvector associated with the
largest eigenvalue.

Geometrically, a second-order symmetric tensor in 2D is equivalent to an
ellipse. The major axis gives the general direction. The minor axis indicates
the uncertainty: if the minor axis has zero length, the tensor is a stick tensor,
representing absolute certainty in one direction given by the major axis. If
the length of the minor axis is equal to that of the major axis, the tensor is
a ball tensor, indicating absolute uncertainty in all directions.

3.3 Voting fields for the general case

Voting fields. Now, consider the general case that no normal is available
at A. We want to reduce this case to the basic case. Without any a priori
assumption, all directions are equally likely as the normal direction at A.
Hence, we rotate the 2D stick voting field at A. During the rotation, it
casts a large number of stick votes to a given point B. All stick votes

6

received at B are converted into second order moments, and the tensor sum
is accumulated.

Then, we compute the eigensystem of the resulting tensor sum to esti-
mate the most likely normal at B, given by the direction of the major axis
of the resulting tensor inferred at B. For implementation efficiency, instead
of computing the tensor sum on-the-fly as described above at a given vote
receiver B, we precompute and store tensor sums due to a rotating stick
voting field received at each quantized vote receiver within a neighborhood.
We call the resulting field a 2D ball voting field, which casts ball tensor votes
in A’s neighborhood. Figure 1(d) shows the ball voting field, which stores
the eigensystem of the tensor sum at each point. Note the presence of two
eigenvectors at each site in Figure 1(d).
Vote interpretation. In d-dimension we can define similar stick and ball
voting fields. After collecting the second order moments of the received
votes, they are summed up to produce a second order symmetric tensor. Let
us call this tensor sum K which can be visualized as an ellipsoid, represented
by the corresponding eigensystem K =

∑d
i=1 λiêiê

T
i where λ1 ≥ λ2 ≥ · · · ≥

λd ≥ 0 are eigenvalues, and ê1, ê2, · · · , êd are corresponding eigenvectors.
The eigenvectors determine the orientation of the ellipsoid. The eigenvalues
determine the shape of the ellipsoid.

Consider any point in the feature space. While inliers are associated with
their corresponding surface normals on the underlying surface1, outliers,
which have no relationship to the surface, can assume arbitrary normal
directions (Figure 2(a)–(b)). If it is a surface point, the stick votes received
in its neighborhood reinforce each other with a high agreement of tensor
votes. The inferred tensor should be stick-like, that is, λ1 ≫ λ2, · · · , λd,
indicating certainty in a single direction. On the other hand, an outlier
receives a few inconsistent votes, so all eigenvalues are small. Furthermore,
if it is a discontinuity or a point junction where several surfaces intersect
exactly at a single point, it indicates a high disagreement of tensor votes,
indicating no single direction is preferred.

In our EM-TV algorithm, the inverse of K, or K−1 will be used and
therefore the most preferred direction is represented by the êd which has
the smallest eigenvalue λd in the corresponding eigen-decomposition. Fig-
ure 2(e) and (f) show the corresponding inverse of Figure 2(c) and (d) re-
spectively. Given K−1, the most significant direction is represented by êd
which has the smallest eigenvalue λd.

1This surface can be the solution to a given vision problem, such as fundamental matrix
estimation and triangulation.

7

x x

nn

i j

i j

Figure 3: (a) Postulating the normal ni = nθ(xi,xj) at xi using the oscu-
lating arc between xi and xj , assuming the normal at xj is nj . (b) Plot of
Eqn. (3) in 2D.

4 Voting Without Voting Fields

In the following we modify the decay function ηtv to encode the proximity
and smoothness constraints (Eqns 3 and 4). While similar in effect to the
decay function used in tensor voting, this modified function enables a closed-
form solution for tensor voting in the general case (and the basic case as
well), without using precomputed discrete voting fields.

Let us revisit the two cases of tensor voting. Refer to Figure 3. Consider
two points xi and xj that are connected by some smooth structure in the
solution space.

