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Abstract—Complex structures commonly exist in natural images. When an image contains small-scale high-contrast patterns either in

the background or foreground, saliency detection could be adversely affected, resulting erroneous and non-uniform saliency

assignment. The issue forms a fundamental challenge for prior methods. We tackle it from a scale point of view and propose a multi-

layer approach to analyze saliency cues. Different from varying patch sizes or downsizing images, we measure region-based scales.

The final saliency values are inferred optimally combining all the saliency cues in different scales using hierarchical inference. Through

our inference model, single-scale information is selected to obtain a saliency map. Our method improves detection quality on many

images that cannot be handled well traditionally. We also construct an extended Complex Scene Saliency Dataset (ECSSD) to include

complex but general natural images.

Index Terms—Saliency detection, region scale

Ç

1 INTRODUCTION

REGARDING saliency, each existing method mainly
focuses on one of the following tasks – i.e., eye-fixation

prediction, image-based salient object detection and object-
ness estimation. Among them, image-based salient object
detection [1], [2], [3], [4], [5] is an important stream, which
can benefit several applications including detection [6], clas-
sification [7], retrieval [8], and object co-segmentation [9],
for optimizing and saving computation. The goal is to detect
and segment out important regions from natural images.

By defining pixel/region uniqueness in either local or
global context, existing image salient object detection meth-
ods can be classified to two categories. Local methods [10],
[11] rely on pixel/region difference in the vicinity, while
global methods [1], [5], [12] rely mainly on color uniqueness
statistically.

Albeit many methods were proposed, a few common
issues still endure. They are related to complexity of pat-
terns in natural images. A few examples are shown in Fig. 1.
For the first two examples, the boards containing characters
are salient foreground objects. But the results in (b), pro-
duced by a previous local method, only highlight a few
edges that scatter in the image. The global method results in
(c) also cannot clearly distinguish among regions. Similar
challenge arises when the background is with complex pat-
terns, as shown in the last example of Fig. 1. The yellow
flowers lying on grass stand out by previous methods. But

they are actually part of the background when viewing the
picture as a whole.

These examples are not special, and exhibit one common
problem—that is, when objects contain salient small-scale pat-
terns, saliency could generally be misled by their complexity.
Given texture existing in many natural images, this problem
cannot be escaped. It easily turns extracting salient objects
to finding cluttered fragments of local details, complicating
detection and making results not usable in, for example,
object recognition [13], where connected regions with rea-
sonable sizes are favored.

Aiming to solve this notorious and universal problem,
we propose a hierarchical framework, to analyze saliency
cues from multiple levels of structure, and then integrate
them for the final saliency map through hierarchical infer-
ence. Our framework finds foundation from studies in psy-
chology [14], [15], which show the selection process in
human attention system operates from more than one lev-
els, and the interaction between levels is more complex than
a feed-forward scheme. Our multi-level analysis helps deal
with salient small-scale structures. The hierarchical infer-
ence plays an important role in fusing information to get
accurate saliency maps.

Our contributions in this paper also include 1) a new
measure of region scales, which is compatible with human
perception on object scales, and 2) extension of Complex
Scene Saliency Dataset (CSSD), which contains 1,000 chal-
lenging natural images for saliency detection. Our method
yields improvement over others on the new extended CSSD
dataset as well as other benchmark datasets.

This manuscript extends the conference version [16]
with the following major differences. First, we provide
more analysis on region scale computation and region
merge. Second, we build a new hierarchical inference
model with a local consistency scheme, which leads to
more natural saliency results compared to previous
tree-structured model. Further, we build an extended
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Complex Scene Saliency Dataset (ECSSD) with more chal-
lenging natural images.

The rest of the paper is organized as follows. Section 2
reviews literature in saliency detection. In Section 3, we
introduce our hierarchical solutions for saliency detection.
We conduct experiments in Section 4 and conclude this
paper in Section 5.

2 RELATED WORK

Saliency analysis generally follows eye fixation location and
object-based attention formation [17]. Eye fixation location
methods physically obtain human attention shift continu-
ously with eye tracking, while object-based approaches aim
to find salient objects from the input. The salient object
detection is further extended to “objectness estimation” in
object recognition. Both of them are important and benefit
different applications in high-level scene analysis. Extensive
review was provided in [3], [18]. Below we discuss a few.
Note that in this paper we only address the image-based
salient object detection problem.

