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Abstract

Existing clustering methods can be roughly classified
into two categories: generative and discriminative ap-
proaches. Generative clustering aims to explain the data
and thus is adaptive to the underlying data distribu-
tion; discriminative clustering, on the other hand, em-
phasizes on finding partition boundaries. In this paper,
we take the advantages of both models by coupling the
two paradigms through feature mapping derived from
linearizing Bayesian classifiers. Such the feature map-
ping strategy maps nonlinear boundaries of generative
clustering to linear ones in the feature space where we
explicitly impose the maximum entropy principle. We
also propose the unified probabilistic framework, en-
abling solvers using standard techniques. Experiments
on a variety of datasets bear out the notable benefit of
our method in terms of adaptiveness and robustness.

Introduction
Clustering is a fundamental problem in machine learning.
Given a set of unlabeled data, the goal is to group the data
samples/points into different clusters, representing the in-
trinsic structure and underlying membership. In this paper,
we study clustering from two angles: generative and dis-
criminative models.

Generative models, e.g. mixture of Gaussians, are widely
used in clustering. Expectation-Maximization (EM) algo-
rithm (Dempster, Laird, and Rubin 1977) and its variants
consist of two iterative estimation procedures: E-step and
M-step. The E-step infers the posterior probability of sam-
ples belonging to the clusters; the M-step updates the model
parameters based on the expectation of the inferred poste-
rior. In addition, the K-means algorithm can be seen as a
deterministic version of EM for Gaussian mixtures mod-
els (Bishop 2006; Gomes, Krause, and Perona 2010). The
advantage of generative methods is two-fold: First, the ex-
plicit data distribution is studied in generative models. In
particular, the cluster boundaries (though implicitly studied)
can be nonlinear and adaptively determined by data distri-
bution. Second, generative models provide a principal way
to deal with structured data. However, generative methods
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do not explicitly parameterize the partition boundaries and
maximize their discrimination capability.

Discriminative clustering approaches perform cluster-
ing in a more explicit way that directly seek for bound-
aries among the clusters. Among them, spectral cluster-
ing e.g. normalized cuts (Shi and Malik 1997) uses eigen-
decomposition of affinity to partition data into disjoint clus-
ters. Max-margin clustering (MMC) is proposed in (Xu et
al. 2004) inspired by the success of max-margin criterion of
support vector machine (SVM) (Vapnik 2000) in discrimi-
native classification. Relaxed from integer optimization, (Xu
et al. 2004) formulates the problem as a semi-definite pro-
gramming(SDP) problem. (Xu 2005) extends the two-class
MMC to the multi-cluster case and shows its efficiency in
semi-supervised learning for classification.

Solving SDPs is often time-consuming. To make it more
practical and adapt to large scale data, (Zhang, Tsang,
and Kwok 2009) takes alternating optimization techniques
by sequentially solving various support vector regression
problems (iterSVR). (Li et al. 2009) proposes the Label-
Generating MMC (LG-MMC), that maximizes the margin
by label generation, which is formulated as a tighter re-
laxation convex optimization of MMC problem compared
with (Xu et al. 2004). DIFFRAC (Bach and Harchaoui 2007)
obtains a closed form expression on this max margin prob-
lem by choosing a square loss instead of hinge loss, which
is more efficient and adaptive to large scale data. (Gomes,
Krause, and Perona 2010) proposes a probabilistic approach
to discriminative clustering by formulating the problem as a
regularized maximizing mutual information (RIM) between
the empirical distribution and the induced label distribution.
Note that the capability of these max-margin related meth-
ods and RIM to tackle the nonlinear clustering problem –
that is, the partition boundaries among clusters are nonlinear
– depends on the choice of kernels. A single kernel is usu-
ally not sufficient for different datasets. In addition, noisy
data make the partition boundary sensitive to outliers.

We aim to couple generative and discriminative clustering
to model the partition boundaries explicitly as well as make
the method adaptive to data and robust against outliers. This
type of combination has demonstrated high usefulness in
supervised learning problems (Jaakkola and Haussler 1999;
Tu 2007). Feature mapping is one common way, where gen-
erative models provide feature mappings (Perina et al. 2009;



Li, Lee, and Liu 2011; 2012) while discriminative models
explicitly maximize the discrimination in the feature space.
In this regard, generative models together with feature map-
pings take place of implicit kernel selecting in discriminative
methods. However, we find the strategy that learns genera-
tive and discriminative models separately is still not perfect
because feature mappings from generative models can not
be tuned for discriminative boundaries.

