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Abstract

Effective reduction of noise is generally difficult because

of the possible tight coupling of noise with high-frequency

image structure. The problem is worse under low-light con-

ditions. In this paper, we propose slightly optically defocus-

ing the image in order to loosen this noise-image structure

coupling. This allows us to more effectively reduce noise

and subsequently restore the small defocus. We analytically

show how this is possible, and demonstrate our technique

on a number of examples that include low-light images.

1. Introduction

Despite advances in camera technology, sensor noise re-

mains a major problem in photography, especially when

pictures are taken under low-light conditions or with a high

ISO setting. The characterization of noise is non-trivial

(see, for example, [27, 21]), as noise is a function of expo-

sure level, photon flux, and the electron-photon conversion

process. In addition, noise contains high-frequency com-

ponents that are quantitatively and at times visually indis-

tinguishable from the inherent fine structures in natural im-

ages. Denoising these images using current techniques ei-

ther excessively smoothes out image detail or retains noise

with the detail.

In this paper, we present a novel denoising technique that

uses optical defocus to reduce signal-noise coupling from a

single input image. This is based on the observation that

image details are typically hard to separate from noise; we

simplify the denoising algorithm by reducing these image

components optically. The ISO setting of the camera can

then be set high in our system to allow better shutter speed.

Contributions This paper has three main contributions.

First, our imaging system uses optical defocus to hide image

details, which simplifies noise reduction. Extensive experi-

ments indicate that blurry images hide the majority of image

details but does not necessarily lose all of them. Many of

the image structures can be recovered. Moreover, optical

defocus and noise production are two separate processes in

image formation, which allows us to manipulate the former

in order to simplify the reduction of the latter.

(a) (b) (c)

Figure 1. Effective denoising through slight optical defocus. (a)

input low-light image, (b) brightness enhanced input (with noise

enhanced as well), (c) restored image after noise and blur removal.

Second, we describe a new and effective method for sin-

gle image noise estimation that is based on the presence of

optical defocus. We analyze the relationship between de-

focus and noise, and propose a novel metric for defining

the noise likelihood. We use variable splitting optimization

(based on local closed-form solutions in iterations) to re-

move noise from the observed image. One result is shown

in Figure 1; here, the underexposed image was captured in a

dark room using a Nikon DSLR camera which was slightly

defocused. If we merely enhance brightness, noise is am-

plified as well.

Third, we analyze the performance of the proposed algo-

rithm in choosing a key parameter and quantitatively study

the information gain with our new imaging technique. We

show that the information loss introduced by defocus is sev-

eral orders of magnitude smaller than the gain by remov-

ing noise. In addition, we are able to restore a reasonable

amount of underlying image structure.

Assumptions We assume that the foreground objects are

in focus after removing the defocus. Our goal is not to

deblur the entire scene (especially when it has significant

depth variation). Our method estimates the defocus blur

PSF through a calibration process by measuring the fore-

ground depth using cameras.
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Plane of Focus

Figure 2. Optical defocusing. We adjust the lens to focus on a

plane slightly in front of the object of interest.

2. Related Work

Representative techniques for denoising fall into multi-

image and single-image approaches.

Two-image/video denoising The temporal information in

video has been extensively used for denoising. For example,

Chen and Tang [4] use a Spatio-Temporal Markov Random

Field (MRF) approach to denoise video sequences using the

motion information. The technique of Bennett and McMil-

lan [2] enhances videos by locally deciding between spatial

or temporal filtering.

There are also techniques for enhancing photos by pro-

cessing two images taken with different camera settings,

for example, with flash/no-flash (e.g., [25, 9]) or long/short

exposure (e.g., [16, 37]). In [25], the noise in the non-

flashed image is removed by bilateral filtering, where the

detail is obtained from the flashed image. Eisemann and

Durand [9] extracted coarse structure layer from the non-

flash image and enhanced it by adding detail and color in-

formation from the flashed image. Jia et al. [16] captured

blur/under-exposed image pairs and then transferred color

from the blur image to the under-exposed counterpart. Yuan

et al. [37] used a blur/noisy image pair; the output is con-

structed using deconvolution with an estimated PSF.