Eye Fixation Prediction and Objectness. Eye fixation meth-
ods compute a saliency map to match eye movement.
The early method [19] used an image pyramid to calcu-
late pixel contrast based on color and orientation fea-
tures. Ma and Zhang [20] directly computed center-
surrounding color difference in a fixed neighborhood for
each pixel. Harel et al. [21] proposed a method to non-
linearly combine local uniqueness maps from different
feature channels to concentrate conspicuity. Judd et al.
[22] combined high level human detector and center pri-
ors into eye fixation prediction. Borji and Itti [23] consid-
ered local and global image patch rarities in two color
space, and fuse information.

Objectness is anther direction on saliency detection. It
is to find potential objects [24] based on the low level
clues of the input image independent of their classes. In

particular, it measures whether a particular bounding box
represents an object. Endres and Hoiem [25] proposed an
object proposal method based on segmentation. Alexe
et al. [26] integrated saliency clues for object prediction.
Cheng et al. [24] developed a gradient feature for object-
ness estimation.

Salient object detection. Salient object detection, different
from above problems, segments salient objects out. Local
methods extract saliency features regarding a neighboring
region. In [27], three patch-based features are learned and
connected via conditional random field. Achanta et al. [10]
defined local pixel saliency using local luminance and color.
This method needs to choose an appropriate surrounding
patch size. Besides, high-contrast edges are not necessarily
in the foreground as illustrated in Fig. 1.

Global methods mostly consider color statistics. Zhai and
Shah [28] introduced image histograms to calculate color
saliency. To deal with RGB color, Achanta et al. [29] pro-
vided an approximate by subtracting the average color
from the low-pass filtered input. Cheng et al. [1] extended
the histogram to 3D color space. These methods find pix-
els/regions with colors much different from the dominant
one, but do not consider spatial locations. To compensate
the lost spatial information, Perazzi et al. [12] measured the
variance of spatial distribution for each color. Global meth-
ods have their difficulty in distinguishing among similar
colors in both foreground and background. Recent methods
exploit background smoothness [5], [30]. Note smooth struc-
ture assumption could be invalid for many natural images,
as explained in Section 1.

High-level priors were also used based on common
knowledge and experience. Face detector was adopted in
[30], [31]. The concept of center bias—that is, image center is
more likely to contain salient objects than other regions—
was employed in [5], [27], [30]. In [30], it is assumed that
warm colors are more attractive to human. Learning techni-
ques are popular in several recent methods [32], [33], [34].

Fig. 1. Saliency detection with structure confusion. Small-scale strong details easily influence the process and cause erroneous results.
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Unique features or patterns are learned from a large set of
labeled images or a single image in an unsupervised man-
ner. Li et al. [35] links the eye fixation prediction and salient
object detection via segmentation candidates.

Prior work does not consider the situation that locally
smooth regions could be inside a salient object and globally
salient color, contrarily, could be from the background.
These difficulties boil down to the same type of problems
and indicate that saliency is ambiguous in one single scale.
As image structures exhibit different characteristics when
varying resolutions, they should be treated differently to
embody diversity. Our hierarchical framework is a unified
one to address these issues.

3 HIERARCHICAL FRAMEWORK

Our method starts from layer extraction, by which we
extract images of different scales from the input. Then we
compute saliency cues for each layer, which are then used
to infer the final saliency confidence in a local consistent
hierarchical inference model. The framework is illustrated
in Fig. 2.

3.1 Image Layer Extraction

Image layers, as shown in Fig. 2c, are coarse representation
of the input with different degrees of details, balancing
between expression capability and structure complexity.
The layer number is fixed to 3 in our experiments. In the

bottom level, finest details such as flower are retained, while
in the top level large-scale structures are produced.

3.1.1 Layer Generation

To produce the three layers, we first generate an initial over-
segmentation as illustrated in Fig. 3b by the watershed-like
method [36]. For each segmented region, we compute a
scale value, where the process is elaborated on in the next
section. They enable us to apply an iterative process to
merge neighboring segments. Specifically, we sort all
regions in the initial map according to their scales in an
ascending order. If a region scale is below a selected thresh-
old, we merge it to its nearest region, in terms of average
CIELUV color distance, and update its scale. We also
update the color of the region as their average color. After
all regions are processed, we take the resulting region map
as the bottom layer, denoted as L1. The super-script here
indexes the first layer among the three ones we operate. In
what follows without further explanation, the super-script
is the layer index.

The middle and top layers L2 and L3 are generated simi-

larly from L1 and L2 with larger scale thresholds. In our
experiment, we set thresholds for the three layers as
f5; 17; 33g for typical 400� 300 images. Three layers are
shown in Figs. 3c-3e. More details on scale computation and
region merge are described in the following sections. Note a
region in the middle or top layer embraces corresponding

Fig. 2. An overview of our hierarchical framework. We extract three image layers from the input, and then compute saliency cues from each of these
layers. They are finally fed into a hierarchical inference model to get the final results.