In this paper, we investigate the way to build a uni-
fied probabilistic framework for discriminative clustering
via generative feature mapping. The feature mapping is de-
rived from linearizing Bayesian classifiers based on the ob-
servation that sufficient statistics of generative model forms
the natural feature mapping from data space to the feature
space. This hybrid approach releases discriminative meth-
ods from the burden of implicitly selecting kernels given
that our generative feature mapping plays the role of ker-
nels but would be more adaptive and explicit. By embedding
feature mapping into the maximum entropy framework, the
resulting system inherits both the generation and discrimina-
tion power, and makes the problem solvable using standard
techniques. In various experiments to be reported later, our
method exhibits consistent improvements over state-of-the-
arts.

Generative Feature Mapping
We begin with the derivation of generative feature mapping
from the MAP classifier, where its efficiency can be verified
by analyzing the error rate of classifiers with it (Jaakkola and
Haussler 1999; Perina et al. 2009; Li, Lee, and Liu 2011).
Then we construct the clustering framework using the de-
rived feature mapping in the next section.

First we consider the binary classification problem that as-
signs labels y∈{−1,+1} to samples x∈Rd. Let P (x | θ) be
the class-conditional distributions for y= +1. The decision
rule of a MAP/Bayesian classifier is ŷ = sign(P (x | θ)− 1

2 ),
which can be noted as ŷ = sign(L(x)) where sign(a) = +1
for a > 0 and sign(a) = −1 otherwise, and

L(x) , logP (x | θ) + b (1)

where b = − log 1
2 . We consider a general case where the

marginal distribution P (x | θ) is modeled by a hierarchical
generative model. Let P (x,h | θ) be its joint distribution
with random hidden variables h. In this case, it is difficult
to obtain the closed form of P (x | θ) since the integration
is usually intractable. A practical method (Jaakkola, Meila,
and Jebara 1999) is to use a lower bound of logP (x | θ) to
estimate L(x). Here we use the lower bound derived by vari-
ational inference (Neal and Hinton 1998; Jordan et al. 1999),

logP (x | θ) ≥ −KL(Q(h)‖P (x,h)) , F (x, θ) (2)

where Q(h)=
∏
iQ(hi) is the approximate posterior distri-

bution. Then L(x) can be approximated by following prac-
tical discriminant function L̂:

L̂(x) = F (x, θ) + b (3)

It is easy to validate that the residual error of Eq. (2) can
be written as logP (x | θ) − F (x) = KL(Q(h) ‖P (h |x)),

so how tight the lower bound is depends on how well Q(h)
approximates the real posterior P (h |x).

In this paper, we assume that the joint distributions of
adopted generative models belong to exponential family,

P (x,h | θ) = exp{a(θ)TT (x,h) + S(x,h) + d(θ)} (4)

where θ is the vector of parameters; T (x,h) is the vector of
sufficient statistics; a(θ) is a vector-valued function; S(x,h)
and d(θ) are scalar functions. This assumption covers most
generative models. As a part of the generative model, P (h)
is also belong to exponential family.

P (h; θh) = exp{c(θh)TT (h) + S(h) + f(θh)}

It is reasonable to assume, as in (Jordan et al. 1999), that, for
each sample x, the approximate posteriorQ(h; θ̂) shares the
same form as the real posterior, but with different parame-
ters:

Q(h |x, θ′h) = exp{c(θ′h)TT (h) + S(h) + f(θ′h)} (5)

where c(θ′h) and f(θ′h) depend on each sample x. For dif-
ferent samples x, Q(h |x, θ′h) shares the same form but
with corresponding parameters c(θ′h) and f(θ′h). Denoting
Q(h) , Q(h |x, θ′h), it can be verified that

F (x, θ) = EQ(h)[a(θ)TT (x,h) + S(x,h) + d(θ)

−1Tdiag(c(θ′h))T (h)− S(h)− f(θ′h)]

=αTEQ(h)[T̃ (x,h)] + β (6)

where T̃ (x,h),(T (x,h)
T
, S(x,h), (diag(c(θ′h))T (h))T ,

S(h), f(θ′h))T ; constants α , (a(θ)T , 1,−1T ,−1,−1)T ,
β , d(θ). It is worth noting that T̃ (x,h) is independent
with the parameters of the adopted generative models.

