
Deep Edge-Aware Filters

Li Xu XULI@SENSETIME.COM

Jimmy SJ. Ren RENSIJIE@SENSETIME.COM

Qiong Yan YANQIONG@SENSETIME.COM

SenseTime Group Limited

Renjie Liao RJLIAO@CSE.CUHK.EDU.HK

Jiaya Jia LEOJIA@CSE.CUHK.EDU.HK

The Chinese University of Hong Kong

Abstract

There are many edge-aware filters varying in
their construction forms and filtering properties.
It seems impossible to uniformly represent and
accelerate them in a single framework. We made
the attempt to learn a big and important family
of edge-aware operators from data. Our method
is based on a deep convolutional neural network
with a gradient domain training procedure, which
gives rise to a powerful tool to approximate var-
ious filters without knowing the original models
and implementation details. The only difference
among these operators in our system becomes
merely the learned parameters. Our system en-
ables fast approximation for complex edge-aware
filters and achieves up to 200x acceleration, re-
gardless of their originally very different imple-
mentation. Fast speed can also be achieved when
creating new effects using spatially varying filter
or filter combination, bearing out the effective-
ness of our deep edge-aware filters.

1. Introduction

Filters are fundamental building blocks for various com-
puter vision tasks, among which edge-aware filters are of
special importance due to their faithfulness to image struc-
tures. Different filtering approaches were proposed in liter-
ature to tackle texture removal (Subr et al., 2009; Xu et al.,
2012), salient edge enhancement (Osher & Rudin, 1990),
image flattening and cartoon denoise (Xu et al., 2011). It
is, however, still an open question to bridge, not to mention
to unify, these essentially different filtering approaches. It

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

results in the common practice of implementing and ac-
celerating these techniques regarding individual properties
using distinct algorithms.

For instance, the well-trodden bilateral filter
(Tomasi & Manduchi, 1998) has many accelerated versions
(Durand & Dorsey, 2002; Paris & Durand, 2006; Weiss,
2006; Chen et al., 2007; Porikli, 2008; Yang et al., 2009;
2010). Images with multiple channels can be smoothed
using the acceleration of high dimensional Gaussian filters
(Adams et al., 2009; 2010; Gastal & Oliveira, 2011; 2012).
Steps in these acceleration techniques cannot be used
interchangeably. Further, new methods emerging every
year (Farbman et al., 2008; Xu et al., 2011; Paris et al.,
2011; Xu et al., 2012) greatly expand solution diversity.
Efforts have also been put into understanding the nature,
where connection between global and local approaches
was established in (Elad, 2002; Durand & Dorsey, 2002;
He et al., 2013). These techniques can be referred to as
edge-aware filters.

In this paper, we initiate an attempt to implement various
edge-aware filters within a single framework. The differ-
ence to previous approaches is that we construct a unified
neural network architecture to approximate many types of
filtering effects. It thus enlists tremendous practical bene-
fit in implementation and acceleration where one segment
of codes in programming can impact many filtering ap-
proaches.

We note that deep neural network (Krizhevsky et al.,
2012) was applied to denoise (Burger et al., 2012;
Xie et al., 2012; Agostinelli et al., 2013), rain drop removal
(Eigen et al., 2013), super resolution (Dong et al., 2014),
and image deconvolution (Xu et al., 2014) before. But it
is still not trivial to model and include many general fil-
ters, which typically involve very large spatial support for
creating necessary smoothing effect.

Deep Edge-Aware Filters

0 50
0.5

0.6

0.7

0 50
-0.05

0
0.05

(a) (d)(c)(b)

Figure 1. Learning operations using color- and gradient-domain
constraints. (a) Input image. (b) L0 smoothing effect to learn.
(c) Learning result on image color. (d) Learning result on image
gradient.

Our work contributes in multiple ways. First, we build a
practical and complete system to learn and reproduce vari-
ous filtering effects. The tractability is in part due to the
proposed gradient-domain learning procedure with opti-
mized image reconstruction, which captures the common-
ness of edge-aware operators by enforcing constraints on
edges. Second, the resulting deep edge-aware filters are
with linear complexity and run at a constant time even for
filters that are completely different in their original imple-
mentation. Finally, various new effects can be easily cre-
ated by combining or adapting original filters in our unified
framework. On graphics processing unit (GPU), our im-
plementation achieves up to 200x acceleration for several
filters and yields state-of-the-art speed for most filters.