Methods that use multiple input images typically require

pixels to be aligned over time. This is difficult to achieve in

the presence of significant noise in a dynamic scene.

Single image denoising The most direct solution is to use

a filter. Popular methods involve bilateral filtering [33] and

anisotropic diffusion, either implemented in the form of par-

tial differential equations (PDEs) [35, 34, 12] or derived

from optimization using variational methods [30].

Single image denoising is very challenging because the

problem is generally under-constrained. It requires mak-

ing additional assumptions on the image or noise. For ex-

ample, Roth and Black [29] modified the simple smooth-

ness prior and introduced a high-order learning-based image

prior model, which is potentially capable of better model-

ing natural scenes. Liu et al. [21] constructed a Gaussian

conditional random field to infer the clean image with the

piecewise smoothness assumption. [28] is recent work us-

ing total variation regularization. An interactive denoising

method was proposed in [5].

Wavelet-based methods make use of the observation that

multiscale subbands satisfy a highly kurtotic marginal dis-

tribution (e.g., [11]). The method of Portilla et al. [26] mod-

els the wavelet coefficients at adjacent positions and scales

as the product of two independent random variables and

uses the Gaussian scale mixture model for denoising. An-

other common assumption is the existence of regular texture

or repeated local appearance. In [34], “geometry tensors”

were proposed for noise removal and texture preservation.

Non-local spatial domain denoising methods [3, 1, 7] rely

on repeated local appearance to restore the latent image.

All these single image methods work best for denoising

images with little or no fine texture. Unfortunately, it is very

difficult to separate camera sensor noise from subtle image

structures. In this paper, we partially resolve this ambiguity

by taking into account both noise and defocus blur.

Single image deblurring Another type of image artifacts

caused by low lighting is motion blur. Single image de-

blurring methods [10, 15, 31] are capable of restoring im-

ages to a certain extent. These methods involve kernel esti-

mation and deconvolution. Non-blind deconvolution meth-

ods [22, 20, 38] assume that noise is relatively small, so that

general smoothness constraints are adequate. With the ex-

ception of [18], single image deblurring techniques usually

do not work well if noise is significant.

3. Noise Analysis

An image with noise can be expressed as B
′ = x + n,

where B
′ is the observed noisy image, x is the latent image,

and n is noise. n is typically assumed to be signal indepen-

dent, i.e., it is caused by dark current, amplifier noise and

the quantizer in the camera circuity [14, 21]. However, re-

cent camera noise estimation work found that this simple

formula does not sufficiently model the mechanism of an

image sensor where photon flux and the uncertainty of the

electron-photon conversion process produce signal (or lu-

minance) dependent noise. The total noise variance σ2 is

dependent on the gray-level variance κ2
gray . It can be writ-

ten as σ2 = κ2

gray +Cη2 [27], where η2 is the photon noise

variance and C is a weight. The existence of fine structures

in x (typical in real images) compounds the difficulty in ac-

curately estimating n from B
′.

Our solution is to slightly defocus the image. During
image capture, optical defocus is relatively independent of
pixel noise generation [13, 36]. Thus, the image formation
process can be expressed as

B = (x⊗ f) + n, (1)

where B and x are the observed and latent images. f and n

are respectively defocus PSF and noise. (x ⊗ f) makes the

image structure less correlated with noise.

Note that equations similar to (1) were proposed in

non-blind deconvolution [22, 31] as the image degradation
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Figure 3. Reducing signal-noise coupling. (a) Input clean signal,

(b) Gaussian filtered version of (a), (c) noise, (d) log-magnitudes

of the unfiltered signals with (red curve) and without (blue curve)

noise in the frequency domain. Both of them contain high fre-

quency components. (e) Log-magnitudes of the filtered signals

with (red curve) and without (blue curve) noise in the frequency

domain. Their distributions are different.

model. However, these deconvolution methods cannot han-

dle large noise. We have experimented with these methods

to directly deblur our captured images with large regulariza-

tion weights to overcome noise, and found either excessive

removal of texture details or amplification of noise.