Substituting the lower bound Eq. (6) into Eq. (3), we have:

L̂(x) = F (x, θ) + b = α̃TEQ(h)[φ(x,h)]

where φ(x,h) , (T̃ (x,h)T , 1)T and α̃ = (αT , β + b)T .
This is the linear form of MAP classifier, where EQ[φ(x,h)]
is considered to be feature mapping derived from genera-
tive models, where the sufficient statistic of P (x,h; θ) and
P (h; θh) are the most informative entities. For simplicity,
we note this feature mapping as:

Φ(x) = EQ[φ(x,h)] (7)

Compared with (Jaakkola and Haussler 1999; Perina et al.
2009; Li, Lee, and Liu 2011), the form of the derived fea-
ture mapping is simpler, essentially dominated by the suffi-
cient statistics of the adopted generative models. Compared
with (Li, Lee, and Liu 2012), the feature mapping in Eq. (7)
takes a deterministic form (that maps an input sample to be
a real-valued vector) instead of the stochastic one (that maps
an input sample to be a random vector with some distribu-
tion), which further makes the following theoretical justifi-
cation feasible.
Theorem 1. (Comparison with MAP classifiers) With the
feature mapping Φ(x) (Eq. (7)) derived from the probabilis-
tic distribution P (x | θ), the error rate of a linear classifier



R(Φ) is at least as low as that of the practical MAP classi-
fier (Eq. (3)) RL̂:

R(Φ) ≤ Ex,yL
{
−yL̂(x)

}
, RL̂,

where L(a) is a zero-one loss function, outputting 1 if a > 0
and 0 otherwise.

Proof. For the linear classifier w ∈ Rn, the following in-
equality always holds:

min
w

Ex,yL[−y(wTΦ(x))]≤Ex,yL[−y(wTΦ(x))].

Such inequality also holds when w in the right side of in-
equality is taken replace by a certain vector, i.e., the weight
α̃ derived from Eq.(7). Thus we have

R(Φ) = minw Ex,yL{−y(wTΦ(x)])}
≤ Ex,yL{−yα̃TEQ[φ(x,h)]}
= Ex,yL{−y[F (x, θ) + b]}
= Ex,yL{−yL̂(x)},

The theorem suggests that, with this feature mapping, the
linear classifier inherits MAP classifier’s ability in adap-
tively inferring nonlinear partition boundaries. Although the
feature mapping is derived from class-conditional case, it
can be straightforwardly used when the class label is un-
available. In this case, the feature mapping is still Φ(x) =

EQ[φ(x,h)] where φ(x,h) = (T̃ (x,h)T , 1)T , and P (x | θ)
is the distribution of the all data points instead of data points
from a class.

Generative-Discriminative Clustering
As proved in Theorem 1, our feature mapping can map the
nonlinear boundaries to linear ones. In this section, we con-
struct a unified framework for discriminative clustering cou-
pled with generative feature mapping.

We make use of the maximum entropy principle based
classification framework (Jaakkola, Meila, and Jebara
1999), which is written as

min
Q(w,γt)

KL(Q(w, γt)‖P (w, γt))

s.t. EQ[y
twTxt] > EQ[γ

t], ∀ t, (8)

where y = {−1,+1} is the label for two-classes case; γt
is the margin for sample xt. The KL term measures the di-
vergence of the posterior and prior distribution. When we
specify the prior P (w) = N(0, I), minimizing the term en-
courages w to have a short length.

