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Abstract

We propose a new model, together with advanced opti-
mization, to separate a thick scattering media layer from
a single natural image. It is able to handle challenging
underwater scenes and images taken in fog and sandstorm,
both of which are with significantly reduced visibility. Our
method addresses the critical issue – this is, originally un-
noticeable impurities will be greatly magnified after remov-
ing the scattering media layer – with transmission-aware
optimization. We introduce non-local structure-aware reg-
ularization to properly constrain transmission estimation
without introducing the halo artifacts. A selective-neighbor
criterion is presented to convert the unconventional con-
strained optimization problem to an unconstrained one
where the latter can be efficiently solved.

1. Background

Dense scattering medium is one of the main causes
of inconsistency in visual perception and human under-
standing [2]. Scattering layers often make the originally
clear landmarks look distant, which explains why people
think they move slower than normally when driving in
fog and swimming underwater. The reduced visibility
inevitably handicaps visual recognition and understanding.
In contrast to its practical importance, previous approaches
[16, 17, 3, 4, 18, 11] assume thin scattering layers caused,
for example, by haze.

When tackling the more challenging dense-scattering-
medium problem where visibility is significantly reduced,
we notice inherent issues. On the one hand, the underlying
structure is contaminated, making its restoration require
spatially neighboring information. On the other hand, ubiq-
uitous camera noise, image artifacts, and physically existing
impurities (such as dust) in the media could be greatly
amplified and influential in visual restoration. If they are
not dealt with properly, erroneous estimation of structures
shrouded by dense scattering media could be resulted in. It
is noteworthy that intuitively applying denoising [1, 8] or
performing regularized inversion [14] is not competent to

(a)

(b)

(c)
Figure 1. Noise in the input haze image (a) is remarkably ampli-
fied with state-of-the-art dehazing method [4], yielding visually
unpleasing result (b). Our result shown in (c) contains clearer
image structure.

solve this issue, due to the spatially varying properties.

We tackle the vital structure preserving and noise sup-
pressing issues by proposing several novel strategies to
properly enhance pictures shot in fog, haze, dust, and even
underwater scenes. Both degraded structure recovery and
significant noise suppression lead to the use of neighboring
information, which motivates the use of non-local total
variation strategy to regularize transmission and latent im-
age estimation. It enables us to deal with noisy input,
in the meantime preserving sharp discontinuities. The
direct involvement of non-local terms, however, results ina
complicated constrained optimization problem and is com-
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putationally very expensive. We propose a novelselective-
neighborcriterion to convert it to an unconstrained continu-
ous optimization procedure. By incorporating transmission-
aware noise-control terms into the regularized energy func-
tion, the proposed method becomes very effective in dense
scattering layer removal.

1.1. Related Work

Central to visual restoration from scattering media is
transmission estimation. On the hardware side, polarizers
were used during picture taking, which help estimate part
of the medium transitivity [16] or augments visibility for
underwater vision [15]. 3D scene models were used in [6]
to guide transmission estimation.

Single-image software solutions are also popular [10, 9,
17, 3, 4]. They are generally based on priors on trans-
mission and scene radiance. Tan [17] developed a method
mainly based on the observation that images with enhanced
visibility have higher contrast and airlight depends on the
distance to the viewer. Fattal [3] regarded transmission
and surface shading (reflection) as locally uncorrelated ina
hazed image. Independent Component Analysis (ICA) was
employed to estimate scene albedo and medium transitivity.
A dark-channel prior was proposed in [4] to initialize
transmission estimation followed by refinement through
soft matting.

These methods produce the results by simply inverting
transmission blending with the underlying structures, which
can generally magnify image noise and visual artifacts. One
example is shown in Fig. 1, where image shown in (b),
the result by direct inversion, becomes noisy after haze-
removal. This is the major problem when dealing with
dense media, where ubiquitous floating impurities can be
notably intensified.

Regularized inversion was employed in [14]. Local reg-
ularization however by nature cannot handle strong image
noise and compression artifacts. Taral et al. [18] used depth
dependent median filtering. In dense media, the sizes are
hard to determine accurately. The point-wise transmission
constraint was recently introduced in [11], accompanying
with an Expectation-Maximization (EM) solver. It does
not tackle the noise boosting problem. Joshi et al. [5]
explicitly pointed out the noise issue and developed a
method to remove artifacts by averagingmultiple images
with weights. In comparison, our method is a robust single-
image approach taking into account the noise suppression,
transmission estimation, and computation efficiency. A uni-
fied framework is developed for enhancing pictures taken in
challenging underwater environment or in meteorological
phenomena.
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Figure 2. Noise magnification. 1D signalsI andI + n in (a) are
with very small difference due to noise (x-axis: position; y-axis:
value). However for the part with small transmissiont (left side of
(a)-(b)), the finally computedL in (b) is notably dissimilar to the
ground truthL̃ owing to noise amplification.