2. Our Approach

The input color image and edge-aware filtering operators
are denoted as I and L(I) respectively. L(I) could be
a nonlinear process and operates locally or globally. Our
goal is to approximate L(I) by a unified feed-forward pro-
cess FW(I) for any input image I . Here F denotes the
network architecture and W represents network parame-
ters, controlling the behavior of the feed-forward process.
One simple strategy is to train the network by directly min-
imizing the summed color square errors

‖FW(I)− L(I)‖2. (1)

It however does not satisfyingly approximate a few edge-
preserving operators. One example is shown in Fig. 1,
where (a) is the input image and (b) is the smoothing effect
we approximate, generated by L0 smoothing (Xu et al.,
2011). (c) shows the result with the network trained us-
ing the color square difference. The training details will be
provided later. Obviously, (c) is more blurred than neces-
sary and contains unwanted details. The 1D scan lines of
the region are shown in the second row with their gradients
in the third row.

2.1. Gradient Constraints and Objective

According to above finding, our method does not simply
adopt Eq. (1), but rather modifies it to the gradient domain
process, as illustrated in the pipeline of Fig. (2). We show
our result using the exactly the same training and testing
process in Fig. 1(d) for comparison. It is visually much
better than (c) in terms of reproducing the L0 smoothing
effect.

Quantitatively, the mean square error (MSE) of (c) along
the scanline in gradient domain is 2.6E−5 while that of (d)
is 0.6E − 5, complying with human perception to perceive
contrast better than absolution color values. This gradient
domain MSE is also sensitive to the change on sharp edges,
which is a favored property in edge-preserving filtering.

With this understanding, we define our objective function
on ∇I instead of I . Because most edge-aware operators
can produce the same effect even if we rotate the input im-
age by 90 degrees, we train the network only on one direc-
tion of gradients and let the horizontal and vertical gradi-
ents share the weights. We denote by ∂I the gradients.

Now, givenD training image pairs (I0,L(I0)), (I1,L(I1)),· · · , (ID−1,L(ID−1)) exhibiting the ideal filtering effect,
our objective is to train a neural network minimizing

1

D

∑
i

{
1

2
‖FW(∂Ii)− ∂L(Ii)‖2 + λΦ(FW(∂Ii))

}
, (2)

where {∂Ii, ∂L(Ii)} is one training example pair in gra-
dient domain. We also incorporate a sparse regularization
term Φ(FW(∂Ii)) to enforce sparsity on gradients. Note
that this is not for constraining the neural network weight
W, but rather to enforce one common property in edge-
preserving smoothing to suppress color change and favor
strong edges. Empirically, this term helps generate de-
cent weights initialization in the neural network. Φ(z) =
(z2+ ε2)1/2 in Eq. (2) is the Charbonnier penalty function,
approaching |z| but differentiable at 0. λ is the regulariza-
tion weight.

2.2. Network FW(·)
The choice of convolutional neural network (CNN) archi-
tecture is based on the fact that weights sharing allows
for relatively larger interactive range than other fully con-
nected structures such as Denoising Autoencoders (DAE).
More importantly, several existing acceleration approaches
for edge-aware filters map each 2D image into a higher
dimensional space for acceleration by Gaussian convolu-
tions. It partly explains how edge-preserving operators can
be accomplished by the convolutional structure.

Deep Edge-Aware Filters

Reconstruction

256 channel map-

Convolutional Neural NetworkInput

256 channel map-

Figure 2. A unified learning pipeline for various edge-aware filtering techniques. The main building blocks are a 3-layer deep convolu-
tional neural network and an optimized image reconstruction process.

Algorithm 1 Deep Edge-Aware Filters

1: input: one million image patches {Ii}, learning rate η,
regularization parameter λ;

2: initialization: {Wn} ← N(0, 1), {bn} ← 0;
3: for each image patch do
4: apply L() to patch Ii;
5: compute gradients ∂xIi, ∂yIi, ∂xL(Ii), ∂yL(Ii); ro-

tate ∂xIi, ∂xL(Ii) to generate a sample;
6: update the CNN weights using backward-

propagation (Eq. (6));
7: learning rate decay η ← 0.001/(1 + i · 1E − 7) ;
8: end for
9: output: optimized weights W.