The problem in Eq.(8) takes the general form of maxi-
mum entropy (Jaakkola, Meila, and Jebara 1999) or poste-
rior regularization (Graça, Ganchev, and Taskar 2007). This
well studied problem can be solved via its dual form (Csiszar
1975; Bertsekas 1999) with the general solution:

Q(w, γt) =
1

Z(λ)
P (w, γt) exp

{∑
t

λt[y
twTxt − γt]

}
(9)

where λ = {λ1, · · · , λT } are the non-negative Lagrange
multipliers, one for each constraint, and Z(λ) is the partition
function. λ can be determined by finding the unique maxi-
mum of the concave function J(λ) = − logZ(λ).

The Proposed Approach
We extend the above implementation to multi-class and un-
supervised case. The point is to treat the label as a hidden
random variable following Multinomial distribution, and
constrain the margin of every two classes instead of max-
imizing those margins (Xu 2005). We couple the discrimi-
native principle and the generative models via the derived
feature mapping and express discriminative clustering under
the maximum entropy principle as

min
Q,θ

η
∑

t
KL(Q(ht)‖P (xt,ht; θ)) +

KL(Q(yt, γt,w)‖P (yt, γt,w)) (10)

s.t. EQt

[
K∑
i=1

ytiw
T
i φ

t−(1−ytj)wT
j φ

t−γtj

]
I(ytj 6= 1) ≥ 0 ∀ t, j,

where Q = {Q(ht), Q(γt), Q(yt), Q(w)}t; K is the num-
ber of clusters; P (x,h; θ) is the joint distribution of the
chosen generative model; P (w) = N(0, I) is the prior of
weight; P (γtj) = c exp{−c(d − γtj)} for γtj ≤ d is the prior
of margin; P (y) is the Multinomial prior of cluster label.
The two KL terms are objective functions for generative
model (Eq.(2)) and discrimination power (Eq.(8)) respec-
tively, with a parameter η > 0 tuning their balance.

To simplify the inference and parameter estimation proce-
dures, we simplify the inequality constraints and formulate
them as

EQt

[
K∑
i=1

ytiw
T
i φ

t − (1− ytj)wT
j φ

t − γtj

]
I(ytj 6= 1) ≥ 0, ∀ t, j,

⇔ EQt

[∑
i

ỹtijw
T
i φ

T − γtj

]
I(ytj 6= 1) ≥ 0, ∀ t, j (11)

where ỹtij = yti − (1− yti)I(i = j) measures, in comparison
with class j, the extent of the sample t belonging to class i.
Note that we exclude the case ytj = 1 through I(ytj 6= 1). In
this case, ỹjj = 1 and rest elements of ỹt are 0. Therefore
the excluded inequalities are EQt

[
wT
j φ

T − γtj
]
≥ 0,∀j, t

which simply constrains the ‘margin’ of single class instead
of two classes. We claim that including these cases would
make the model simple without causing degeneration. Thus
the constraints used in following formulation are:

EQt

[∑
i

ỹtijw
T
i φ

T − γtj

]
≥ 0, ∀ t, j (12)

The effectiveness of these simplified constraints will be val-
idated in our experiments.

Inference and Parameter Estimation
Note that the forms in Eqs. (10) and (12) are consistent with
that in Eq. (8). It is easy to derive the solution of Eq. (10)
analogous to Eq. (9). Because the inference procedure in-
volves estimating multiple variables and parameters, we em-
ploy an iteration strategy (Friedman, Hastie, and Tibshirani
2008). Also, since P (w) follows a Gaussian distribution in
our problem, it is possible to integrate over w when calcu-
lating the marginal distribution for other variables.



Solution of Q(ht) Fixing Q(γtj), Q(yt), and λ, we apply
the standard solver of Eq. (9), which yields

Q(ht,w)

∝ P (xt,ht,w) exp

{∑
t,j

λtj
η

[∑
j

E[ỹtij ]w
T
i φ

t − E[γtj ]

]}

∝ P (xt,ht)
∏
i

P (wi) exp

{∑
t,j

λtj
η

[
E[ỹtij ]w

T
i φ

t −
E[γtj ]

K

]}
.