Case I: Suppose that the normal nj at xj is known. We want to generate
at xi a normal observation ni so that we can calculate Ki, where Ki is
the second-order symmetric tensor at xi. ni can be derived by fitting an
osculating arc between the two points which can be computed in constant
time. Ki is given by nin

T
i multiplied by η(xi,xj ,nj) defined as:

η(xi,xj ,nj) = cij(1 − (rTijnj)
2) (3)

where

cij = exp(−||xi − xj ||2
σd

) (4)

Eqn. (4) is an exponential function using Euclidean distance for attenu-
ating the strength based on proximity. σd is the size of local neighborhood
(or the scale parameter).

In Eqn. (3), rij is a unit vector at xj pointing to xi and 1 − (rTijnj)
2

is a squared-sine function2 for attenuating the contribution according to

2sin2
ρ = 1 − cos2 ρ, where cos2 ρ = (rT

ijnj)
2 and ρ is the angle between rij and nj .

8

curvature. Similar to tensor voting, Eqn. (3) favors nearby neighbors that
produce small-curvature connections. A plot of the 2D version of Eqn. (3) is
shown in Figure 3(b), where xj is located at the center of the image and nj
is aligned with the blue line. The higher the intensity, the higher the value
Eqn. (3) produces at a given pixel location.

Case II: Next, consider the general case that the normal nj at xj is
unavailable. Kj at xj can be any covariance matrix (typically initialized as
an identity matrix). To compute Ki, we enumerate a complete set of unit
normals {ñθj} associated with the corresponding length at xj , indexed by all
possible directions θ and each postulates a normal nθ(xi,xj) at xi under the
same proximity and smoothness constraints prescribed by the corresponding
osculating arc.

Let Sij be the second-order symmetric tensor vote obtained at xi due
to the complete set of normals at xj . We have:

Sij =

∫

Nθj∈ν
nθ(xi,xj)nθ(xi,xj)

T η(xi,xj , ñθj)dNθj (5)

where
Nθj = ñθjñ

T
θj (6)

and ν is the space containing all possible Nθj . For example, if ν is 2D,
the complete set of unit normals ñθ describes a unit circle. If ν is 3D, the
complete set of unit normals ñθ describes a unit sphere.

In tensor voting implementation, Eqn. (5) is typically precomputed as
discrete voting fields. Such discrete voting fields (e.g. plate and ball voting
fields [12]) are integrated using the 2D stick voting field shown in Figure 1,
by rotating and summing the contributions using tensor addition. Although
precomputed once, such discrete approximations involve uniform and dense
sampling of tensor votes ñθñ

T
θ in higher dimensions depending on the prob-

lem. Next, we will prove a closed-form solution to Eqn. (5), which provides
an efficient and optimal solution to computing K without resorting to dis-
crete and dense sampling.

5 A Closed-Form Solution to Sij

Without loss of generality, we consider xi and xj only. For simplicity of
notation, set r = rij , ñθ = ñθj and Nθ = Nθj . Now, using the osculating
arc connection, nθ(xi,xj) can be expressed as

nθ(xi,xj) = (ñθ − 2rrT ñθ)τθ (7)

9

where ñθ is the unit normal at xj with direction θ and τθ is the length of
ñθ. Let

R = (I − 2rrT), (8)

where I is an identity, we can rewrite Eqn. (5) into the following form:

Sij = cij

∫

Nθ∈ν
τ2
θRñθñ

T
θ RT (1 − (ñTθ r)2)dNθ. (9)

Following the derivation:

Sij = cij

∫

Nθ∈ν
τ2
θRñθ(1 − (ñTθ r)2)ñTθ RTdNθ

= cijR

(∫

Nθ∈ν
τ2
θ ñθ(1 − ñTθ rrT ñθ)ñ

T
θ dNθ

)

RT

= cijR

(∫

Nθ∈ν
τ2
θNθ − τ2

θNθrr
TNθdNθ

)

RT

= cijR

(

Kj −
∫

Nθ∈ν
τ2
θNθrr

TNθdNθ

)

RT

The integration can be solved by integration by parts. Let f(θ) = τ2
θNθ,

f ′(θ) = τ2
θ I, g(θ) = 1

2rr
TN2

θ and g′(θ) = rrTNθ and note that Nq
θ = Nθ for

all q ∈ Z
+ and Kj , in the most general form, can be expressed as a generic

tensor
∫

Nθ∈ν
τ2
θNθdNθ. So we have

∫

Nθ∈ν
τ2
θNθrr

TNθdNθ

= [f(θ)g(θ)]
Nθ∈ν

−
∫

Nθ∈ν
f ′(θ)g(θ)dNθ

=

[

1

2
τ2
θNθrr

TN2
θ

]