1.2. The Problem

The model of surface radiance blended with the
backscattered light can be simply expressed as

I(x) = t(x)L(x) + (1− t(x))B, (1)

whereL(x) denotes the surface radiance that we would
have sensed without the scattering medium.x indexes the
2D coordinates.B is the backscattered light color vector
determined by ambient illumination, also referred to as
airlight or veiling light. t(x) is the transmission component
which relates to the scene depthd(x) through e−ηd(x),
η is the attenuation coefficient, determined by scattering
property of the medium.

Scattering layer removal requires an estimation of the
transmission mapt(x), the light vectorB, and then more
importantly, the restoration the latent imageL(x). Based
on the estimation oft andB, the latent imageL can be
recovered as

L(x) = B −
B − I(x)

t(x)
. (2)

The simple inversion works well for general thin scattering
media [16, 3, 4]. It however invokes problem for pixels
with small transmissiont, which happens when the object
is distant or the medium is dense.

We now analyze how the estimation errors∆t would
affect the result. In Eq. (2),∆t causes the error ofL. We
estimate its magnitude as

|δL| =
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It indicates that the magnitude|δL| does not increase
quickly with ∆t. In fact, the larger∆t is, the slower it
expands.10% error in t would result in a similar amount
of error inL.
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In comparison, considering the inevitable camera noise,
even though it is visually unnoticeable within the fog
layer, its saliency could be notably raised after dehazing.
Denoting the input image noise asn, the resulted noise
magnitude|δn| between the finally estimatedL using Eq.
(2) and the ground truth̃L without noise is calculated as

|δn| =

∣

∣

∣
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B − (I + n)

t
)− (B −

B − I

t
)
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∣
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(4)

For pixels with the correspondingt smaller than0.1, which
happens when the object is distant or the medium is dense,
the resulted noise will be magnified by more than10
times. It reveals the fact that effective and precise noise
suppression is imperative in these cases and should be
regarded as similarly important as transmission estimation.
Methods of [3, 4] truncatet to prevent small values, which
could leave part of the haze unremoved in dense media.

Fig. 2 illustrates the noise magnification problem for
smallt. In the plot (a), small perturbation inI results large
deviation inL when transmissiont is mall, as shown in (b).

2. Approach

Our method consists of two major steps to respectively
update the transmission layer and the latent image. We
automatically detect the brightest pixels, or allow users to
draw scribbles containing a few sample pixels, to determine
the backscattering lightB.

2.1. Modeling Transmission t

By defining the logarithmic transmission,D(x) =
ln t(x) = −ηd(x), we alter our goal to computeD instead.
t can be afterwards calculated usingt(x) = eD(x). The
reason to defineD is that depthd is exactly negative ofD
for each pixel. Most natural scene priors, such as the piece-
wise spatial smoothness, can be imposed on depth (and
correspondinglyD), but not on the transmission variables
that form different distributions.

Re-arranging terms in Eq. (1) and taking the logarithm
yield

D(x) = ln(|B − I(x)|)− ln(|B − L(x)|). (5)

By further denotinḡi(x) = ln(|B − I(x)|), and l̄(x) =
ln(|B − L(x)|), we express the log likelihood (without
normalization) as

ED(D) =
∑

x

∑

c

|D(x)− (̄ic(x)− l̄c(x))|2. (6)

To model the smoothness property of the scene depth and
at the same time preserve discontinuities, we resort to a
non-local total variation regularizer. Our model considers

neighboring pixels as well as non-neighboring ones in local
windows, which is expressed as

ES(D) =
∑

x

∑

y∈W (x)

wd(x, y)|D(x)−D(y)|, (7)

whereW (x) is a patch centered atx. wd(x, y) plays the
key role in shaping the local support. It is weak whenD(x)
andD(y) are found not necessarily similar, and is a large
weight otherwise.