Our convolutional network structure can be expressed as

FW(∂I) = Wn ∗ Fn−1(∂I) + bn, n = 3 (3)

Fn(∂I) = σ(Wn ∗ Fn−1(∂I) + bn), n = 1, 2 (4)

F0(∂I) = ∂I. (5)

n in this expression indexes layers, it ranges from 0 (bottom
layer) to 3 (top layer), as our CNN contains two hidden lay-
ers for convolution generation. For the bottom layer with
index 0, it is simply the input gradient.

In each intermediate layer, Eq. (4) denotes a convolution
process for the nodes in the network regarding its neigh-
bors. Wn here is the convolution kernel written in vector
form and Fn−1(∂I) denotes all nodes in this layer. By
convention, ∗ is used to indicate the network connected in
a convolution way, or typically referred to as weights shar-
ing. bn is the bias or perturbation vector. Nonlinearity is
allowed with the hyperbolic tangent σ(·). The top layer
with FW(I) in Eq. (3) generates the final output from the
network, i.e., the filtering result.

The network is illustrated in Fig. 2. The input image ∂I

is of size p × q × 3 for 3 color channels. p × q is the spa-
tial resolution. In our constructed network, the first hidden
layer F1(∂I) is generated by applying k different kernels
in 3 dimensions to the zero layer input after convolution
and nonlinear truncation, resulting in a k-channel image
map in F1(∂I). This process, explained intuitively, maps
each local color patch into a k-dimensional pixel vector by
convolution. The operations are to get pixels within each
local patch, re-map the detail, and put them into a vector.

The second hidden layer F 2(∂I) is generated on output
F1(∂I) from the first layer by applying an 1×1×k filter, as
shown in Fig. 2. This process produces weighted average
of the processed pixel vector and performs the “smoothing”
operation. The final result is obtained by further applying
three 3D filters to F 2(∂I) for restoring the sharp edges,
corresponding to “edge-aware” processing. We do not add
the hyperbolic tangent to the final layer.

When working in gradient domain, the fixed kernel size
is sufficient when approximating filters with large spatial
influence, leading to a constant time implementation. In
our implementation, the convolution kernel is of the size
16× 16 and k = 256.

3. Training

We use the stochastic gradient descent (SGD) to minimize
the energy function Eq. (2). We randomly collect one mil-
lion 64×64 patches from high resolution natural image data
obtained from flickr and their smoothed versions as training
samples. They contain enough structure variation for suc-
cessful CNN training in multiple layers. More patches do
not improve the results much in our extensive experiments.

Given one patch Ii, we first generate {L(Ii)}. Gradient
operators are then applied to get ∂Ii and ∂L(Ii). In each

Deep Edge-Aware Filters

L0 W
1 L0 W

3 BLF W1 BLF W3

F1(∂I) F1(∂I) F2(∂I) F2(∂I)

Figure 3. Visualization of intermediate results from hidden layers.
The top row shows the selected weights trained for L0 smoothing
and bilateral filter. The bottom row shows the hidden layer acti-
vation for the bilateral filter.

step of training for one sample, the update process is

Wt+1 = Wt − η
{
(FW(∂Ii)− ∂L(Ii))T+

λ(F2
W(∂Ii) + ε2)−1/2FT

W(∂Ii)
} ∂FW(∂Ii)

∂W
,(6)

where η is the learning rate, setting to 0.001 with decay
during the training process. The gradients are further back-
propagated through ∂FW(∂Ii)∂W

−1. The steps of our
training procedure are provided in Algorithm 1.

To understand this process, we visualize in Fig. 3 the
weights and intermediate results from hidden layers. The
first row shows the trained weights W1 andW3 for two fil-
tering methods. W1 contains mostly vertical structures, in
accordance to the direction of input gradients. The output
of the hidden layer F 1(∂I) for bilateral filter is also visual-
ized in the second row, which contains noisy structure that
represents details at differen locations. F 2(∂I) looks more
blurry than F 1(∂I). It actually plays the role to smooth
details by canceling out them from different channels. The
main edges are not that sharp in F 2(∂I). They are en-
hanced adaptively in W 3 with respect to image content.