Nθ∈ν
− 1

2

∫

Nθ∈ν
τ2
θ rr

TNθdNθ

=
1

2

∫

Nθ∈ν

d

dθ
[τ2
θNθrr

TN2
θ]dNθ −

1

2
rrTKj

=
1

2

∫

Nθ∈ν
τ2
θ rr

TN2
θ + τ2

θNθrr
Tdθ − 1

2
rrTKj

=
1

2

(

rrTKj + Kjrr
T − rrTKj

)

=
1

2
Kjrr

T

Therefore,

Sij = cijRKj

(

I − 1

2
rrT

)

RT (10)

10

Replace r by rij such that Rij = I − 2rijr
T
ij and let R′

ij = (I − 1
2rijr

T
ij)Rij ,

we obtain:
Sij = cijRijKjR

′
ij (11)

As mentioned in Section 3.3, we operate with the inverse of Kj . Let R′′
ij =

Rij(I + rijr
T
ij) and also note that R−1

ij = Rij , so the corresponding inverse
of S is:

S′
ij = c−1

ij R′′
ijK

−1
j Rij (12)

where the initial Kj (or Ki) can be either derived when the input direction
is available, or simply assigned as an identity matrix otherwise.

Using Eqn. (12), we can assign at each site Ki a
∑

j Sij . We will call
this tensor sum the structure-aware tensor for site xi, because the computa-
tion considers both geometric proximity and smoothness constraints in the
presence of its neighbors xj as described above.

By using an efficient data structure such as ANN tree [1] to access a con-
stant number of neighbors xj of each xi, where the speed of accessing nearest
neighbors can be greatly increased (polylogarithmic), the computation of a
structure-aware tensor is efficient. Note that the running time for our closed-
from solution is O(d3), while the running time for TV is O(ud−1), where d
is the dimension of the space and u is the number of sampling directions for
a given dimension. Because of this, TV implementation precomputes and
stores the dense tensor fields.

For example, when d = 3 and u = 180 for high accuracy, our method
takes 27 operation units, while TV takes 32400 operation units. Given
1980 points and the same number of neighbors, the time to compute each
structure-aware tensor using our method is about 0.0001 second, while it
takes about 0.1 second for TV to output the corresponding tensor. The
above computation was performed on a laptop computer running on a core
duo 2GHz CPU with 2GB RAM.

Now, we are ready to formulate EM-TV which makes use of structure-
aware tensors in its optimization process.

6 EM-TV

While tensor voting is very able in rejecting outliers, it falls short of pro-
ducing very accurate parameter estimation, explaining the use of RANSAC
in the final parameter estimation step after outlier rejection [19].

11

This section describes the EM-TV algorithm for optimizing (1) the struc-
ture aware tensor K at each input site, and (2) the parameters of a single
plane v of any dimensionality containing the inliers. The extensions to
multiple planes and nonlinear model fitting, outlined in the supplemental
material, are straightforward extensions based on EM-TV and our future
work is to apply this to vision problems.

We first formulate three constraints to be used in EM-TV. These con-
straints are not mutually exclusive, where knowing the values satisfying one
constraint will help computing the values of the others. However, in our
case, they are all unknowns, so EM is particularly suitable for their opti-
mization, where the expectation calculation and parameter estimation are
solved alternately.

6.1 Constraints

Data constraint Suppose we have a set of clean data. One necessary
objective is to minimize the following for all xi:

||xTi v|| (13)

where v is the plane (or the model) to be estimated.3 This is a typical data
term that measures the faithfulness of the input data to the fitting plane.
Orientation consistency The plane being estimated is defined by the
vector v. Recall that the structure-aware tensor Ki encodes the orientation
information at xi. If xi is an inlier, the orientation information encoded by
Ki and v have to be consistent. That is, the variance vTK−1

i v produced
by v should be minimal. Otherwise, xi might be generated by other models
even if it minimizes Eqn. 13. Mathematically, we minimize:

||vTK−1
i v||. (14)

Neighborhood consistency While the estimated Ki helps to indicate
inlier/outlier information, Ki has to be consistent with the local structure
imposed by its neighbors (supposing they are known). If Ki is consistent
with v but not the local neighborhood, either v or Ki is wrong. In practice,
we minimize the following Frobenius norm:

||K−1
i − S′

ij ||F . (15)

The above three constraints will interact with each other in the proposed
EM algorithm.