Figure 3 shows (in 1D) how blur loosens the signal-noise

coupling. The red and blue curves in Figure 3(d) are plots

of the log-magnitudes of the clean and noise-corrupted sig-

nals respectively in the frequency domain. They share many

high frequency components that are not easily separable.

However, if the signal is pre-filtered, as shown in (b), adding

noise to it significantly changes its frequency distribution

(shown in Figure 3(e)). The distribution difference implies

a way to remove substantial noise from signal.

If noise can primarily be removed, we then digitally re-

move the slight optical blur through deconvolution. The re-

cent deblurring work (e.g., [38, 19]) and our analysis (Sec-

tion 5) show that deconvolving an image can recovered

many details even though they are barely noticeable.

4. Noise Estimation with Focal Blur

In this section, we describe our novel method to estimate

noise from a single defocused image (after which we can

get the latent image by subtraction).

4.1. Noise Estimation with a Convolution Model

Following Eq. (1), a simple method to remove defocus
blur while assuming small noise contamination would be to
solve

x̄ = F−1
B̄ =

F T

F T F
B̄, (2)

where F is the matrix form of the PSF f . ·̄ defines the

vectorization operator which stacks all values in a raster-

scanning order. Here x̄ and B̄ are respectively the vector-

ized x and B. For the rest of this paper, F−1 and 1

F
are

used interchangeably to denote the inverse of F .
When used as is, Eq. (2) is very sensitive to noise be-

cause of magnification by the denominator FT F . To deal
with this problem, a common practice is to increase the di-
agonal values of FT F to stabilize the matrix inverse. Thus
Eq. (2) is modified to

x̄(λ) =
F T

F T F + λI
B̄, (3)

where I is the identity matrix with the same dimension of

B, and parameter λ controls the regularization strength.
With this modification, we now analyze how the esti-

mated x(λ) using Eq. (3) deviates from the ground truth la-
tent image x

∗. This theoretical analysis will provide impor-
tant insights on how image noise influences the defocused
image formation, which in turn leads to a novel formula for
accurate noise estimation. We write

x̄(λ) − x̄
∗ =

F T

F T F + λI
B̄ −

F T

F T F
(B̄− n̄)

=
F T

n̄

F T F + λI
+

−λIx̄∗

F T F + λI
. (4)

x̄
∗ can be expressed as F−1(B̄−n̄) based on Eq. (1). Here

the commutativity of multiplication in the denominator is

not a concern because both FT F + λI and FT F are sym-

metric. Eq. (4) contains two terms. The first denotes the

influence of image noise, while the second represents the

effect of structure smoothing. Note that the ground truth x
∗

is unknown. So introducing Eq. (4) is only to establish a

metric to properly measure the influence of noise.
Our proposed metric is the partial derivative of x with

respect to λ:

∂x̄

∂λ
= lim

δλ→0

1

δλ
(x̄(λ + δλ) − x̄

∗) − (x̄(λ) − x̄
∗)

= lim
δλ→0

1

δλ

((

F T
n̄

F T F + λ + δλ
+

−(λ + δλ)x̄∗

F T F + λ + δλ

)

−

(

F T
n̄

F T F + λ
+

−λx̄
∗

F T F + λ

))

= −h(F, λ)n̄ − h(F, λ)F x̄
∗, (5)

where

h(F, λ) =
F T

(F T F + λ)T (F T F + λ)
. (6)

We further compute the squared L2 norm of ∂x

∂λ
as

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

2

2

= ‖h(F, λ)n̄ + h(F, λ)F x̄
∗‖

2

2
. (7)

We now explain that
∥

∥

∂x

∂λ

∥

∥

2

2
is a new noise likelihood be-

cause it monotonically increases with noise variance.
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Figure 4. An example to justify the noise metric
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. (a) A

blurred image with significant noise. (b)
∥

∥

∂x

∂λ

∥

∥

2

2
w.r.t. noise vari-

ance σ2.