4. Testing

After neural network training, we apply our system to new
images for producing the learned effect. This process needs
a final step in image reconstruction from gradient to color
domains. The common solution is to solve the Poisson
equation (Pérez et al., 2003) for direct gradient integration.
But our experiments show this may not produce visually
compelling results because the gradients are possibly not
integrable given them in two directions computed indepen-
dently. Therefore, solving the Poisson equation may lead to
large errors and cause color shift. One example is shown in
Fig. 4. With this finding, we resort to another optimization
method for final image reconstruction.

(a) (b) (c)

Figure 4. Poisson blending in (c) makes color change too much
from the input (a). Our image reconstruction in (b) does not have
this problem.

4.1. Image Reconstruction

We denote by S our final output gradient maps. Our image
reconstruction is to also consider the structural information
in the input image to guide smoothing in gradient domain.
We thus introduce two terms putting together as

‖S − I‖2 + β
{‖∂xS − F ′

W(∂xI)‖2 + ‖∂yS − FW(∂yI)‖2
}
,

(7)
where ‖S − I‖2 is the color confidence to use the input
image to guide smoothed image reconstruction. The sec-
ond term is the common one to use our gradient results.
β is a parameter balancing the two loss functions. Con-
trary to Poisson integration that relies purely on the com-
puted gradients with a boundary condition, our reconstruc-
tion finds a balance between original color and computed
gradients, which is especially useful when gradients are not
integrable. The optimal β is filter-dependent. We deter-
mine this value using a round of simple search, described
later.

The energy in Eq. (7) is quadratic w.r.t. image S. When
using forward difference to compute the partial derivative,
the minimization process leads to a linear system with a
sparse five point Laplacian. We use preconditioned conju-
gate gradient (PCG) to speed up the sparse linear system
with the incomplete Cholesky factorization preconditioner
(Szeliski, 2006; Xu et al., 2012).

Theoretically, the reason that this reconstruction step works
so well can be exhibited by showing an analogy to half-
quadratic splitting optimization (HQSO), which has been
used to solve complex L1, Lp (0 < p < 1), and L0 norm
optimization in computer vision.

In these problems, the originally complex energy func-
tion is decomposed into single-variable optimization and
quadratic optimization where the latter is exactly in the
form of Eq. (7). The only difference is that HQSO pro-
duces the reference gradients iteratively while our method
uses a data-driven learning scheme to generate the refer-
ence gradients FW(∂I). Given that the network structure
is expressive enough, it is possible to learn the behavior of
underlying procedure without iteration. This also accounts

Deep Edge-Aware Filters

1 4 16 64 256 1024
26

28

30

32

34

36

38

40

42

β

P
S

N
R

L0 Smooth Filter

RTV Smooth Filter

Bilateral Filter

Local Laplacian Filter

Figure 5. Varying β produces different-quality results.

for the capability of our method to approximate complex
effects, such as L0 smoothing.

4.2. Optimal β Finding

β is a relatively sensitive parameter because it corresponds
to the suitable amount of color information in the input im-
age to be taken into consideration. This value varies for
different filters. We perform a greedy search for the opti-
mal value.

The process is simple – we first set β to a group of val-
ues within [1, 1E5] and apply them to 100 testing images.
Peak signal-to-noise ratios (PSNRs) are recorded. Fig. 5
plots the curves for bilateral filter (Tomasi & Manduchi,
1998), local Laplacian (Paris et al., 2011), L0 smoothing
(Xu et al., 2011), and texture smoothing (Xu et al., 2012).
The first two methods involve local filters and the latter two
use global minimization. There are peaks located differ-
ently for these smoothing effects, indicating that different
effects need their own best parameters. We choose β as the
one producing the largest average PSNR for each method.

4.3. Applying Deep Edge-Aware Filters

Once β is obtained, we use FW(·), together with β, to ap-
ply the learned Deep Edge-Aware Filters. It corresponds to
the testing pass with the convolutional neural network. For
a given image I , we first transform it into gradient domain
and feed ∂I into the network to get the filtered gradients.
The final image S is obtained by solving the reconstruction
function (7) with its optimal β.

5. More Discussions

We discuss in this section parameter setting, choice of pro-
cessed domain, and possible regularization.

(a) color domain (b) gradient domain

Figure 6. Comparison of color- and gradient-domain processing.