3Note that, in some cases, the underlying model is represented in this form: x
T
i v− yi.

But we can re-arrange it into the form given by Eqn. (13).

12

6.2 Objective Function

Define O = {oi = xi|i = 1, ..., N} to be the set of observations. Our goal
is to optimize v and K−1

i given O. Mathematically, we solve the following
objective function:

Λ∗ = arg max
Λ

P (O,R|Λ) (16)

where P (O,R|Λ) is the complete-data likelihood to be maximized, R = {ri}
is a set of hidden states indicating if observation oi is an outlier (ri = 0)
or inlier (ri = 1), and Λ = {{K−1

i },v, σ, σ1, σ2} is a set of parameters to
be estimated. σ, σ1 and σ2 are parameters imposed by some distributions,
which will be explained shortly4. Our EM algorithm estimates the optimal
Λ∗ by finding the value of the complete-data log likelihood with respect to
R given O and the current estimated parameters Λ′:

Q(Λ,Λ′) =
∑

R∈ψ

logP (O,R|Λ)P (R|O,Λ′) (17)

where ψ is a space containing all possible configurations of R of size N .

6.3 Expectation (E-Step)

In this section, the marginal distribution p(ri|oi,Λ′) will be defined so that
we can maximize the parameters in the next step (M-Step) given the current
parameters.

If ri = 1, the observation oi is an inlier and therefore minimizes the
first two conditions (Eqns 13 and 14) in Section 6.1, that is, the data and
orientation constraints. In both cases, we assume that the data follows a
Gaussian distribution (this explains the reason we use K−1

i instead of Ki).
Mathematically, the observation probability of oi can be modeled by:

p(oi|ri = 1,Λ′) ∝ exp(−||xTi v||2
2σ2

) exp(−||vTK−1
i v||

2σ2
1

) (18)

and so p(oi|ri = 0,Λ′) ∝ 1 − p(oi|ri = 1,Λ′). Since we have no prior
information about inlier/outlier, we assume that the mixture probability of
the observations p(ri = 1) = p(ri = 0) equals to a constant α such that
we have no bias to any category (inlier/outlier). In this case, p(oi|Λ′) =
αp(oi|ri = 0,Λ′) + α(1 − p(oi|ri = 1,Λ′)) = α.

4See Eqn (23).

13

Define wi = p(ri|oi,Λ′) to be the probability of oi being an inlier. Then

wi =
p(oi|ri = 1,Λ′)p(ri = 1)

p(oi|Λ′)

=
1

2πσσ1
exp(−||xTi v||2

2σ2
) exp(−||vTK−1

i v||
2σ2

1

)

(19)

So, in the E-Step, we compute wi using Eqn. (19) for all i.

6.4 Maximization (M-Step)

In the M-Step, we maximize Eqn. (17) using wi obtained from the E-Step.
Since neighborhood information is considered, we model P (O,R|Λ) as a
Markov Random Field (MRF):

P (O,R|Λ) =
∏

i

∏

j∈G(i)

p(ri|rj ,Λ)p(oi|ri,Λ) (20)

where G(i) is the set of neighborhood of i. In theory, G(i) contains all the
input points except i, since cij in Eqn. 4 is always non-zero (because of
the long tail of the Gaussian distribution). In practice, we can prune away
the points in G(i) where the values of cij are negligible. This can greatly
reduce the size of the neighborhood. Again, using ANN tree [1], the speed
of searching for nearest neighbors can be greatly increased.