One may definewd in Eq. (7) with respect to the
structures in the input observationI. That is, if two pixels
x and y have similar values inI, wd(x, y) needs to be
large to encourage strong spatial smoothness. However, we
found that this strategy could adversely affect regulariza-
tion. For instance, a pixel within a small texture pattern
makes weightswd(x, y) small for most ofys in W (x),
which correspondingly results in the lack of strong support
in regularization. Worse, small texture-like structures in
these cases generally do not correspond to actual depth
discontinuity. So, instead of simply basingwd on I, we
propose a guided weight

wd(x, y) = g(|S(x)− S(y)|, σs), (8)

whereg(x, σ) = exp(−x2/2σ2). S is a structure map
produced using the texture-structure decomposition method
[19] to suppress the excessive details. One example is
shown in Fig. 3. The structure map is useful to remove ex-
cessive details while still preserving large-scale structures.

Constrained Model There is a lower-bound for pixel-
wise transmission, based on the non-negativity of scene
luminance. It always holds that

t(x) =
B − I(x)

B − L(x)
≥ 1−

I(x)

B
. (9)

The inequality is derived fromL(x) ≥ 0. Therefore, the
lower-bound for transmission given that all color compo-
nents ofB are not zero can be derived as

t(x) ≥ max

(

1− min
c∈{r,g,b}

Ic(x)

Bc
, 0

)

. (10)

This property can inhibit the adverse flattening effect in
computingt, which accordingly prevents the halo artifacts
in the latent image estimation.

Now, given the terms defined in Eqs. (6) and (7) and
the constraint introduced in Eq. (10), the final objective
function to estimateD (and correspondinglyt) is written as

min ED + λES

s. t. D(x) ≥ v(x), (11)
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(a) Input (b) Structure mapS (c) t estimated (d)t estimated (e) Result witht
withoutS with S in (d)

Figure 3. Structure layer extraction and its importance in transmission estimation compared to definingwd on the input imageI .

N1 N2 N3 N4 N5

D1

Lower Bound

(a)

N1 N2 N3 N4 N5

D2

Lower Bound

(b)
Figure 4. Illustration of neighbor selection. (a) Taking all
neighbors N1-N5 in regularization yields result D1, violating the
transmission lower-bound condition. (b) Our method explicitly
removes N1 and N2 in regularization because they are smallerthan
the lower bound, and obtain the result D2, naturally satisfying the
condition.

where

v(x) = ln

(

max

(

1−min
c

Ic(x)

Bc
, ǫ

))

. (12)

ǫ is a small positive number to avoidln 0. v forms a map the
same size asD, and encodes the lower-bound ofD for all
pixels. One example is shown in Fig. 5(b), which specifies
the smallest possible value ofD for each pixel.

Eq. (11) is a constrained non-linear optimization prob-
lem and is difficult to solve due to the non-local regular-
izer and the pixel-wise constraint. Directly applying the
feasible descent direction algorithm results in very slow
convergence and obtains only a local minimum even with
a small-size image input.

Problem Conversion We present a new method to con-
vert the constrained optimization problem to an uncon-
strained one. The benefit is twofold. This conversion sim-
plifies the objective function by embedding the inequality
in the new form. Also, it enables transmission estimation
by a very simple and efficient procedure. As a result, the
originally difficult optimization can be nicely achieved in
our method.

Our scheme is to iteratively update transmission for
each pixel by computationally trackable relaxation. In
each pass, we adaptively select suitable neighboring pixels
y in Eq. (7) for regularization, based on their current
transmission values, so that Eq. (10) can be explicitly
satisfied. Intuitively, if one pixely in Eq. (7) possibly
pulls x out of the required range in Eq. (10), we discard
it in regularization. In detail, we consider the following two
cases.

1) Whenminc I
c(x)/Bc < 1, desirably,D(x) needs

to satisfy the conditionD(x) ≥ v(x), wherev(x) is the
“lower bound” defined in Eq. (12) and illustrated in Fig. 4.
In regularization, we deliberately setwd(x, y) = 0 for all
ys, whose current transmission estimatesD(y) < v(x). So
theseys will not be used to regularizex, as shown in Fig.
4(b). This naturally guarantees the lower-bound condition.

2) Whenminc I
c(x)/Bc ≥ 1, the conditionD(x) ≥

ln(ǫ) can always be satisfied because the current estimates
D(y) for all ys also satisfy the lower-bound condition, i.e.,
D(y) ≥ ln(ǫ). Hence, Eq. (7) can be applied directly with
all ys.