New Noise Metric Analysis We can show (details in
[32]) that

∥

∥

∥

∥

∂x

∂λ

∥

∥

∥

∥

2

2

≈ σ2 ‖H(f , λ)‖2

2
+ C, (8)

with σ2 being the noise variance and C being a constant.

Eq. (8) has an important property:
∥

∥

∂x

∂λ

∥

∥

2

2
increases mono-

tonically with σ2. This makes it a good metric for evaluat-

ing how noisy a blurred image is. We empirically validate

this property by generating 10 blurred images. They are

added with different degrees of noise. One of them is shown

in Figure 4(a) with noise standard deviations σ = 20%. We

then compute
∥

∥

∂x

∂λ

∥

∥

2

2
for each image and plot their values in

Figure 4(b). As expected,
∥

∥

∂x

∂λ

∥

∥

2

2
monotonically increases

with σ2.
Thus, the function

∥

∥

∂x

∂λ

∥

∥

2

2
is a reasonable measure of

how well noise is removed and of how the remaining im-
age satisfies the convolution model defined with the kernel
f . Let n

∗ and n
′ denote the ground truth noise and noise

(somehow) estimated from B, respectively. The remaining
noise n in image is thus

n̄ = n̄
∗ − n̄

′ = B̄ − F x̄
∗ − n̄

′. (9)

Substituting n into Eq. (7) and denoting E0(n
′) =

∥

∥

∂x

∂λ

∥

∥

2

2

yield

E0(n
′) =

∥

∥h(F, λ)(B̄ − n̄′)
∥

∥

2

2
. (10)

E0(n
′) indicates how good the noise estimate n

′ is by eval-

uating the strength of the remaining noise n
∗ − n

′ in the

image B. x
∗ cancels out in Eq. (10) and thus does not need

to be known beforehand. With the monotone property of
∥

∥

∂x

∂λ

∥

∥

2

2
with respect to the level of noise, we use E0(n

′) as

the likelihood in defining a new objective function.

Energy function Likelihood (10) is combined with a sim-
ple regularization term ‖n′‖ to avoid the trivial solution
n
′ = B. The total energy E1(n

′) is written as

E1(n
′) = E0(n

′) + w‖n′‖

=
∥

∥h(F, λ)(B̄− n̄′)
∥

∥

2

2
+ w‖n′‖, (11)

(a) (b) (c) (d)
Figure 5. Denoising with slight defocus blur. (a) Input image with

a high level of noise and slight out-of-focus. (b) The denoising

result after convergence in 8 iterations. (c) Ground truth blurred

image. (d) Our final deconvolution result.

where weight w = 1.0 in our experiments. To optimize

E1(n
′), we use the variable splitting optimization tech-

nique. The idea is to split the variable n
′ into a pair of

variables (n′ and n
s), used respectively in the two terms in

(11), such that minimizing the sum of the two terms under

the constraint that n′ = n
s is essentially equivalent to solv-

ing the original problem.

Optimization Eq. (11) is thus reformulated as

E(n′, ns) =
∥

∥h(F, λ)(B̄− n̄s)
∥

∥

2

2

+w‖n′‖ + κ‖n′ − n
s‖2

2, (12)

where the weight κ determines how similar n
′ and n

s are.

An iterative approach is used to update n
s and n

′ separately.

[Updating n
′]

By removing all terms independent of n
′, we get

E′(n′) = w‖n′‖ + κ‖n̄′ − n̄s‖2
2. (13)

Its closed-form solution is

n
′
i =







max
(

2κn
s

i
−w

2κ
, 0
)

; n
s
i ≥ 0

min
(

2κn
s

i
+w

2κ
, 0
)

; n
s

i < 0
(14)

where i indexes the pixels.