Let us examine the two terms in Eqn. (20). p(oi|ri,Λ) has been defined in
Eqn. (18). We define p(ri|rj ,Λ) here. Using the third condition mentioned
in Eqn. (15), we have:

p(ri|rj ,Λ) = exp(−
||K−1

i − S′
ij ||2F

2σ2
2

) (21)

We are now ready to expand Eqn. (17). Since ri takes only two values (0 or
1), we can rewrite Q(Λ,Λ′) in Eqn. (17) into the following form:

{0,1}
∑

t

log

∏

i

∏

j∈G(i)

p(ri = t|rj ,Λ)p(oi|ri = t,Λ)

P (R|O,Λ′)

14

After expansion,

Q(Λ,Λ′) =
∑

i

log(α
1

σ
√

2π
exp(−||xTi v||2

2σ2
))wi

+
∑

i

log(
1

σ1

√
2π

exp(−||vTK−1
i v||

2σ2
1

))wi

+
∑

i

log(exp(−
||K−1

i − S′
ij ||2F

2σ2
2

))wiwj (22)

To maximize Eqn. (22), we set the first derivative of Q with respect to
K−1
i , v, σ, σ1 and σ2 to zero respectively to obtain the following set of

update rules:

K−1
i =

1
∑

j∈G(i)wj
(

∑

j∈G(i)

S′
ijwj −

σ2
2

2σ2
1

vvTwi)

Mv = 0 (solve for v)

σ2 =

∑

i ||xTi v||2wi
∑

iwi

σ2
1 =

∑

i ||vTK−1
i v||wi

∑

iwi

σ2
2 =

∑

i

∑

j∈G(i) ||K−1
i − S′

ij ||2Fwiwj
∑

iwi

(23)

where M =
∑

i xix
T
i wi + σ2

σ2
1

∑

iK
−1
i wi and G(i) is a set of neighbors of i.

Note that the second rule can be solved by eigen-decomposition. Eqn. (23)
constitutes the set of update rules for the M-step.

There is no preference to the execution sequence for Eqn. (23), because
they can be executed in parallel. The newly estimated parameters should
be cached for this purpose. In each iteration, after the update rules have
been executed, we re-project K−1

i and v onto the feasible solution space by
normalization. Also, S′

ij will be updated with the newly estimated K−1
i .

6.5 Implementation and Initialization

In summary, the boxed equations above (Eqns (12), (19) and (23)) are all the
equations needed to implement EM-TV and therefore the implementation
is straightforward.

15

It has been noted that initialization is important to an EM algorithm.
To initialize EM-TV we set σ1 and σ2 to be very large values, K−1

i = I and
wi = 1 for all i. S′

ij is initialized to be the inverse of the Sij , computed
using the closed-form solution presented in the previous section. These
initialization values mean that at the beginning we have no preference to
the surface orientation. So all the input points are initially considered as
inliers. With such initialization, we execute the second and the third rules
in Eqn. (23) in sequence. Note that when the first rule is being executed,
the term involving v is ignored because of the large σ1, thus we can obtain
K−1
i for the second rule. After that, we can start executing the algorithm

from the E-step. This initialization procedure is used in all the experiments
in the following sections.

7 Experimental Results

We first perform experiments to demonstrate the robustness of EM-TV.
Then we apply EM-TV to parameter estimation.

7.1 Robustness of EM-TV

First, quantitative comparison will be studied to evaluate EM-TV with well-
known algorithms: RANSAC [4], ASSC [20], and TV [12]. In addition,
we also provide the result using the least squares method as a baseline
comparison. Second, we apply our method to real data with synthetic noise
where the ground truth is available, and perform comparison.
Inlier-to-outlier (IO) ratio We will use the inlier-to-outlier (IO) ratio to
characterize the noise level, which can be described by

Z =
R

R+ 1
(24)

where Z is a noise percentage represented by a real number in [0, 1] and
R is the IO ratio. Note the rapid increase in the number of outliers as Z
increases from 50% to 99%. Figure 4 shows a plot of Z = R

R+1 indicating that
it is much more difficult for a given method to handle the same percentage
increase in noise as the value of Z increases. For example, according to the
plot, it is much more difficult for a given method to tolerate additional 20%
noise, when Z is increased from 70% to 90%, than from 50% to 70%. IO
ratio is therefore more suitable for studying severely corrupted data.