Fig. 3. Region-merge results under different scales.
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ones in the lower levels. We use the relationship for saliency
inference described in Section 3.3.

3.1.2 Region Scale Definition

In methods of [37], [38] and many others, the region size is
measured by the number of pixels. Our research and exten-
sive experiments suggest this measure could be wildly inap-
propriate for processing and understanding general natural
images. In fact, a large pixel number does not necessarily
correspond to a large-scale region in human perception.

An example is shown in Fig. 4. Long curved region a con-
tains many pixels. But it is not regarded as a large region in
human perception due to its high inhomogeneity. Region b
could look bigger although its pixel number is not larger.
With this fact, we define a new encompassment scale measure
based on shape uniformities and use it to obtain region sizes
in the merging process.

Definition 1. Region R encompassing region R0 means there
exists at least one location to put R0 completely inside R,
denoted as R0 � R.

With this relation, we define the scale of region R as

scaleðRÞ ¼ argmax
t
fRt�tjRt�t � Rg; (1)

where Rt�t is a t� t square region. In Fig. 4, the scales of
regions a and b are smaller than 5 while the scale of c is
above it.

3.1.3 Efficient Algorithm to Compute Region Scale

To determine the scale for a region, naive computation fol-
lowing the definition in Eq. (1) needs exhaustive search and
comparison, which could be costly. In fact, in the merging
process in a level, we only need to know whether the scale
of a region is below the given threshold t or not. We resort
to a fast method by spatial convolution.

Given amapM with each pixel labeled by its region index
in the region listR, we apply a box filter kt of size t� t, which
produces a blurredmap kt �M (� denotes 2D convolution).

With computation of absolute difference Dt ¼ jM�
kt �Mj, we screen out regions in R with their scales smaller
than t. The scale for a regionRi is smaller than t if and only if

�
min
y
fDtðyÞjy 2 Rig

�
> 0; (2)

where y indexes pixels. It is based on the observation that if
all the label values for region Ri in M are altered after the
convolution, Ri cannot encompass kt. Thus, the scale of the
region is smaller than t. One example is shown in Fig. 5.

We present the scale estimation process in Algorithm 1.
After obtaining regions whose scales are smaller than t, we
merge each of them to its closest neighboring region in
CIELUV color space. The merging process is shown in
Algorithm 2.

Algorithm 1. Scale Estimation

1: input: Region listR, scale threshold t
2: Create a map M with each pixel labeled by its region index

inR;
3: Create a box filter kt of size t� t;
4: Dt  jM � kt �Mj;
5: Rt  ;;
6: for each region Ri inR do
7: x minyfDtðyÞjy 2 Rig;
8: If x > 0 thenRt  Rt

S fRig;
9: end for
10: output: Region listRt

3.2 Single-Layer Saliency Cues

For each layer we extract, saliency cues are applied to find
important regions from the perspectives of color, position
and size. We present two cues that are particularly useful.

Algorithm 2. Region Merge

1: input: Region listR, scale threshold t
2: repeat
3: Get region listRt by Algorithm 1;
4: for each region Ri inRt do
5: Find the neighboring region Rj 2 Rwith the minimum

euclidian distance to Ri in CIELUV color space;
6: Merge Ri to Rj;
7: Set the color of Rj to the average of Ri and Rj;
8: end for
9: untilRt ¼ ;
10: output: Region listR

3.2.1 Local Contrast

Image regions contrasting their surroundings are general
eye-catching [1]. We define the local contrast saliency cue
for Ri in an image with a total of n regions as a weighed
sum of color difference from other regions:

Ci ¼
Xn
j¼1

wðRjÞfði; jÞjjci � cjjj2; (3)

where ci and cj are colors of regions Ri and Rj respectively.
wðRjÞ counts the number of pixels in Rj. Regions with more
pixels contribute higher local-contrast weights than those

Fig. 4. Our region scale is defined as the largest square that a region can
contain. In this illustration, the scales of regions a and b are less than 5,
and that of c is larger than 5.

Fig. 5. Efficient computation of scale transform. (a) Initial region map.
(b) Map labels and the box filter. (c) Filtered region map. As shown in (c),
all colors in R1 are updated compared to the input, indicating a scale
smaller than 3.
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containing only a few pixels. fði; jÞ is set to expf�D
ðRi;RjÞ=s2g controlling the spatial distance influence
between two regions i and j, where DðRi;RjÞ is a square of
euclidean distances between region centers of Ri and Rj.
With the fði; jÞ term, close regions have larger impact than
distant ones. Hence, Eq. (3) measures color contrast mainly to
surroundings. Parameter s2 controls how large the neighbor-

hood is. It is set to the product of ð0:2Þ2 and the particular scale
threshold for the current layer. In the top layer, s2 is large,
making all regions be compared in a near-globalmanner.