To get Q(ht) =
∫
Q(hT ,w)dw, we consider the integral∫ ∏

i P (wi) exp(·)dw =
∏
i

∫
P (wi) exp(·)dwi, which

can be expanded as∏
i

∫
P (wi) exp

{∑
t,j

λtj
η

[
E[ỹtij ]w

T
i φ

t −
E[γtj ]

K

]}
dwi

=

K∏
i=1

exp

1

2

∑
t,t′

λtjλ
t′
j′

η2
E[ỹtij ]E[ỹ

t′
ij′ ](φ

t)Tφt
′
−
∑
t,j

λtjE[γ
t
j ]

ηK


= exp

1

2

∑
t,t′,j,j′

λtjλ
t′

j′

η2

(∑
i

E[ỹtij ]E[ỹ
t′
ij ]
)
(φt)Tφt

′
−
∑
t,j

λtjE[γ
t
j ]

η

.
This form gives us the posterior distribution

Q(ht) ∝ P (xt,hT ) (13)

· exp

1

2

∑
t,t′,j,j′

λtjλ
t′

j′

η2

(∑
i

E[ỹtij ]E[ỹ
t′
ij ]
)
(φt)Tφt

′
−
∑
t,j

λtjE[γ
t
j ]

η

.
Now EQ(ht)[φ

t] can be easily estimated using samples
drawn from Q(ht).

Solution of Q(γtj) Fixing Q(yt), Q(ht) and λ, we derive

Q(γtj) =

∫
Q(γtj ,w)dw

= P (γtj)

∫
P (w) exp

{
λtj

[∑
i
E[ỹtij ]w

T
i E[φ

t]−γtj
]}
dw

∝ P (γtk) exp
{
−λtjγtj

}
∝ exp

{
−(c− λtj)(d− γtj)

}
.

This yields the expectation with respect to the posterior

EQ(γt
j)

[γtj ] = d− (c− λtj)−1. (14)

Solution ofQ(yt) FixingQ(γt),Q(ht), and λ, we derive

Q(yt) =

∫
Q(yt,w)dw

= P (yt)

∫
P (w) exp

{∑
j

λtj

[∑
i

ỹtijwiE[φ
t]− E[γtj ]

]}
dw

∝ P (yt) exp

1

2

∑
t,t′,j,j′

λtjλ
t′
j′

(∑
i

ỹtij ỹ
t′
ij

)
E[φt]TE[φt

′
]−
∑
t,j

λtjE[γ
t
j ]

.
Since yt takes discrete values, the expectation EQ(yt)[y

t]
can be directly calculated given Q(yt).

Solution of λ Fixing Q(γt,yt,ht), we finally get

Q(w) =
1

Z(λ)
P (w) exp

{∑
t,j

λtj

[∑
i

E[ỹtij ]w
t
iE[φ

t]− E[γtj ]

]}

=
1

Z(λ)

∏
i

P (wi) exp

{∑
t,j

λtj

[
ỹtijwiE[φ

t]−
E[γtj ]

K

]}
.

The non-negative λ can be obtained by maximizing the ob-
jective function Jλ = − logZ(λ) (Jaakkola, Meila, and Je-
bara 1999), written as

Jλ =
∑
j,t

λtjE[γtj ]−
1

2

∑
t,t′,j,j′

λtjλ
t
jE[ỹtj ]E[ỹt

′

j′ ]E[φt]TE[φt
′
].

It refers to a standard quadratic programming problem.

Parameters θ In the objective function Eq. (10), only the
first two KL terms depend on parameters θ. So minimizing
the objective function with respect to θ equals minimizing
KL with respect to θ, subject to no inequality constraint.
The resulting update rules for θ are the same as those for
original generative models.

Balance of Generative and Discriminative Models
The discriminative model determines the form of the pos-
terior Q(yt) here. But, in quantity, the dominated factor of
Q(yt) is the feature mapping EQ(ht)[φ(xt,ht)] and there-
fore,Q(ht) is jointly determined (Eq.(13)) by the generative
and discriminative models. Eq.(13) naturally implements a
mechanism balancing the two different paradigms, and the
balance can be tuned by the parameter η.

Experiments
We conduct comprehensive evaluations on the UCI, MNIST
digit and Multi-PIE face data.