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

50
The relationship between noise percentage and inlier/outlier ratio

Noise percentage

In
lie

r/
o
u
tl
ie

r
ra

ti
o

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Inlier/outlier ratio = 1 (50% noise)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Inlier/outlier ratio = 20 (95.24% noise)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Inlier/outlier ratio = 45 (97.83% noise)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Inlier/outlier ratio = 80 (98.77% noise)

Figure 4: From left to right: Plot of Z = R
R+1 , and 2D data sets with IO ra-

tios [1, 20, 45, 80] corresponding to noise percentages [50%, 95%, 98%, 99%].
Our EM-TV can tolerate IO ratios ≤ 51 in this example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25
Error to the ground truth

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g
re

e

Least Square

RANSAC

ASSC

TV

Our EM Method

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
Error to the ground truth

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g

re
e

Least Square

RANSAC

ASSC

TV

Our EM Method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Maximum and Minimum error (RANSAC)

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Maximum and Minimum error (ASSC)

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

Maximum and Minimum error (RANSAC)

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
Maximum and Minimum error (ASSC)

Inlier/outlier ratio

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

Figure 5: Error plots on Set 1 (IO ratio = [0.1, 1], up to 50% noise) and Set

2 (IO ratio = [1, 100], ≥ 50% noise). Left: for Set 1, all the tested methods
demonstrated reliable results except least-square. EM-TV is deterministic
and converges quickly, capable of correcting Gaussian noise inherent in the
inliers and resulting in the almost-zero error curve. Right: for Set 2, EM-
TV still has an almost-zero error curve up to an IO ratio of 51 (≃ 98.1%
noise). We ran 100 trials in RANSAC and ASSC and averaged the results.
The maximum and minimum errors of RANSAC and ASSC are shown below
each error plot.

17

7.1.1 Robustness

We generate a set of 2D synthetic data for line fitting, by randomly sampling
44 points from a line within the range [−1,−1]× [1, 1] where the points are
contaminated by Gaussian noise of 0.1 standard deviation. Random noise
was added to data with different IO ratios.

The data set is partitioned into two:

• Set 1: IO ratio ∈ [0.1, 1] with step size 0.1,

• Set 2: IO ratio ∈ [1, 100] with step size 1.

In other words, the partition is done at 50% noise. Note from Figure 4
that the number of outliers increases rapidly after 50% noise where some
data sets with different IO ratios are shown. Outliers were added within a
bounding circle of radius 2.

The input scale, which is used in RANSAC, TV and our EM-TV, is
estimated automatically by TSSE proposed in [20]. Note that ASSC [20]
does not require any input scale.

Set 1 – Refer to the left of Figure 5 which shows the error produced by
various methods tested on Set 1. The error is measured by the angle be-
tween the estimated line and the ground-truth. Except for the least squares
method, RANSAC, ASSC, TV and EM-TV performed very well with IO
ratios ≤ 1. For RANSAC and ASSC, all the detected inliers were finally
used in parameter estimation. Note that the errors measured for RANSAC
and ASSC were the average errors in 100 executions5, which are supposed
to ease the random nature of the two robust methods based on random sam-
pling. Figure 5 also shows the maximum and minimum errors of the two
methods after running 100 trials. EM-TV does not have such maximum and
minimum error plots, because it is deterministic.

Observe that the errors produced by our method are almost zero in Set

1, while RANSAC and ASSC have error < 0.6 degrees, which is still very
acceptable.

Set 2 – Refer to the right of Figure 5 which shows the result for Set 2,
from which we can distinguish the performance of the methods. TV breaks
down at IO ratios ≥ 20. After that, the performance of TV is unpredictable.

5It means that we have executed the complete algorithm 100 times. In each execution,
iterative random sampling was done where the desired probability of choosing at least one
sample free from outliers was set to 0.99 (default value). The source code was obtained
from P. Kovesi’s website http://www.csse.uwa.edu.au/∼pk/Research/MatlabFns/

18

EM-TV breaks down at IO ratios ≥ 51, showing greater robustness than TV
in this experiment due to the EM parameter fitting procedure.