[Updating n
s]

Similarly, removing all terms independent of n
s yields

Es(ns) =
∥

∥h(F, λ)(B̄− n̄s)
∥

∥

2

2
+ κ‖n̄′ − n̄s‖2

2.

It can be rewritten in the frequency domain as

Es(ns) = ‖H(f , λ) ◦ (F(B) − F(ns))‖2

2
+κ‖F(n′)−F(ns)‖2

2.
(15)

A closed-form solution also exists by computing the partial
derivative with respect to n

s and setting it to zero:

n
s = F−1

(

κF(n′) + H(f , λ) ◦ H(f , λ) ◦ F(B)

κ + H(f , λ) ◦ H(f , λ)

)

. (16)

Updating n
′ and n

s iterates until convergence (no more

than 15 iterations generally). Because each step has a

closed-form solution, the computation is much more effi-

cient compared to conventional gradient descent. The en-

ergy is guaranteed to monotonically decrease.



Figure 5 shows one example. The input image shown in

(a) is defocus blurred with significant noise (σ = 20%). The

final denoising result is shown in Figures 5(b). Its PSNR is

as high as 33.83 (or MSE 5.19) compared to the ground

truth blurred image shown in Figure 5(c). The denoised im-

age will be further deconvolved to remove the slight blur

(details in Sections 5 and 6). The final result shown in Fig-

ure 5(d) contains many details. It is notable that the original

PSNR is only 14 before denoising.

4.2. Determining λ

The value of λ in the above formulas has a significant
impact in denoising. We can show that the following condi-
tion must be enforced:

‖H(f , λ)‖2
2 > w‖∆n‖1/‖∆n‖2

2, (17)

where ∆n = n
∗ − n

′, n∗ is the ground truth noise, and n
′

is the noise estimate. The details of derivation can be found

in [32]. (17) indicates that a large value of λ adversely af-

fects convergence and the maximum value of λ depends on

w and the noise estimation error. We can show that the up-

per bound of λ is approximately w/‖n∗‖2 (see the deriva-

tion in [32]). In our experiments, we assign λ a fixed small

value 10−4 to inhibit its negative influence.

5. Deconvolution and Error Analysis

After noise removal, we deconvolve the image. In this

section, we show that this process introduces error that is

insignificant compared to image noise.

We analyze a naı̈ve algorithm characterized by Eq. (3),

which simply inverts the blur process through blur matrix

division. Its error estimate can generally be regarded as the

upper bound of errors produced by various deconvolution

methods because almost all deconvolution methods, such

as [38, 20, 31, 19], use more advanced techniques to regu-

larize deblurring, and are thus capable of producing much

higher quality results. We show, compared to the scale of

image noise, even the upper bound of the deconvolution er-

ror is sufficiently small.

The deconvolution error is the difference between the re-
covered and ground truth latent images. For Eq. (3), the
error can be expressed as

x̄(λ) − x̄∗ =
F T

n̄

F T F + λI
+

−λIx̄∗

F T F + λI
, (18)

where n is mostly quantization error after noise removal.
Note that λ is used to stabilize deconvolution, and is usually
with very small value (10−4 in our experiments). We can
therefore ignore the second term in Eq. (18), yielding

‖x̄(λ) − x̄∗‖2
2 ≈

∥

∥

∥

∥

F T
n̄

F T F + λI

∥

∥

∥

∥

2

2

.