In accordance to the analysis, we modify the weight
definition in Eq. (7) slightly to

w̃d(x, y) =

{

g(|S(x)− S(y)|, σs), if D(y) ≥ v(x);
0, otherwise.

(13)

If D(y) is smaller than the possible lower bound ofx, to
avoid draggingx out of the allowed range during estima-
tion, we break the connection betweenx andy by setting
w̃n(x, y) = 0.

Normalization in each local window after removing the
zeroed-out values yields

wn(x, y) =
w̃d(x, y)

∑

y∈W (x)w̃d(x,y)

(14)

The modified regularization term is therefore

ES̃(D) =
∑

x

∑

y∈W (x)

w̃d(x, y)|D(x)−D(y)|. (15)

Now without loss of generality, by incorporating the
selective-neighborscheme in regularization, we prevent
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(a) Input (b) DepthD0 (c) DepthD1 (d) DepthD2 (e) Result
Figure 5. Depth maps (i.e., negativeD maps) estimated in two iterations. Depth mapD

0 is initialized with the lower bound measurev.

problematic estimation that violates the transmission lower-
bound condition. The final objective function is written as

E(D) = ED(D) + λES̃(D), (16)

without explicit hard constraints.
Eq. (16) is not only simple in its representation, but also

bears the advantage to find an extremely simple method for
optimization based on computationally tractable relaxation
to iteratively updateD for pixels respectively.

More details about the numerical solver is included in
Appendix A.1. Fig. 5 shows how the−D map is improved
in iterations.

2.2. Inferring Latent Image L

To computeL given thet estimate, we do not directly
solve Eq. (2) since this scheme suffers from noise magni-
fication. Instead, we apply optimization to infer a visually
plausibleL image.

For robustness, we define our data energy function as

Ed(L) =
∑

x

t(x)2|L(x)− L0(x)|
2, . (17)

L0 is the result intuitively computed using Eq. (2). The data
energy term in Eq. (17) suggests that the optimized latent
image should be similar toL0 weighted byt(x)2. Whent is
large – that is, the object is not distant – we should trustL0

because noise is not magnified too much according to our
analysis.

We also provide a transmission-aware regularization
term, which employs smoothness priors to further suppress
noise. It is expressed as another non-local total variation:

Es(L) =
∑

x

∑

y∈W (x)

m̄(x, y)|L(x)− L(y)|. (18)

The weight map̄m is normalized fromm that contains two
respective constraints to suppress noise.m is defined as

m(x, y) =g(|t(x)− t(y)|, σt)

· g(‖P (L0, x)− P (L0, y)‖2, σL), (19)

whereg(·, σ) is a Gaussian tradeoff with standard deviation
σ. The first term calculates the transmission similarity

between pixels, based on the fact that noise levels are
magnified with respect to transmission. The second term
actually measures the patch matching fidelity.P (L0, x)
denotes a7 × 7 window inL0 centered atx. ‖P (L0, x) −
P (L0, y)‖2 uses a windowed L2-norm error measure to
robustly estimate the color difference between pixels. Com-
bining the two weight terms, if two pixels are in the same
depth layer and have akin neighbors, their similarity is high.
This patch-based error measure is much more robust than
pixel-wise operations.

The final energy for estimatingL is therefore given by

E(L) = Ed(L) + λLEs(L). (20)

Our solver is similar to that forD estimation. Two or three
iterations are enough to produce the results. See Appendix
A.2 for more details.

3. Experimental Results

We convert the input imageI to a linear color space
before applying our method and perform the inverse gamma
correction to coarsely curtail the effect of nonlinear color
transform from the camera.

3.1. Quantitative evaluation

We quantitatively evaluate our method using images with
ground truth depth [13]. We collect 10 images with various
color and texture patterns and generate fog contaminated
inputs using Eq. (1). Peak Signal to Noise Ratios (PSNRs)
are calculated based on our restored images and the ground
truth ones. Gaussian noise withσ = 10 is added to the
inputs to simulate noise and dust in the air. We test the
performance of our method under different fog thickness
settings by varyingη in t = e−ηd(x). Sample images and
the statistics are shown in Fig. 6, where (a) is an input
with η = 1; (b) and (c) are our restored transmission
and image; (d) shows the average PSNR under different
densities of the scattering medium. We compare our method
with the one using dark channel prior [4]. To better
evaluate the importance of non-local regularizer, we also
compare our method with regularized haze removal [14]
by replacing non-local regularizer with a local one in the
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Figure 6. Quantitative evaluation. (a) is the foggy input. (b) and (c) show our restored transmission and latent images.(d) shows the
statistics for different approaches for three levels of fogthickness.