The performance of RANSAC and ASSC were quite stable where the
average errors are within 4 and 7 degrees over the whole spectrum of IO
ratios considered. The maximum and minimum errors are shown in the
bottom of Figure 5, which shows that they can be very large at times. EM-
TV produces almost zero errors with IO ratio ≤ 51, but then breaks down
into unpredictable performance.

From the experiments on Set 1 and Set 2 we conclude that EM-TV is
robust up to an IO ratio of 51 (≃98.1% noise).

7.1.2 Insensitivity to choice of scale

We study the errors produced by EM-TV with different scales σd (Eqn. (4)),
given IO ratio of 10 (≃91% noise). Even in the presence of many outliers,
EM-TV breaks down when σd ≃ 0.7 (the ground-truth σd is 0.1), which
indicates that our method is not sensitive to even large deviations of scale.
Note that the scale parameter can sometimes be automatically estimated
(by using TSSE in the experiment described above).

7.1.3 Large measurement errors

In this experiment, we increase the measurement error by increasing the
standard deviation (s.d.) from 0.01 to 0.29, while keeping IO ratio equal
to 10 and the location of the outliers fixed. Some of the input data sets
are depicted in Figure 6, showing that the inliers are less salient as the s.d.
increases. A similar experiment was also performed in [13].

Again, we compared our method with least-squares, RANSAC, ASSC
and TV, where the setting are the same as the aforementioned 2D line
fitting experiments.

According to the error plot in the top of Figure 7, the performance of
least-squares is very steady, where the angular error is around 17 degrees
across the whole s.d. spectrum. This is because the number of outliers
is 10 times more than the inliers thus dominating the estimation result.
On the other hand, TV is very sensitive to the change of s.d.: when the
s.d. is greater than 0.03, the performance is unpredictable. With increas-
ing s.d., the performance of RANSAC and ASSC degrade gracefully while
ASSC always outperforms RANSAC. The bottom of Figure 7 shows the cor-
responding maximum and minimum error in 100 executions.

On the other hand, we observe the performance of EM-TV (with σd =

19

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

s.d. = 0.03 s.d. = 0.06 s.d. = 0.15 s.d. = 0.2 s.d. = 0.25

Figure 6: Inputs containing various measurement errors, with IO ratio =
10 and fixed outliers location. The estimated parameters obtained using
EM-TV are overlayed on the inputs. Notice the line cluster becomes less
salient when s.d. = 0.25.

0.05) is extremely steady and accurate when s.d. < 0.15. After that, al-
though its error plot exhibits some perturbation, the errors produced are
still small and the performance is quite steady compared to other methods.

7.2 Fundamental Matrix Estimation

Given p ≥ 8 correspondence pairs P = {(ui,u′
i)|8 ≤ i ≤ p}, the goal is to

estimate the 3×3 fundamental matrix F = [h]a,b, where a, b ∈ {1, 2, 3}, such
that

u′T
i Fui = 0 (25)

for all i. F is of rank 2. Let u = (u, v, 1)T and u′ = (u′, v′, 1), Eqn. (25) can
be rewritten into:

UT
i v = 0 (26)

where

U = (uu′, uv′, u, vu′, vv′v, u′, v′, 1)T

v = (h11, h21, h31, h12, h22, h32, h13, h23, h33)
T

Noting that Eqn. (26) is a simple plane equation, if we can detect and
handle the noise in the feature space, Eqn. (26) should enable us to produce
a good estimation.

Since F is defined up to a scaling factor, to avoid the trivial solution
v = 0, many existing methods impose the hard constraint that ||v|| = 1.
In EM-TV, no special treatment is needed: this constraint is automatically
given by the second rule in Eqn. (23) where eigen-decomposition is used
to solve for v. Finally, we apply the method in [7] to obtain a rank-2

20

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90
Error to the ground truth

Standard deviation

E
rr

o
r

in
 d

e
g

re
e

Least Square

RANSAC

ASSC

TV

EM−TV

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60
Maximum and Minimum error (RANSAC)

Standard deviation

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

30

35

40

45

50
Maximum and Minimum error (ASSC)

Standard deviation

E
rr

o
r

in
 d

e
g
re

e

Average

Maximum

Minimum

Figure 7: A test on measurement error, where the corresponding standard
deviation varies from 0.01 to 0.29 with IO ratio 10.

fundamental matrix. Data normalization is similarly done as in [7] before
the optimization.