3.2.2 Location Heuristic

Human attention favors central regions [39]. So pixels close to
the image center could be good candidates, which have been
exploited in [27], [30]. Our location heuristic is written as

Hi ¼ 1

wðRiÞ
X
xi2Ri

expf��kxi � xck2g; (4)

where fx0; x1 � � �g is the set of pixel coordinates in region Ri,
and xc is the coordinate of the image center. Hi makes
regions close to image center have large weights. � is a
parameter used whenHi is combined with Ci, expressed as

�si ¼ Ci �Hi: (5)

Since the local contrast and location cues have been normal-
ized to range ½0; 1Þ, their importance is balanced by �, set to 9
in general. After computing �si for all layers, we obtain initial
saliencymaps separately, as demonstrated in Figs. 6b-6d.

In what follows, we describe how Fig. 6e is obtained from
the three single-layer saliency maps through our local con-
sistent hierarchical inference. This strategy is updated from
the one presented in our conference version paper [16] in
both construction and optimization. It leads to improved
performance.

3.3 Local Consistent Hierarchical Inference

Cue maps reveal saliency in different scales and could be
quite different. At the bottom level, small regions are

produced while top layers contain large-scale structures.
Due to possible diversity, none of the single layer informa-
tion is guaranteed to be perfect. It is also hard to determine
which layer is the best by heuristics.

Multi-layer fusion by naively averaging all maps is not a
good choice, considering possibly complex background
and/or foreground. Note in our region merging steps, a seg-
ment is guaranteed to be encompassed by the correspond-
ing ones in upper levels. This makes a hierarchy of regions
in different layers naturally form. An example is shown in
Fig. 2e. In the graph, the nodes in three layers correspond to
regions from the three image layers. The connection
between them in neighboring layers is due to the
“belonging” relationship. For instance, the blue node j cor-
responds to the blue region in (d). It contains two segments
in the lower level and thus introduces two children nodes,
marked red and green respectively.

Without considering the connections between nodes in
the same layer, the graph actually can be seen as a tree
structure after adding a virtual node representing the entire
image. The structure inspires a hierarchical inference model
to take into account the influence of regions from neighbor-
ing layers, so that large-scale structures in upper layers can
guide saliency assignment in lower layers.

In addition, if an object is narrow and small, pixels
could be mistakenly merged to background regions, such
as the first example shown in Fig. 7. In such cases, consid-
ering only the influence of corresponding regions in
neighboring layers is insufficient. In our inference model,
we count in a local consistency term between adjacent
regions. Accordingly, in the graph shown in Fig. 2e, con-
nection between nodes in the same layer is built. We
describe the process below.

3.3.1 Our Model

For a node corresponding to region i in layer Lk, we

define a saliency variable ski . Set S contains all of them.
We minimize the following energy function for the hier-
archical inference

Fig. 6. Saliency cue maps in three layers and our final saliency map.

Fig. 7. Comparison of inference models with and without the local consistency term. Enforcing local connection makes the final saliency map [16] in
(f) less affected by similar color in the background.
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EðSÞ ¼
X
k

X
i

EDðski Þ þ
X
k

X
i

X
j;Rk

i
�Rkþ1

j

EHðski ; skþ1j Þ

þ
X
k

X
i

X
j;Rk

j
2AðRk

i
Þ
ECðski ; skj Þ:

(6)

The energy consists of three parts. Data term EDðski Þ is to
gather separate saliency confidence, and hence is defined,
for every node, as

EDðski Þ ¼ bkjjski � �ski jj22; (7)

where bk controls the layer confidence and �ski is the initial
saliency value calculated in Eq. (5). The data term follows a
common definition.

The hierarchy term EHðski ; skþ1j Þ, building cross-layer
linkages, enforces consistency between corresponding
regions in different layers. This term is important in our
inference model. It not only connects multi-layer informa-
tion, but also enables reliable combination of saliency

results among different scales. In detail, if Rk
i and Rkþ1

j are

corresponding in two layers, we must haveRk
i � Rkþ1

j based

on our encompassment definition and the segment genera-
tion procedure. EH is defined on them as

EHðski ; skþ1j Þ ¼ �kjjski � skþ1j jj22; (8)

where �k controls the strength of consistency between
layers. The hierarchical term makes saliency assignment for
corresponding regions in different levels similar, beneficial
to effectively correcting single-layer saliency errors.