(a) (b)

(c) (d)

(e) (f)
Figure 7. Fog image. (a) Input image. (c) and (e) ImageL and mapt of [4], which does not consider dense scattering media. (d) and (f)
Our results. (b) Close-ups. Our results are on the right.

image restoration step. It can be seen that our method has a
clear superiority in preserving structures with the increases
of fog thickness, validating the effectiveness of our modelin
handling dense scattering layers. In what follows, we show
more results on natural images.

3.2. Comparison on transmission map

Our non-local total variation smoothness term, working
in concert with our point-wise data fidelity, is able to
preserve thin structures comparing to the patch-based prior
define in [4]. One example is shown in Fig. 7. (e) is

6



(a) Input (b) Result of [4]

(c) Denoise (BM3D withσ = 5) before dehazing [4] (d) Result by denoising (b) (BM3D withσ = 15)

(e) Result of [14] (f) Our result

(g) (h) (i) (j) (k) (l)
Figure 8. A dehazing example. Given input (a), our method produces the result (f). It not only removes intensive noise, also retains a great
amount of details as well. Close-ups are shown in the last row.

the transmission map of [4], where inaccurate structure
boundaries exist. They induce halos to the result shown
in (c). Our method, shown in (f), preserves the structural
edges. The corresponding restored image is in (d). Close-
ups are shown in (b). We note that fine structures are very
common in natural scenes. Their restoration is thus vital in
scattering media removal.

3.3. Comparison on noise reduction

We exhibit our advantageous ability in handling signifi-
cant noise. We compare our result with a previous regular-
ized restoration approach [14], as well as strategies applying
denoising before and after layer removal. One example
is shown in Fig. 8. In the result of [4] (b) unnoticeable

7



(a) Input (b) Result of [4]

(c) Our result (d) Denoising performed before (left)
and after (right) dehazing

Figure 9. Heavy fog lifting. For the challenging input image(a), the state-of-the-art method produces the result shownin (b). Intuitively
applying denoising before and after dehazing also cannot produce reasonable results, as shown in (d). Our result in (c) contains most
structural details with noise being suppressed.

(a) Input (b) Our result (c) Input (d) Our result

Figure 10. Underwater and dust storm picture restoration.

noise in the original image is greatly enhanced. The result
shown in (c), which performs denoising before dehazing,
still contains much noise even with spatial regularization.
Denoising after dehazing, on the other hand, can hardly
remove intensive noise out of the latent image structure. As
shown in (d), even state-of-the-art BM3D denoising method
destroys many latent image details, while considerable
noise in the sky is left over. (e) is the result of [14] with
a local TV regularizer. (f) is our final result. Noise is

suppressed while underlaying structures are well preserved.
Close-ups in the last row are from (a)-(f) respectively.
Another example on noise reduction is shown in Fig. 9,
demonstrating the effectiveness of our transmission-aware
regularization.

3.4. General scattering medium removal

Our restoration method makes no assumption on the
scattering media, making it applicable to fog, dust storm,

8



and underwater pictures. The example in Fig. 10(a) consists
of a dense sand layer and is restored by our method in (b).
For underwater environment, however, applying our method
to all image channels results inaccurate color, since the red
channel is generally much weaker than the other two due to
the absorbtion by water. We choose to apply our method
to the intensity channel only. An example is shown in
Fig. 10(c)-(d). A large amount of structural information
is recovered and contrast is greatly enhanced.

4. Concluding Remarks

We have presented a new model for scattering media
layer removal from a single image. We introduced the
transmission lower-bound condition and provided a very ef-
fective optimization framework incorporating several novel
terms to solve the challenging noise amplification and depth
estimation problems. Our method applied to images taken
in fog, sandstorm, and underwater scenes.

A. Numerical Solver

In this section we describe our the numerical solvers
(referring to Sections 2.1 and 2.2 in the paper) to compute
the depthD and the latent clear imageL respectively.