Clustering Accuracy
Clustering accuracy is a commonly adopted measure in as-
sessing clustering methods. We first take a set of data with
label y, then remove the label and run each clustering meth-
ods output with the predicted label ŷ. We adopt the def-
inition of the maximal classification accuracy among all
possible permutation mappings (Wu and Scholkopf 2007;
Chen et al. 2011):

Accuracy =

∑N
i=1 δ(yi, f(ŷi))

N

whereN is the number of samples. f(·) maps each predicted
cluster label to a class label and the optimal matching can
be found by Hungarian algorithm (Wu and Scholkopf 2007;
Chen et al. 2011). δ(·) outputs 1 for yi ≡ f(ŷi) and 0 oth-
erwise. Since the accuracy of clustering approaches some-
times depends on the random initialization, we run all eval-
uated methods for 20 times and report both average accuracy
and standard deviation.



Data #class K-means Spectral ITERSVR LG-MMC DIFFRAC Ours
Sonar 2 53.37± 0.00 50.48± 0.00 55.29± 0.00 70.67± 0.00 55.76± 0.00 55.77± 0.00
Credit 2 57.53± 0.00 66.67± 0.00 62.32± 0.00 54.35± 0.00 56.73± 0.00 72.03± 0.00
SpHeart 2 59.92± 0.00 53.50± 0.00 71.54± 0.00 71.91± 0.00 79.40± 0.00 79.78± 0.00
Cancer 2 85.41± 0.00 86.12± 0.00 83.66± 0.00 89.98± 0.00 89.10± 0.00 90.51± 0.00
Wine 3 80.90± 0.00 72.47± 0.00 - - 66.29± 0.00 92.62± 0.00
Iris 3 85.33± 4.79 90.00± 0.00 - - 74.67± 0.00 89.60± 0.34
Tissue 6 37.74± 0.00 40.56± 0.00 - - 40.57± 0.00 50.00± 0.00

Table 1: Summary of clustering accuracy (%±std) on UCI dataset

Data #class K-means Spectral ITERSVR LG-MMC DIFFRAC Ours
Digits 3-8 2 79.63± 0.55 92.43± 0.00 80.43± 0.00 69.86± 0.00 87.86± 0.00 85.57± 0.32
Digits 1-7 2 96.14± 0.00 96.52± 0.00 94.43± 0.00 95.57± 0.00 96.86± 0.00 97.97± 0.08
Digits 2-7 2 95.28± 0.00 97.57± 0.00 95.29± 0.00 95.86± 0.00 95.43± 0.00 95.11± 0.53
Digits 8-9 2 90.97± 0.09 97.71± 0.00 93.43± 0.00 90.14± 0.00 87.86± 0.00 91.64± 0.71
Digits 3-8-9 3 73.99± 0.03 75.36± 0.16 - - 70.76± 0.00 75.47± 0.02
Digits 1-2-7 3 90.38± 0.02 86.87± 0.19 - - 63.33± 0.00 92.86± 0.08
Digits 1-8-7 3 92.86± 0.00 89.46± 0.64 - - 61.24± 0.00 94.41± 0.06
Digits 3-2-8 3 80.89± 0.09 91.14± 0.00 - - 44.76± 0.00 80.85± 0.36

Table 2: Summary of clustering accuracy (%±std) on MNIST dataset.

Specification of Evaluated Methods

Here we compare the proposed discriminative clustering ap-
proach with state-of-the-art ones, including Spectral Clus-
tering (Ng, Jordan, and Weiss 2001), iterSVR (Zhang,
Tsang, and Kwok 2009), LG-MMC (Li et al. 2009), and
DIFFRAC (Bach and Harchaoui 2007). For Spectral Clus-
tering, we use the implementation released by (Chen et al.
2011) and enable the self-tuning parameters mode. For LG-
MMC and iterSVR, we use the author’s implementations
and follow the strategy in (Li et al. 2009), where the param-
eter C is chosen from {0.1, 0.5, 1.5, 10, 100} and report the
best results over linear and RBF kernels. The bandwidth σ of
RBF kernel is chosen from {0.25, 0.5, 1, 2, 4}√γ where γ is
the average distance from all pairs of instances. Note that,
the implementations of these two methods are for binary
clustering, thus the results on multi-class datasets would be
absent. For DIFFRAC, we use the author’s implementation,
and report the best results over linear and RBF kernels. K-
means is also involved since it is widely used, with compet-
itive performance.