The last term is a local consistency term, which enforces
intra-layer smoothness. It is used to make saliency assign-
ment smooth between adjacent similar regions. Notation

AðRk
i Þ in Eq. (6) represents a set containing all adjacent

regions of Rk
i in layer Lk. If Rk

j 2 AðRk
i Þ, the consistency pen-

alty between regions Rk
i ; R

k
j is expressed as

ECðski ; skj Þ ¼ gkwk
i;jkski � skjk22; (9)

where gk determines the strength of consistency for each

layer. wk
i;j is the influence between adjacent regions Rk

i and

Rk
j . It should be large when the two regions are similar in

color and structure. We define it as regional similarity in the
CIELUV color space:

wk
i;j ¼ exp �kc

k
i � ckjk2
sc

( )
; (10)

where cki and ckj are mean colors of respective regions and sc

is a normalization parameter. The intra-layer consistency
brings local regions into consideration. Thus the inference is
robust to hierarchical errors.

Our energy function including these three terms consid-
ers multi-layer saliency cues, making final results have less
errors occurred in each single scale.

3.3.2 Optimization

Our objective function in Eq. (6) forms a simple hierarchical
graph model. Since it contains loops inside each layer, we

adopt common loopy belief propagation [40] for optimiza-
tion. It starts from an initial set of belief propagation mes-
sages, and then iterates through each node by applying
message passing until convergence.

The propagation scheme can be summarized as follows.
Let mt

i!j be the message passed from region Ri to an adja-
cent region Rj at the tth iteration (we omit layer indicator
for simplicity here). At each iteration, if Ri and Rj are in the
same layer, the message is

mt
i!jðsjÞ ¼ min

si

�
EDðsiÞ þ ECðsi; sjÞ þ

X
p2NðRiÞnj

mt�1
p!iðsiÞ

�
; (11)

where set NfRig contains connected region nodes of Ri,
including inter- and intra-layer ones. If Ri and Rj are
regions in different layers, the passed message is

mt
i!jðsjÞ ¼ min

si

�
EDðsiÞ þ EHðsi; sjÞ þ

X
p2NðRiÞnj

mt�1
p!iðsiÞ

�
: (12)

After message passing converges at T th iteration, the opti-
mal value of each saliency variable can be computed via
minimizing its belief function, expressed as

ðsjÞ� ¼ argmin
sj

�
EDðsjÞ þ

X
i2NðRjÞ

mT
i!jðsjÞ

�
: (13)

Finally, we collect the saliency variables in layer L1 to com-
pute the final saliency map. An example is shown in Fig. 6e.
Although saliency assignment in the original resolution is
erroneous, our final saliency map correctly labels the
woman and horse as salient. The background containing
small-scale structures is with low and smooth saliency val-
ues, as expected from our model construction.

3.4 More Discussions

Relation to the inference model in [16]. The inference model
proposed in our conference version paper [16] is a simpli-
fied version of Eq. (6), where gks are set to 0 and linkage
between adjacent regions in the same layer does not exist. It
is written as

EðSÞ ¼
X
k

X
i

EDðski Þ þ
X
k

X
i

X
j;Rk

i
�Rkþ1

j

EHðski ; skþ1j Þ; (14)

forming a tree structure instead. This scheme enables sim-
pler and more efficient optimization where belief propaga-
tion is still applicable. In this case, message passing is
expressed in a single form by Eq. (12). It makes exact infer-
ence with global optimum achievable within two passes
[41]. This type of inference is actually equivalent to applying
a weighted average to all single-layer saliency cue maps,
with optimally determined weight for each region.

The tree-structured inference model is capable to find
commonly salient regions. However, without intra-layer
propagation, narrow objects could be mis-merged to back-
ground, as exemplified in Fig. 7. In the two examples, fore-
ground and background pixels are mistakenly joined due to
object similarity. Our new model counts in image layer
information through the local consistency term and reduces
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such errors, as shown in (f). In Section 4, we show more
quantitative and qualitative evaluation results.

Our new model, adding a local consistency term based
on regional color similarity, aims to correct saliency score
due to mistaken merge. When the foreground and back-
ground have almost the same color, the new term may
degrade the performance, as shown in Fig. 9. Under this
extreme situation, our previous tree-structured inference
model HS in [16] is more suitable.

Relation to other hierarchical models. Similar ideas of com-
bining information in a hierarchical structure were
employed in this community. Wu et al. [42] proposed a
tree-structured hierarchal model for short- and long-range
motion perception. Ladicky et al. [43] developed an associa-
tive hierarchical random fields for semantic segmentation.
In saliency related applications, Sun et al. [44] modeled eye
movement for visual object attention via a hierarchical
understanding of scene/object. The saliency output varies
with gaze motion. A stream of bottom-up saliency mod-
els [10], [19], [27] explore information in different layers.
These methods exploit independent information in different
layers while our model connects saliency maps via a graphi-
cal model to produce final saliency scores. The interaction
between layers enhances optimality of the system. Besides,
our methods generally produce clearer boundaries than
previous local-contrast approaches, as we do not employ
downsampled images in different layers.