0 0.4 0.8 1.2 1.6 2 2.4

x 10
6

0.93

0.94

0.95

0.96

0.97

0.98

0.99

λ=1E−3

λ=1E−2

no sparsity

Figure 7. Effectiveness of sparsity regularization. x-axis: training
samples; y-axis: SSIM scores.

Gradient vs. Color Fig. 6 shows a visual comparison of
taking a color image and use its gradient maps in approx-
imating L0 smoothing respectively in our system, corre-
sponding to the discussion in Section 2.1. The input image
is shown in Fig. 4. The PSNRs are 28.71 and 34.32 re-
spectively for color and gradient level process. The SSIMs
(Wang et al., 2004) are 0.94 and 0.98. Higher PSNR and
SSIM in gradient domain are observed for all data we ex-
perimented with. In implementation, the vertical and hor-
izontal gradients are processed in a single pass by rotating
the vertical gradients and stacking the two inputs.

Sparse Regularization We enforce sparsity in training
the network in Eq. (2) to resist possible errors. We plot
results in Fig. 7 to show evolution of the network over dif-
ferent training samples. x-axis values are the numbers of
training patches. The SSIM (Wang et al., 2004) scores are
obtained excluding the reconstruction step. For smoothing
with strong sparsity, our regularization helps generate high
SSIM values. More importantly, high SSIM results can al-
ready be obtained on only hundreds of image patches.

Adjusting Smoothing Strength Many edge-aware ef-
fects are controlled by smoothing strength parameters. To
alter the behavior for one filter or method, we can train the
network with all necessary parameter values. Alternatively,
we also provide a faster approximation based on parameter
sampling and interpolation. The intuition is that we obtain

Deep Edge-Aware Filters

0

5

10

0

1

2

1

2

3

4

BLF WLS L0 LLF

σs α κ α

0.5 1 10 0.5000 5 100 5 1

0.5 1 10 0.5000 5 100 5 1

0

5

10

σs α κ α

0

1

2

1

2

3

4

λ λ σrσr

1

2

3

4

1

2

3

4

λ λ σrσr

Figure 8. Parameter space for different methods.

(c)
0 0.5 1

0

10

20

30

40

50

60

σ
r

P
S

N
R

(a)

(b)

Figure 9. Parameter interpolation result. x-axis: range parameter
σr; y-axis: PSNR scores.

the required smoothing effect by interpolating results gen-
erated with similar parameters.

We use the gray-level co-occurrence matrices (GLCM)
(Haralick et al., 1973) to measure pixel color change
smoothness by varying parameter values, as visualized in
Fig. 8. For example, in the first-column bilateral filter re-
sults, we show the color of one pixel (yellow dots in input
images) by varying the two parameters σr and σs. It forms
a 2D space shown in the first row. It is smooth, indicat-
ing steady pixel color change when varying parameter val-
ues. Quantitatively, the average GLCMs for bilateral filter,
WLS, L0 smoothing and local Laplacian filter are as large
as 0.95, 0.96, 0.83, and 0.94 respectively. The high score
manifests smooth variation in this space. For reference, the
average GLCM for natural image patches is only 0.3.

Our interpolation works as follows. We sample smoothing
parameters for neural network training. Then for a new im-
age to be smoothed with parameter values different from all
these samples, we generate a few smoothed images using
the network trained for the closest parameter values. The
final result is the bi-cubic interpolation of the correspond-
ing color pixels in the nearby images. For filters with two
controlling parameters, we interpolate the result using four
color pixels in the 2D parameter space shown in Fig. 8. For
filters with a single parameter, two nearby images are used.

Fig. 9(a) shows a bilaterally filtered image with parameters
σs = 7 and σr = 0.35. Our result by above interpolation
is shown in Fig. 9(b) using the nearby trained networks for
σr = 0.2 and σr = 0.4. For simplicity of illustration, we

Figure 11. Average PSNRs and SSIMs of our approximation of
various filtering techniques.

set σs to 7. The PSNR is as high as 46.17.

Fig. 9(c) plots PSNRs with training CNNs at σr = 0.1, 0.2,
0.4, 0.6, 0.8, 1. Results for other σr values are produced
by interpolation. The PSNR slightly decreases when using
interpolation, but is still within an acceptable range (> 30).
It is also notable that PSNRs go up generally when increas-
ing σr. It is because a larger σr makes bilateral filter more
like Gaussian. When σr = 1, Gaussian smoothing can be
exactly obtained using convolutional neural network.