Expressing it in the frequency domain gives

∥

∥

∥

∥

F T
n̄

F T F + λI

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

F(f) ◦ F(n)

F(f)F(f) + λ

∥

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

F(f)

F(f)F(f) + λ

∥

∥

∥

∥

∥

2

2

σ2,

where σ is the standard deviation of noise n. This shows
that n is magnified by a factor

J =

√

√

√

√

∥

∥

∥

∥

∥

F(f)

F(f)F(f) + λ

∥

∥

∥

∥

∥

2

2

. (19)

We now estimate the magnitude of J using different out-

of-focus PSFs. In our experiments, the value varies from

17.7 to 28.6. The quantization error n is generally mod-

eled as a uniform distribution in the range [−0.5, 0.5), with

a standard deviation of 0.29. With these quantities, it can

be estimated that the reconstruction PSNR of the naı̈ve de-

convolution algorithm easily exceeds 33. The MSE ranges

from 24 to 66. These quantities indicate that the error in-

troduced even using this simple deconvolution algorithm is

very small if the convolution model is satisfied. In compar-

ison, the input image has significant noise where the PSNR

is 14 and the MSE is 2.2×103. It is two orders of magnitude

larger than the deconvolution error. In our experiments, the

error introduced only from deconvolution is small enough

compared to the contribution of defocus blur to intensive

noise removal, as illustrated in Figure 5.

6. Implementation Details

Empirically, we first perform photometric calibration [8]

and then produce the defocus blur using the camera man-

ual focusing function to a slightly near point instead of the

ideal object plane, as depicted in Figure 2. To estimate the

PSF, we first record the manual focusing distance u1 from

the camera lens and the ideal object distance u2 using the

rangefinder attached to the camera. We then apply the cali-

bration technique of [20] on u1 and u2 to estimate the PSF.

We constrain the size of the defocus blur kernel to be at

most 11×11 (pixels). We initialize the noise layer using the

method of Dabov et al. [6]. Because this method does not

take the blur model into consideration, the noise estimate

contains errors. We then apply our method, as described

in Section 4, to optimize the noise map. After denoising,

we remove the slight defocus blur introduced optically us-

ing the executable for non-blind deconvolution [31]. The

denoising and deblurring steps alternate. Typically at most

10 iterations are enough to produce a visually compelling

result. The running time is about 3 minutes for an image

with 800 × 600 pixels on a desktop PC with a Core2Duo

2.8GHz CPU.

7. Quantitative Evaluation

The first example shown in Figure 6 is to quantitatively

evaluate the effectiveness of our method given significant



(a) Input with blur (c) Ground truth of (a) (d) Our result of (a)

(b) Input without blur (e) Bilateral filtering using (b) (f) “NeatImage” using (b)

(g) (h)

(i) (j)

Figure 6. Quantitative evaluation. The input image (shown in (a)) is blurred with the PSF shown on bottom left. Significant CCD noise

(σ = 20%) is also added. (b) Another input noisy image that is not focal blurred. (c) The ground truth sharp image without noise. (d)

Our restoration result of (a), with PSNR 28.8. (e)-(f) Results of bilateral filtering [9] and “NeatImage” [24] with PSNRs 21.3 and 22.5,

respectively. (g)-(j) Close-ups of (c)-(f).