4 EXPERIMENTS

Our current un-optimized implementation takes on average
2:02 s to process one image with resolution 400� 300 in the
benchmark data on a PC equipped with a 3.40 GHz CPU
and 8 GB memory. The most time consuming part, taking
86 percent of the total time, is the local consistent hierarchi-
cal inference. Our implementation of this step is based on
the Matlab package [45] for loopy belief propagation. Accel-
eration could be achieved by more efficient implementation.
In our experiments, bi is fixed as f0:5; 4; 2g for i ¼ f1; 2; 3g,
and �1 ¼ �2 ¼ 4.

In what follows, we first introduce our ECSSD for
saliency evaluation. Then we show both qualitative and
quantitative experiment results of our method on this new
and other benchmark datasets.

4.1 Extended Complex Scene Saliency Dataset

Although images from MSRA-1000 [29] have a large variety
in their content, background structures are primarily simple
and smooth. To represent the situations that natural images
generally fall into, we extend our CSSD in [16] to a larger
dataset (ECSSD) with 1,000 images, which includes many
semantically meaningful but structurally complex images
for evaluation. The images are acquired from the internet
and five helpers were asked to produce the ground truth
masks individually.

We asked the helpers to labelmultiple salient objects if they
think these objects exist. We evaluate the inter-subject label
consistency by F-measure using four labels for ground-truth
and the rest one for testing following the protocol of [35]. To
build the ground-truth mask, we average the binary mask of
the four labelers and set the threshold to 0.5. The averaged F-
measure among the five cases in all ECSSD images is 0.9549,
which indicates the inter-subject label is quite consistent
although our dataset contains complex scenes. The final
results are selected bymajority vote, i.e., averaging five candi-
date masks and setting the threshold to 0.5. All images and
ground truthmasks in the dataset are publicly available.

Dataset properties. Images in our dataset fall into various
categories. The examples shown in Fig. 8 include images
containing natural objects like vegetables, flowers, mam-
mals, insects, and human. There are also images of man-
made objects, such as cups, vehicles, and clocks. For each
example, we has its corresponding salient object mask cre-
ated by human.

Backgrounds of many of these examples are not uniform
but contain small-scale structures or are composed of sev-
eral parts. Some of the salient objects marked by human
also do not have a sharply clear boundary or obvious differ-
ence with the background. Natural intensity change due to
illumination also exists. The fourth image in the upper row
of Fig. 8 is a typical example because the background con-
tains many flowers diversified in color and edge distribu-
tions; the foreground butterfly itself has high-contrast
patterns. Considering only local center-surround contrast
could regard all these high-contrast pixels as salient. Results
by several recent methods are shown in Section 4.2.

In our image dataset, it is also noteworthy that multiple
objects possibly exist in one image, while part of or all of
them are regarded as salient decided by human. In the
fourth example in third row of Fig. 8, several balls with dif-
ferent colors are put together. Because the central ball has a
smiling face, it is naturally more attractive. This is a chal-
lenging example for saliency detection.

In addition, this ECSSD dataset contains transparent
objects with their color affected by background patterns,
causing large ambiguity in detection. These salient objects

Fig. 9. An example that our new CHS model does not outperform previ-
ous HS [16] model.

Fig. 8. Example images from ECSSD. The images in the first row contain
complex structures either in the salient foreground or the non-salient
background. The second row shows the corresponding objects marked
by human.
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nevertheless are easy to be determined by human. We hope,
by including these difficult images, new definitions and sol-
utions can be brought into the community in future for
more successful and powerful saliency detection.

Complexity evaluation. We quantitatively evaluate the
complexity of our dataset via the difference of foreground/
background distribution in CIELab color space. Given the
ground truth mask, we separate each image into foreground
and background pixels. Then Chi-square distance is com-
puted on the distributions of these two sets considering
the L, a and b channels. Large difference values mean fore-
ground and background can be easily separable, while a
small difference increases the difficulty to distinguish fore-
ground from background.

Two image examples are shown in Figs. 10a and 10b with
their respective foreground/background distribution differ-
ence values. In Fig. 10c, we plot the histogram of the differ-
ence for all images included in MSRA-1000 and ECSSD

respectively. It manifests that our dataset has many more
images with low foreground/background difference com-
pared to those in MSRA-1000. Put differently, our new data-
set contains more complex images for saliency detection.