The proposed approach in Eq.(10) requires to specify a
generative model. Here we adopt Gaussian Mixture Model
(GMM), a simple yet effective generative one in all our ex-
periments. We also note that our approach is capable of cou-
pling other generative models and is not restricted to GMM.
Let x be the observed variable and h = (h1, · · · , hM )T

be the hidden variable drawn from Multinomial distribu-
tion, that is P (h) =

∏M
i=1 ai

hi , where hi = {0, 1},∑
i hi = 1; and ai ≥ 0,

∑
i ai = 1. Then the joint dis-

tribution of this model can be expressed as P (x,h; θ) =∏M
i=1N(x;µi,Σi)

hi
∏M
i=1 ai

hi where the model parame-
ter θ = {µi,Σi, ai}Mi=1. µi is the mean value and Σi =
diag(σi1, · · · , σiM ) is the diagonal covariance matrix of the

i-th mixture center. Let a′ = {a′i}i be the parameter of the
approximate posterior of h. Following Eq.(7), feature map-
ping Φ(x) = EQ[φ(x,h)] = EQ[(T̃ (x,h)T , 1)T ] is formed
with,

T̃ (x,h)=vec({hi(xT,diag(xxT ), 1), hilog a′i}Mi=1)

where the posterior Q(h) could be updated according to
Eq.(13), and the update rules of θ again are identical with
those of GMM model. The cluster label can be decided by

ŷt = max
i

EQ(yt)(y
t)

The number of mixture components usually should satisfy
M ≥ K. The parameters of margin prior (Eq.(10) and
Eq.(14)) are set to c = 10, d = 1. The balance parameter
(Eq.(10)) is set to η = 2.

UCI Datasets
UCI datasets (Frank and Asuncion 2010) contain real data
from different areas and are widely used in machine learn-
ing. To evaluate clustering methods, we select 7 popular UCI
datasets where the number of classes varies from 2 to 6, and
the number of samples of each class varies from 14 to 673.

As shown in Table (1), K-means performs well on wine
and Iris. Spectral Clustering and LG-MMC work the best
on Iris and Sonar respectively, while DIFFRAC outperforms
K-means and Spectral Clustering on SpHeart. At the same
time, our method works consistently well on these data and
produces the best results in 5 out of 7 datasets.

MNIST Digits
MNIST (LeCun et al. 1998) is a handwritten digits database
widely used in clustering. It comprises 60000 samples for



Data #class K-means Spectral DIFFRAC Ours
Faces group 1 5 68.49± 8.87 51.11± 1.51 61.71± 0.00 64.05± 3.45
Faces group 2 5 42.30± 3.31 34.71± 0.15 31.14± 0.00 44.37± 3.02
Faces group 3 5 60.26± 8.47 46.09± 0.14 59.14± 0.00 67.57± 4.23
Faces group 4 5 66.71± 6.81 46.23± 1.74 61.71± 0.00 69.18± 3.12
Faces group 5 5 33.03± 4.79 29.14± 0.00 27.71± 0.00 41.00± 2.26
Faces group 6 5 55.49± 6.02 40.43± 4.37 58.00± 0.00 59.11± 3.91
Faces group 7 5 61.20± 4.60 38.97± 0.87 68.86± 0.00 65.43± 2.90
Faces group 8 5 63.49± 8.12 52.97± 0.15 65.71± 0.00 72.46± 3.79
Faces group 9 5 68.86± 5.45 51.11± 0.82 64.29± 0.00 71.40± 4.21
Faces group 10 5 68.54± 4.74 35.71± 2.72 65.14± 0.00 66.51± 2.24
Faces group 11 7 70.67± 6.73 60.14± 0.14 76.73± 0.00 71.22± 4.39
Faces group 12 7 61.43± 4.25 49.96± 2.20 63.27± 0.00 69.53± 3.44
Faces group 13 7 38.43± 5.97 37.76± 0.14 39.59± 0.00 39.71± 3.21
Faces group 14 7 44.49± 4.04 31.34± 0.10 43.88± 0.00 46.13± 3.46
Faces group 15 7 57.63± 4.66 31.84± 0.69 57.96± 0.00 56.40± 2.14
Faces group 16 7 55.22± 3.66 42.22± 1.55 51.02± 0.00 57.06± 1.32
Faces group 17 7 62.16± 4.21 49.59± 3.47 58.98± 0.00 67.32± 3.01
Faces group 18 7 55.30± 5.24 41.78± 2.39 70.20± 0.00 60.02± 3.61
Faces group 19 7 41.57± 4.10 32.92± 0.97 56.12± 0.00 54.64± 2.02
Faces group 20 7 43.47± 2.89 32.76± 0.38 41.84± 0.00 44.07± 1.24