PSNR σ = 10% σ = 15%

File name bilat PDE wavelet Ours bilat PDE wavelet Ours

100080.jpg 26.22 32.44 32.65 34.55 28.51 31.15 31.24 34.39

103041.jpg 25.35 29.90 29.91 31.53 26.66 28.00 28.39 31.07

108041.jpg 24.51 28.20 28.29 29.38 24.99 25.90 26.99 28.52

134008.jpg 25.30 29.33 29.73 31.25 26.26 27.55 28.27 30.89

161062.jpg 25.73 29.58 30.36 31.31 27.04 28.11 28.86 30.85

166081.jpg 24.57 27.79 28.24 29.53 25.74 26.34 27.03 29.31

176039.jpg 25.69 28.67 29.06 27.70 25.36 26.46 27.22 29.23

209070.jpg 24.74 29.06 29.64 30.24 25.69 27.32 27.99 29.77

22090.jpg 25.59 29.46 29.97 31.06 26.22 27.51 28.30 30.25

246053.jpg 26.77 32.45 31.53 34.34 27.85 30.07 29.67 33.19

247085.jpg 24.76 28.51 28.92 29.99 25.98 26.80 27.50 29.69

353013.jpg 25.29 28.35 27.29 30.12 24.90 25.97 25.77 29.13

mean 25.43 29.33 29.54 31.06 26.22 27.43 28.05 30.42

10% 15%
20

25

30

35

Noise Level

M
e
a
n

 P
S

N
R

PSNR

bilat PDE wavelet Ours

Table 1. Left: PSNRs of a set of the processed images for comparison. Red-title images are shown in [32]. Our PSNRs are calculated

based on the final deconvolution results. Right: histogram of the mean PSNRs.

(a)

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 7. Image example. (a) The captured out-of-focus under-exposed image. (b) Another captured in-focus noisy image with the same

exposure setting. (c) The intensity enhanced input (4X brightness). It contains significant noise. (d) Our final result from (c) after denoising

and removing the blurriness. (e) The denoising result of the Gaussian mixture wavelet method [26] with (b) as input. (f) The denoising

result of Rodriguez and Wohlberg [28] from an intensity enhanced version of (b). (g)-(j) Close-ups of (c)-(f).



PSNR σ = 10%
File name 0th 1st Ours

100075.jpg 28.14 28.96 30.34

105053.jpg 30.63 31.95 33.27

106025.jpg 32.03 34.22 35.47

15088.jpg 27.71 28.76 30.80

22013.jpg 27.14 28.84 29.06

314016.jpg 26.81 27.83 29.89

mean 28.34 29.95 30.75

Table 2. Part of the PSNRs compared to those in Table 2 of [21].

Columns “0th” and “1st” show the statistics obtained using orders

zero and one models (described in [21]), respectively.

(a) (b)

(c) (d)

Figure 8. Coke example. (a) Image captured under low light. (b)

Image after intensity enhancement, with noise proportionally am-

plified. (c) Result of noise removal. (d) Final result after removing

defocus blur.

image noise. The input image (shown in Figure 6(a)) is

blurred (PSF shown on bottom left) followed by adding

large CCD noise [21] (σ = 20%). Our image restoration

result is shown in Figure 6(d). In (e)-(f), we show the re-

sults from two other denoising algorithms with an unblurred

noisy image (shown in Figure 6(b)) as input.

We then collect the statistics of our denoising method

using a set of image examples. In this experiment, 16 im-

ages containing different types of objects and scenes were

selected from the Berkeley segmentation data set [23]. We

blurred these input images by convolving them with small

defocus kernels estimated by Joshi et al. [17]. This process

was followed by adding white Gaussian noise, respectively

at 10% and 15% levels. For final result comparison, sev-

eral other denoising methods were also tested on the images

with the same amount of noise (but without defocus blur).

Details and visual comparisons are given in [32]. Part of the

PSNRs are listed in Table 1.

In addition, we compare our method with that of Liu et

al. [21]. The PSNRs extracted from [21] are used for com-

parison. Again, our method uses blurred images with ad-

ditive 10% AWGN while the noisy images in [21] do not

undergo the blurring process. Part of the PSNRs are pre-

(a) (b)

Figure 9. Image reconstructed with miscalibrated kernels. The in-

put image is in Fig. 7(c) with kernel size of 7×7. (a) Using 11×11
Gaussian kernel (close-up view). (b) Using 3× 3 Gaussian kernel

(close-up view).

sented in Table 2.

8. More Experimental Results

We now show two more examples where the input im-

ages are captured under low light and with the camera

slightly defocused. Several other examples are included in

our technical report [32]. In Figure 7, we show an image

captured by a Nikon D200 camera. It is severely underex-

posed with significant noise. For comparison, we also took

a corresponding in-focus image (shown in Figure 7(b)) and

enhance it as input to other denoising methods. The results

are shown in (d)-(f), with close-ups in (h)-(j). It is notice-

able that our result retains the most details. Figure 8 shows

another example where the input image was taken under the

similar condition.