Relation to Other Approach Yang et al. (Yang et al.,
2010) proposed a learning based method to approximate
bilateral filter. The major step is a combination of sev-
eral image components, consisting of exponentiation of the
original image and their Gaussian filtered versions. The
combination mapping is trained using SVM. Intriguingly,
if we set our F2(I) layer to the much simplified image
components this method used and the final layer to sim-
ply combining weights instead of networks, the two meth-
ods become similar. In fact compared to general learning
methods, our system is much more powerful because we
train not only the combining weights, but as well image
maps from a deeper, more expressive network architecture.

6. Experiments and Applications

We use our method to simulate a number of practi-
cal operators, including but not limited to bilateral filter
(BLF) (Paris & Durand, 2006), local Laplacian filter (LLF)
(Paris et al., 2011), region covariance filter (RegCov)
(Karacan et al., 2013), shock filter (Osher & Rudin, 1990),
weighted least square (WLS) smoothing (Farbman et al.,

Deep Edge-Aware Filters

L
0

R
T

V

(a) input (b) smoothing results (c) ours
Figure 10. Visual comparison with other generative smoothing operators.

Resolution QVGA VGA 720p 1080p 2k
BLF Grid 0.11 0.41 0.98 2.65 3.03

IBLF 0.46 1.41 3.18 8.36 12.03
WLS 0.71 3.25 9.42 28.65 33.73
L0 0.36 1.60 4.35 11.89 15.07

RTV 1.22 6.26 16.26 42.59 48.25
RegCov 59.05 229.68 577.82 1386.95 1571.91
Shock 0.45 3.19 8.48 23.88 26.93
LLF 207.93 849.78 2174.92 5381.36 6130.44

WMF 0.94 3.54 4.98 14.32 15.41
RGF 0.35 1.38 3.42 9.02 10.31
Ours 0.23 0.83 2.11 5.78 6.65

Table 1. Running time for different resolution images on desktop
PC (Intel i7 3.6GHz with 16GB RAM, Geforce GTX 780 Ti with
3GB memory). Running time is obtained on color images.

2008), L0 smoothing (Xu et al., 2011), weighted me-
dian filter (Zhang et al., 2014b), rolling guidance fil-
ter (Zhang et al., 2014a), and RTV texture smoothing
(Xu et al., 2012). They are representative as both local-
and global- schemes are included and effect of smooth-
ing, sharpening, and texture removal can be produced. Our
implementation is based on the Matlab VCNN framework
(Ren & Xu, 2015).1

6.1. Quantitative Evaluation

We quantitatively evaluate our method (Paris et al., 2011).
The average PSNRs and SSIMs are plotted in Fig. 11. All
are high to produce usable results. For bilateral filter, set-
ting σr larger yields higher PSNRs. This is because the

1Our implementation is available at the project webpage
http://lxu.me/projects/deaf.

(a) Input (b) L0

(c) BLF (d) Our learned filter combo

Figure 13. Filter combo effect illustration. Our method is capable
of training a combination of filters without applying the network
multiple times.

BLF degenerates to a Gaussian filter when σr is large. For
fare comparison, we use σr = 0.1 to report PSNR.

Global optimization such as WLS smoothing does not in-
cur problems in approximation, due primarily to the gra-
dient learning scheme. Approximation of highly nonlinear
weighted median filter and L0 smoothing also yields rea-
sonable results thanks to the nonlinearity in the deep con-
volutional neural network. Fig. 10 gives the visual com-
parison of the original filtering results and ours.

6.2. Filter Copycat

We learn edge-aware operators even without knowing any
details in the original implementation. We approximate two
effects generated by Adobe Photoshop. One is surface blur.

http://lxu.me/projects/deaf

Deep Edge-Aware Filters

P
S

-S
U

R
F

P
S

-F
a
c
e
t

(a) inputs (b) Photoshop results (c) ours
Figure 12. Filter Copycat. We learn two operators from Adobe Photoshop and reproduce them on the new images in constant time.

Figure 14. Spatially varying filter is achieved using our neural net-
work in one pass.