A.1. Depth D Solver

DepthD is computed by minimizing Eq. (16) in the
paper, whereE(D) is written as

E(D) =
∑

x

∑

c

|D(x)− (̄ic(x)− l̄c(x))|2+

λ
∑

x

∑

y∈W (x)

w̃d(x, y)|D(x)−D(y)|, (21)

wherēic(x) andl̄c(x) are the observed and latent images in
the logarithm domain.̃wd(x, y) is a structure-aware penalty
function defined in the paper. Directly minimizing Eq. (21)
is difficult as the non-local smoothness term [12] involves
a number of neighboring pixels, making gradient descent
work poorly. We instead employ an iterative relaxation
scheme to computeD.

Initially, we setD(0) = v as the start point. In theτ -th
iteration, we minimize the energy function

E(D(τ)) =
∑

x

∑

c

|D(τ)(x)− (̄ic(x)− l̄c(x))|2+

λ
∑

x

∑

y∈W (x)

w̃d(x, y)|D
(τ)(x)−D(τ−1)(y)|,

(22)

where the superscript(τ) indexes iterations. In solving
D(τ)(x) for eachx, relaxation keeps other values fixed,
which results in an efficient estimation process. By further

Algorithm 1 Relaxation Procedure to ComputeD.

1: input: initial depthD(0) = v; the maximum number of
iterationsn

2: τ = 1.
3: Apply median filter toD(τ−1) according to Eq. (23),

and getD(τ).
4: τ = τ + 1. If τ ≤ n, go to Step 2.
5: output: D

denoting by{D(τ−1)
h }W−1

h=0 the sortedD(τ−1) within the
windowW (x) in an ascending order and bywh the corre-
spondingly sorted weight̃wd(x, y), D(τ)(x) can be written
as

E(D(τ)(x)) =
∑

c

|D(τ)(x)− (̄ic(x)− l̄c(x))|2+

λ

W−1
∑

h=0

wh|D
(τ)(x)−D

(τ−1)
h |. (23)

Eq. (23) has two essential features that enable efficient
computation. One is that the data term is strictly convex
and differentiable, with its derivative2 ·

∑

c(D
(τ)(x) −

(̄ic(x) − l̄c(x))) a bijective function. The other property is
that weightwh is non-negative for allhs by definition. With
these properties and also according to the proof in [7], Eq.
(23) can be efficiently optimized by computing the median
value in

M =
{

D
(τ−1)
0 , . . . , D

(τ−1)
W−1 , r0, . . . , rW

}

, (24)

where

rh =

∑

c(̄i
c(x)− l̄c(x))

3
+

λ

6



−

h−1
∑

j=0

wj +

W−1
∑

j=h

wj



 ,

(25)
for h = 0, . . . ,W .

Based on this relaxation scheme, we present the
overview of our algorithm in Algorithm 1. Typically,λ is
set to 15. Two or three passes, i.e.,n ≤ 3, to update all
pixels, are enough to yield good results in our experiments.

A.2. Optimizing Latent Image L

The energy function for solvingL (in Section 2.2 in the
paper) is similar to Eq. (21). We decompose it into channels
c ∈ {r, g, b}, and write it as

E(Lc) =
∑

x

t(x)2|Lc(x)− Lc
0(x)|

2+

λL

∑

x

∑

y∈W (x)

m̄(x, y)|Lc(x)− Lc(y)|. (26)
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Algorithm 2 Relaxation Procedure to ComputeL.

1: input: initial imageL(0) = L0; the maximum number
of iterationn

2: τ = 1.
3: Apply median filter toL(τ−1) according to Eq. (27),

which yieldsL(τ).
4: τ = τ + 1. If τ ≤ n, go to Step 2.
5: output: L

By applying similar relaxation, we get the following pixel-
wise energy minimization problem

E(Lc(τ)(x)) = t(x)2|Lc(τ)(x)− Lc
0(x)|

2+

λL

W−1
∑

h=0

mh|L
c(τ)(x)− Lc

h
(τ−1)|. (27)

It can also be solved by finding the median value in
{

Lc
0
(τ−1), . . . , Lc

W−1
(τ−1), z0, . . . , zW

}

, (28)

where

zh = Lc
0(x) +

λL

2t(x)2



−
h−1
∑

j=0

mj +
W−1
∑

j=h

mj



 , (29)

for h = 0, . . . ,W .
Our algorithm is shown in Algorithm 2.λL usually

varies from 0.001 to 0.02 to prevent over-smoothing. It-
eration numbern = 1 ∼ 3 is enough.
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