4.2 Evaluation on ECSSD

We evaluate our method on the ECSSD dataset and compare
our results with those from several prior methods, including
local schemes—IT [19], GB [21], AC [10]—and global
schemes—LC [28], FT [29], CA [31], HC [1], RC[1], RCC [46],
LR [30], SR[47]. The abbreviations are the same as those in
[1], except for LR, which represents the low rank method of
[30]. For IT, GB, AC, FT, CA, HC, RC, RCC, LR and SR, we
run authors’ codes. For LC, we use the implementation pro-
vided in [1]. We denote the tree-structured basedmethodwe
proposed in [16] as HS, and our newmethod as CHS.

The visual comparison is given in Fig. 11. Our methods
can handle complex foreground and background with

Fig. 10. Dataset complexity comparison. (a) and (b) are from MSRA-1000 and ECSSD respectively. The latter is visually complex and also has a
small foreground/background difference. Figure (c) shows the histogram of foreground/background difference on two datasets, evaluated on L, a, b
channels separately. It manifests that our dataset has more similar foreground/background pairs, thus becomes more difficult for saliency detection.

Fig. 11. Visual comparisons on ECSSD.
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different details, giving accurate and uniform saliency
assignment. Compared with the tree-structured algorithm
[16], our new local consistent hierarchical inference produces
less turbulent saliency values among similar adjacent
regions. More importantly, it is able to correct some fore-
ground pixels that are mistakenly merged to the back-
ground.More results will be available on our projectwebsite.

In quantitative evaluation, we plot the precision-recall
curves Fig. 12a. Our experiment follows the setting in [1],
[29], where saliency maps are binarized at each possible
threshold within range ½0; 255	. Our method achieves the
top precision in almost the entire recall range ½0; 1	. It is
because combining saliency information from three scales
makes the saliency estimation be considered both locally
and globally. Only sufficiently salient objects through all
scales are detected in this case. The non-salient background
is then with low scores generally. Besides, adding the local
consistency term improves performance by preserving con-
sistent saliency between adjacent regions.

In many applications, high precision and high recall are
required. We thus estimate the F -Measure [29] as

Fb ¼ ð1þ b2Þ � precision � recall
b2 � precisionþ recall

: (15)

Thresholding is applied and b2 is set to 0.3 as suggested in
[29]. The F -measure is plotted in Fig. 12b. Our methods have
high F -scores compared to others in most range, indicating
less sensitivity to picking a threshold in both versions.

We have further investigated the performance of Mean
absolute error (MAE) following Perazzi et al. [12]. MAE is a
better representation for segmenting salient objects. Table 1
demonstrates that our HS and CHS outperform most exist-
ing methods by a large margin. Note that the result of HS is
slightly better than CHS under this measure, since in our
ECSSD dataset, there are many data with insignificant

foreground/background difference. Recent work of
RCC [46] performs similarly as ours. For relatively small
thresholds, it enforces a boundary prior to produce clean
background in the saliency map. The SaliencyCut step itera-
tively updates the saliency map to produce nearly binary
maps. On complex background without confident saliency
map initialization, the SaliencyCut step would remove the
less confident region, such as the last two examples in Fig. 11.

4.3 MSRA-1000 [29], and 5000 [27] Dataset

We also test our method on the saliency datasets MSRA-
1000 [29] and MSRA-5000 [27], [48] where MSRA-1000 is a
subset of MSRA-5000, containing 1,000 natural images. We
show comparisons with the following ones, including local
methods—IT [19], MZ [20], GB [21], AC [10], and global
methods—LC [28], FT [29], CA [31] HC [1], RC [1],
RCC [46], SF [12], SR [47]. For IT, GB, CA, RCC and SR, we
run authors’ codes. For AC, FT, HC, LC, MZ, RC and SF, we
directly use author-provided saliency results. We omit
result of HS here since the performance in this two datasets
is rather close. Images of MSRA-1000 and MSRA-5000 are
relatively more uniform; hence benefit of the local consis-
tency term is not obvious.

Visual comparison is shown in Fig. 13. Follow previous
settings, we also quantitatively compare our method with
several others with their saliency maps available. The preci-
sion-recall curves for the MSRA-1000 and 5000 datasets are
plotted in Figs. 14a and 14c. The F-measure curves for the
two datasets are plotted in Figs. 14b and 14d. The MAE
measures are listed in Table 1. On these simpler datasets, all
methods, including ours, perform much better. However,
the advantage of our method is still clear.

4.4 Pascal-S Dataset [35]

We also compared our CHS and HS [16] on Pascal-S data-
set [35] with SF [12], HC [1], IT [19], FT [29], RCC [46], and

Fig. 12. Quantitative comparison on ECSSD.