9. Concluding Remarks

We have presented a new denoising technique based on

optical defocus to reduce the signal-noise coupling. We

showed that the gains in noise reduction more than offset

the degradation in signal due to the defocus. We also in-

troduced a new metric for evaluating how noisy a blurred

image is. Experimental results were shown to validate our

technique and analysis.

Limitations Our technique is less effective in cases where

depth cannot be quantified (e.g., in macro photography).

Our method tends to work best when both foreground and

background are in the field of view. Our technique also as-

sumes a certain style of photography where the nearest ob-

ject is originally in focus (which is common); it removes

only a small amount of defocus. Finally, we assume the

blur PSF is spatially-invariant. From our experiments, our

technique is tolerant towards moderate changes in the PSF

(distortions of less than 4 pixels). Fig. 9, we show examples

of what happens when the kernel is significantly misesti-

mated. A larger-than-correct kernel makes the result over-

sharpened but with less details (a) while a smaller-than-

correct kernel makes the result look noisier (b). We will

address these issues as part of our future work.
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[14] S. Ioué and K. R. Spring. Video Microscopy, 2nd ed. Plenum

Press, 1997.

[15] J. Jia. Single image motion deblurring using transparency.

In CVPR, 2007.

[16] J. Jia, J. Sun, C.-K. Tang, and H.-Y. Shum. Bayesian correc-

tion of image intensity with spatial consideration. In ECCV,

pages 342–354, 2004.

[17] N. Joshi, R. Szeliski, and D. J. Kriegman. PSF estimation

using sharp edge prediction. In CVPR, 2008.

[18] N. Joshi, C. L. Zitnick, R. Szeliski, and D. J. Kriegman. Im-

age deblurring and denoising using color priors. In CVPR,

2009.

[19] D. Krishnan and R. Fergus. Fast image deconvolution using

hyper-laplacian priors. In NIPS, 2009.

[20] A. Levin, R. Fergus, F. Durand, and B. Freeman. Image

and depth from a conventional camera with a coded aperture.

ACM Trans. Graph., 2007.

[21] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T.

Freeman. Automatic estimation and removal of noise from a

single image. TPAMI, 30(2):299–314, 2008.

[22] L. Lucy. Bayesian-based iterative method of image restora-

tion. Journal of Astronomy, 79:745–754, 1974.

[23] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecolog-

ical statistics. Technical report, University of California,

Berkeley, 2001.

[24] NeatImage c©. http://www.neatimage.com/. 2009.

[25] G. Petschnigg, R. Szeliski, M. Agrawala, M. F. Cohen,

H. Hoppe, and K. Toyama. Digital photography with flash

and no-flash image pairs. ACM Trans. Graph., 23(3):664–

672, 2004.

[26] J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simon-

celli. Image denoising using scale mixtures of gaussians in

the wavelet domain. TIP, 12(11):133–1351, 2003.

[27] N. Ratner and Y. Y. Schechner. Illumination multiplexing

within fundamental limits. In CVPR, 2007.

[28] P. Rodriguez and B. Wohlberg. Efficient minimization

method for a generalized total variation functional. TIP,

18(2):322–332, 2009.

[29] S. Roth and M. J. Black. Fields of experts: A framework for

learning image priors. In CVPR, pages 860–867, 2005.

[30] H. Scharr, M. J. Black, and H. W. Haussecker. Image statis-

tics and anisotropic diffusion. In ICCV, pages 840–847,

2003.

[31] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Trans. Graph., 27(3),

2008.

[32] Q. Shan, J. Jia, S. B. Kang, and Z. Qin. Using

optical defocus to denoise. Technical report, 2010.

www.cs.washington.edu/homes/shanqi/work/denoise10/.

[33] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In ICCV, pages 839–846, 1998.
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