Table 3: Summary of clustering accuracy (%±std) on Multi-PIE face dataset.

digits 0-9, about 6000 samples for each digit. Each sam-
ple is a 28×28 image and here reduced to a 50-dimension
vector using PCA. Similar with (Zhang, Tsang, and Kwok
2009), we randomly select 350 samples for each digit and
form a subset for evaluation. As claimed in (Zhang, Tsang,
and Kwok 2009; Li et al. 2009), Digits 3-8, 1-7, 2-7, 8-9, are
the most challenging pairs. We adopt these pairs and further
construct four triplets, Digits 3-8-9,1-2-7,1-8-7,3-2-8, based
on the above pairs for multi-class clustering. There triplets
would be more challenging than pairs.

Experimental results are summarized in Table 2. Spectral
clustering and our method exhibit satisfying performance.
It is noteworthy that the performance of IterSVR and LG-
MMC is close to that of DIFFRAC. Particularly, K-means
works fairly well on triplets 1-2-7, 3-2-8, 1-8-7, and 3-8-9.

Face Clustering
The face clustering experiment is conducted on Multi-PIE
dataset (Gross et al. 2010). We use the data of session #1
which contains 249 individuals. Each individual has 70 sam-
ples from 10 light conditions and 7 poses. After face images
are normalized to 100× 100, LBP features (Ahonen, Ha-
did, and Pietikäinen 2004) are extracted and then reduced to
50-dimension vectors using PCA. The clustering task here
seeks to group face images from the identical individual
into the same cluster (Xu et al. 2004; Xu 2005). From 249
individuals, we randomly select 10 groups, each contain-
ing 5-individuals and other 10 groups, each containing 7-
individuals. For each individual, all 70 samples are used.

The accuracy results of face clustering are reported in Ta-
ble (3). DIFFRAC outperforms others on 5 out of 20 groups,
while our method shows the best performance on 13 out of
20 groups. As to Spectral Clustering, its performance seems

not as satisfying as that in UCI and digit datasets. K-means
works well on several datasets especially in group 2 and
group 7 but with a much larger variance. The variances(or
standard deviations) of K-means, Spectral Clustering, and
our method in this experiment are much larger than those in
UCI and Digits experiments. This might be due to the fact
that face data here are taken from different poses and light
conditions, where very large intra-class variances exist.

Results Analysis
To conclude this section, K-means performs well on aver-
age but with relatively large variances. The evaluated dis-
criminative clustering methods, such as Spectral cluster-
ing, iterSVR, LG-MMC and DIFFRAC, accomplish reason-
able accuracy with smaller variances. However, their perfor-
mance seems not consistently advantageous over others on
various datasets. Our method works averagely more stable
and is fairly adaptive to different data and problems, with the
support of the generative models and discriminative princi-
ples. Our experiments also indicate that the way to combine
generative and discriminative models does inherit the profit
of the two paradigms by considering data distribution via
generative models and maximizing the discrimination capa-
bility via the discriminative principle.

Conclusion
We have proposed a probabilistic framework for discrim-
inative clustering embedding generative feature mapping.
The generative feature mapping is derived from linearizing
Bayesian classifiers that efficiently map nonlinear bound-
aries to linear ones. This enables us to seek for nonlinear
boundaries among clusters in the data space via computing
linear boundaries in the feature space. The complete frame-



work is formulated under the principle of maximum entropy,
which can be understood as the KL-projection onto the con-
strained posterior space and can be efficiently solved using
standard techniques. In experiments, coupled with the Gaus-
sian Mixture Model, our approach not only exhibits highly
competitive performance on average but also shows consis-
tent advantages across datasets.
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