TABLE 1
Quantitative Comparison for MAE on ECSSD, MSRA-1000, and MSRA-5000 Datasets

AC [10] CA [31] FT [29] GB [21] HC [1] IT [19] LC [28] LR [30] SR [47] RC [1] RCC [1] HS [16] CHS

ECSSD 0.2647 0.3100 0.2698 0.2821 0.3258 0.2900 0.2940 0.2669 0.2636 0.3005 0.1865 0.2244 0.2265
MSRA-1000 0.2102 0.2332 0.2053 0.2189 0.1774 0.1953 0.2187 0.1854 0.2149 0.2358 0.1062 0.1155 0.0961
MSRA-5000 0.2280 0.2503 0.2298 0.2433 0.2391 0.2475 0.2447 0.2152 0.2251 0.2638 0.1399 0.1528 0.1499
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GBVS-CMPC [35]. Pascal-S dataset is newly proposed for
benchmarking complexity images in saliency detection.
Both Pascal-S and our ECSSD datasets contain complex
images for saliency evaluation. The images in Pascal-S usu-
ally involve several different objects, such as a person in a
bedroom with decorations and furniture. In our dataset,
many similar foreground and background color/structure
distributions make the images difficult for saliency detec-
tion. Most of our data contain the only salient object as
ground truth without ambiguity (see examples in Fig. 11).

The precision-recall comparison is shown in Fig. 15. The
success of GBVS-CMPC [35] is due to the fact that the

CPMC segmentation algorithm it used has already pro-
duced decent object-level proposals. Salient object detection
is achieved by assigning a uniform score map to those confi-
dent objects. GBVS-CMPC shows that the eye-fixation
together with an excellent segmentation approach is a
promising direction.

4.5 Comparison with Single-Layer

Our hierarchical framework utilizes information frommulti-
ple image layers, gaining special benefit. Single-layer
saliency computation does not work similarly well. To vali-
date it, we take �si in Eq. (5) in different layers as well as the

Fig. 13. Visual comparison on MSRA-1000 [29].

Fig. 14. Precision-recall / F-measure curve on MSRA-1000 and MSRA-5000 datasets.
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average of them as the saliency values.We evaluate how they
work respectively when applied to our ECSSD image data.

We compare all single layer results, averaged result,
result by tree-structured inference in [16] and result by our
local consistent hierarchical inference, denoted as Layer1,
Layer2, Layer3, Average, HS, and CHS respectively.
For each of them, we take the threshold that maximizes
F-measure, and plot the corresponding precision, recall,
and F-measure in Table 2.

Results from all single layers are close. But the perfor-
mance decreases. The reason is that, as more small-scale
structures are removed, the extracted image layers are
prone to segmentation errors especially for the structurally
complex images in our dataset. On the other hand, large-
scale image layers benefit large-scale result representation.
Compared with naive averaging of all layers, our inference
algorithm optimally aggregates confident saliency values
from these layers, surely yielding better performance. By
enforcing smoothness locally in our new inference model,
CHS also produces better results compared to the simpler
HS implementation.

4.6 Region Scale and Layer Number Evaluation

To evaluate the effectiveness of our new scale measure pre-
sented in Section 3.1, we compare our results with those
produced using the traditional scale measure, i.e., number
of pixels in the region. We replace the scale measure by
counting pixel number and set scale thresholds
f5; 9; 13; 17; 21; 25; 29; 33g for our measure and squares of
these values for the traditional one.

For images containing text- or curve-like high contrast
regions that should not be classified as salient alone, our
method performs much better. The resulting F-measure
scores for the representative images from ECSSD are listed
in Table 3, indicating that our new region scale measure is
effective. Fig. 16 shows an image result comparison. Unifor-
mity-enforced scale measure profits general saliency detec-
tion and can remove errors caused by detecting many
narrow regions in the fine level.

We also evaluate how the number of layers affects our
result. We experiment using different number of layers and
adjust the single layer scale for the best performance on
ECSSD. F-measure is reported in Table 4. The three-layer
case produces the best result. Two layers cannot take a com-
parable advantage of scale variation. With more than three
layers, more errors could be introduced in large scales. Also
the computation time increases accordingly.

5 CONCLUDING AND FUTURE WORK

We have tackled a fundamental problem that small-scale
structures would adversely affect saliency detection. This
problem is ubiquitous in natural images due to common
texture. In order to obtain a uniformly high-response
saliency map, we propose a hierarchical framework that
infers importance values from three image layers in differ-
ent scales. Our proposed method achieves high perfor-
mance and broadens the feasibility to apply saliency
detection to more applications handling different natural
images. The future work includes incorporating object seg-
mentation clues, and applying the hierarchical insight to
salient eye-fixation and objectness methods.
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