We evaluate the results by estimating the fundamental matrix of the data
set Corridor, which is available at www.robots.ox.ac.uk/∼vgg/data.html.
The matches of feature points (Harris corners) are available. Figure 8 shows

the plot of RMS error, which is computed by
√

1
p

∑

i ||UT
i v̂||2, where Ui

is the set of clean data, and v̂ is the 9D vector produced from the rank-2
fundamental matrices estimated by various methods. A few epipolar lines
computed using EM-TV are shown on the image pair. It can be observed
that RANSAC breaks down at an IO ratio ≃ 20, or 95.23% noise. ASSC is
very stable with RMS error < 0.15. TV breaks down at an IO ratio ≃ 10.
EM-TV has negligible RMS error before it starts to break down at an IO
ratio ≃ 40. This finding echos with [7] that linear solution is sufficient when
outliers are properly handled.

21

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

Inlier/outlier ratio

R
M

S
 E

rr
o
r

RANSAC

ASSC

TV

Our EM Method

Figure 8: Corridor. RMS error plot of various methods.

8 Conclusions

We described EM-TV, where structure-aware tensors are introduced into
EM optimization. A closed-form solution is presented for computing an
optimal structure-aware tensor, which is used in the EM optimization for
optimizing both the tensors and model parameters. We performed quan-
titative studies on EM-TV to demonstrate the robustness of our method
in comparison to existing techniques. In the future we will extend EM-TV
to extract multiple and nonlinear structures, as outlined in the supplemen-
tal material. Also we will apply this extended EM-TV framework to solve
real-world vision problems such as structure-from-motion.

References

[1] S. Arya and D. M. Mount. Approximate nearest neighbor searching. ACM-
SIAM SODA’93, pages 271–280.

[2] H. Chen and P. Meer. Robust regression with projection based m-estimators.
In ICCV03, pages II: 878–885, 2003.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature
space analysis. PAMI, 24:603–619, May 2002.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Comm. of the ACM, 24:381–395, 1981.

[5] D. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2003.

[6] B. Georgescu, I. Shimshoni, and P. Meer. Mean shift based clustering in high
dimensions: A texture classification example. In ICCV03, pages 456–463, 2003.

22

[7] R. Hartley. In defense of the eight-point algorithm. PAMI, 19(6):580–593,
June 1997.

[8] P. Hough. Machine analysis of bubble chamber pictures. Centre Européenne
pour la Recherch Nucléaire (CERN), 1959.

[9] P. J. Huber. Robust Statistics. John Wiley & Sons, 1981.

[10] K. Lee, P. Meer, and R. Park. Robust adaptive segmentation of range images.
PAMI, 20(2):200–205, February 1998.

[11] G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley,
2008.

[12] G. Medioni, M. S. Lee, and C. K. Tang. A Computational Framework for
Segmentation and Grouping. Elsevier, 2000.

[13] P. Meer. Robust techniques for computer vision. In Emerging Topics in Com-
puter Vision, page Chapter 4, 2004.

[14] P. Rousseeuw. Least median of squares regression. Journal of American Statis-
tics Assoc., 79:871–880, 1984.

[15] P. Rousseeuw. Robust Regression and Outlier Detection. Wiley, 1987.

[16] K. Sim and R. Hartley. Removing outliers using the l-inf norm. In CVPR06,
pages I: 485–494, 2006.

[17] R. Subarao and P. Meer. Beyond ransac: User independent robust regression.
In Workshop on 25 Years of RANSAC, June 2006.

[18] D. Tong, C. Tang, P. Mordohai, and G. Medioni. First order augmentation
to tensor voting for boundary inference and multiscale analysis in 3d. PAMI,
26(5):594–611, May 2004.

[19] W. Tong, C. Tang, and G. Medioni. Simultaneous two-view epipolar geometry
estimation and motion segmentation by 4d tensor voting. PAMI, 26(9):1167–
1184, September 2004.

[20] H. Wang and D. Suter. Robust adaptive-scale parametric model estimation
for computer vision. PAMI, 26(11):1459–1474, Nov 2004.

23