Our average PSNR and SSIM for this operator reach 40 and
0.97 respectively. Another effect is “facet”, which turns an
image into block-like clutters. Our corresponding average
PSNR and SSIM are 35.8 and 0.96, which are also very
good. Two image examples are shown in Fig. 12.

The deep edge-aware-filter takes constant time to generate
different types of effect. We list running time statistics in
Table 1. Our approximation is faster than almost all other
filters expect the fast bilateral filter approximation using
grid (Chen et al., 2007). It also achieves 200+ times accel-
eration for several new filtering effects (Paris et al., 2011;
Karacan et al., 2013). The performance of all approaches is
generated based on the authors’ original implementation.

Among the filters we trained, an interesting group is
the iterative bilateral filter (IBLF) (Fattal et al., 2007) and
rolling guidance filter (Zhang et al., 2014a) that succes-
sively apply filter in the same image. We can approximate
them perfectly without applying the network repeatedly.
It naturally leads to our application of “filter combo” ex-
plained below.

6.3. Filter Combo

The combination of several filters may generate special ef-
fects. It was shown in (Xu et al., 2011) that combination

of L0 smoothing and bilateral filter can remove details and
noise without introducing large artifacts. Instead of apply-
ing twice the network to achieve the special effect. We
train the filter combo using the same network in one pass.
Fig. 13 shows an input image (a), L0 smoothing result (b),
which does not remove details on the face, and (c) result
of bilateral filtering. Our trained “filter combo” yields an
average PSNR 35.26. The image result is shown in Fig.
13(d), preserving edges while removing many small-scale
structures.

6.4. Spatially Varying Filtering

Since we process the image in a patch-wise fashion. We
can apply different filtering effects to an image, still taking
constant time. In this experiment, we reduce the patch size
to 64× 64 and gradually apply bilateral filter with different
parameters. One result is shown in Fig. 14.

7. Concluding Remarks

We have presented a deep neural network based system to
uniformly realize many edge-preserving smoothing and en-
hancing methods working originally either as filter or by
global optimization. Our method does not need to know
the original implementation as long as many input and out-
put images are provided. After the training process, we can
then apply very similar effects to new images in constant
time.

The learning based system can only model deterministic
procedures. Thus our method is not suitable to produce
randomized filtering effect, which changes even with fixed
input and system parameters.

Deep Edge-Aware Filters

References

Adams, Andrew, Gelfand, Natasha, Dolson, Jennifer,
and Levoy, Marc. Gaussian kd-trees for fast high-
dimensional filtering. ACM Trans. Graph., 28(3), 2009.

Adams, Andrew, Baek, Jongmin, and Davis, Myers Abra-
ham. Fast high-dimensional filtering using the permuto-
hedral lattice. Comput. Graph. Forum, 29(2):753–762,
2010.

Agostinelli, Forest, Anderson, Michael R., and Lee,
Honglak. Adaptive multi-column deep neural networks
with application to robust image denoising. In NIPS,
2013.

Burger, Harold Christopher, Schuler, Christian J., and
Harmeling, Stefan. Image denoising: Can plain neural
networks compete with bm3d? In CVPR, 2012.

Chen, Jiawen, Paris, Sylvain, and Durand, Frédo. Real-
time edge-aware image processing with the bilateral
grid. ACM Trans. Graph., 26(3):103, 2007.

Dong, Chao, Loy, Chen Change, He, Kaiming, , and Tang,
Xiaoou. Learning a deep convolutional network for im-
age super-resolution. In ECCV, 2014.

Durand, Frédo and Dorsey, Julie. Fast bilateral filtering for
the display of high-dynamic-range images. ACM Trans.
Graph., 21(3):257–266, 2002.

Eigen, David, Krishnan, Dilip, and Fergus, Rob. Restoring
an image taken through a window covered with dirt or
rain. In ICCV, 2013.

Elad, Michael. On the origin of the bilateral filter and ways
to improve it. IEEE Transactions on Image Processing,
11(10):1141–1151, 2002.

Farbman, Zeev, Fattal, Raanan, Lischinski, Dani, and
Szeliski, Richard. Edge-preserving decompositions for
multi-scale tone and detail manipulation. ACM Trans.
Graph., 27(3), 2008.

Fattal, Raanan, Agrawala, Maneesh, and Rusinkiewicz,
Szymon. Multiscale shape and detail enhancement from
multi-light image collections. ACM Trans. Graph., 26
(3):51, 2007.

Gastal, Eduardo S. L. and Oliveira, Manuel M. Domain
transform for edge-aware image and video processing.
ACM Trans. Graph., 30(4):69, 2011.

Gastal, Eduardo S. L. and Oliveira, Manuel M. Adaptive
manifolds for real-time high-dimensional filtering. ACM
Trans. Graph., 31(4):33, 2012.

Haralick, Robert M., Shanmugam, K. Sam, and Dinstein,
Its’hak. Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics, 3(6):
610–621, 1973.

He, Kaiming, Sun, Jian, and Tang, Xiaoou. Guided image
filtering. IEEE Trans. Pattern Anal. Mach. Intell., 35(6):
1397–1409, 2013.

Karacan, Levent, Erdem, Erkut, and Erdem, Aykut.
Structure-preserving image smoothing via region covari-
ances. ACM Trans. Graph., 32(6):176, 2013.

Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E.
Imagenet classification with deep convolutional neural
networks. In NIPS, pp. 1106–1114, 2012.

Osher, Stanley and Rudin, Leonid I. Feature-oriented im-
age enhancement using shock filters. SIAM Journal on
Numerical Analysis, 27(4):919–940, 1990.

Paris, Sylvain and Durand, Frédo. A fast approximation of
the bilateral filter using a signal processing approach. In
ECCV (4), pp. 568–580, 2006.

Paris, Sylvain, Hasinoff, Samuel W., and Kautz, Jan. Lo-
cal laplacian filters: edge-aware image processing with a
laplacian pyramid. ACM Trans. Graph., 30(4):68, 2011.

Pérez, Patrick, Gangnet, Michel, and Blake, Andrew. Pois-
son image editing. ACM Trans. Graph., 22(3):313–318,
2003.

Porikli, Fatih. Constant time o(1) bilateral filtering. In
CVPR, 2008.

Ren, Jimmy SJ. and Xu, Li. On vectorization of deep con-
volutional neural networks for vision tasks. In AAAI,
2015.

Subr, Kartic, Soler, Cyril, and Durand, Frédo. Edge-
preserving multiscale image decomposition based on lo-
cal extrema. ACM Trans. Graph., 28(5), 2009.

Szeliski, Richard. Locally adapted hierarchical basis pre-
conditioning. ACM Trans. Graph., 25(3):1135–1143,
2006.

Tomasi, Carlo and Manduchi, Roberto. Bilateral filtering
for gray and color images. In ICCV, pp. 839–846, 1998.

Wang, Zhou, Bovik, Alan C., Sheikh, Hamid R., and Si-
moncelli, Eero P. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, 2004.

Weiss, Ben. Fast median and bilateral filtering. ACM Trans.
Graph., 25(3):519–526, 2006.

Deep Edge-Aware Filters

Xie, Junyuan, Xu, Linli, and Chen, Enhong. Image denois-
ing and inpainting with deep neural networks. In NIPS,
pp. 350–358, 2012.

Xu, Li, Lu, Cewu, Xu, Yi, and Jia, Jiaya. Image smoothing
via l0 gradient minimization. ACM Trans. Graph., 30(6),
2011.

Xu, Li, Yan, Qiong, Xia, Yang, and Jia, Jiaya. Structure
extraction from texture via relative total variation. ACM
Trans. Graph., 31(6):139, 2012.

Xu, Li, Ren, Jimmy SJ., Liu, Ce, and Jia, Jiaya. Deep
convolutional neural network for image deconvolution.
In NIPS, 2014.

Yang, Qingxiong, Tan, Kar-Han, and Ahuja, Narendra.
Real-time o(1) bilateral filtering. In CVPR, pp. 557–564,
2009.

Yang, Qingxiong, Wang, Shengnan, and Ahuja, Narendra.
Svm for edge-preserving filtering. In CVPR, pp. 1775–
1782, 2010.

Zhang, Qi, Shen, Xiaoyong, Xu, Li, and Jia, Jiaya. Rolling
guidance filter. In ECCV, 2014a.

Zhang, Qi, Xu, Li, and Jia, Jiaya. 100+ times faster
weighted median filter (wmf). In CVPR, 2014b.

