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ABSTRACT

In image deconvolution, the boundary value problem, if
not appropriately handled, often causes serious ringing arti-
facts in the restored results. This paper proposes a simple
method to tackle this problem without any assumption on the
noise level and the symmetry of the Point Spread Function
(PSF). We establish new boundary conditions by smoothly
expanding the input image to a large tile. It helps reduc-
ing the boundary discontinuities and accordingly makes all
restoration filters based on Fast Fourier Transform (FFT) not
produce obvious image border artifacts.

Index Terms— image deblurring, image deconvolution,
ringing artifact, boundary condition

1. INTRODUCTION

Image blur is generally modeled as a convolution of a latent
sharp image with a Point Spread Function (PSF) – that is, the
blur filter. The convolution operator makes use of not only the
image in the Field of View (FOV) of the given observation but
also part of the scenery in the area bordering it. Hence, part
of the information that is used to produce the filtered image
boundary pixels is not available to the deconvolution process.
Using the Fast Fourier Transform (FFT), the effect of missing
boundary would propagate throughout the image and deteri-
orate the entire image. This problem is known as the bound-
ary value problem, which poses a difficulty to various image
restoration methods. Fig. 1(c) shows an example. When the
missing pixel information immediately outside the border of
an image is set as the mean value of the image, dominant hor-
izontal and vertical oscillation patterns are yielded.

Depending on whether a spatial or Fourier domain restora-
tion filter is used, there exist two solutions to the boundary
value problem in practice. For a spatial domain filter, the
missing pixel information outside the observed image can
be synthesized by extrapolating the available image data.
Various extrapolation methods have been proposed based on
the selection of the Boundary Conditions (BC), including
zero Dirichlet, periodic, reflective (also called Neumann or
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Fig. 1. Illustration of the boundary artifacts. (a) The latent clear
image of size 256 × 256 with FOV shown in the white box. (b)
Synthetic blurred image using a PSF of size 20 × 20 (shown at
its bottom-right corner), where the missing boundary information is
padded with the mean value of the whole image. (c) Restored image
with severe boundary visual artifacts.

symmetric), and anti-reflective BC (see [1, 2] for the de-
tails). Some of these boundary conditions aim at removing
the discontinuities at the boundary. For instance, reflective
BC preserves the continuity of the image while anti-reflective
BC retains the continuity of the image and its gradient. Most
BC methods, such as those of [1, 2, 3], build large linear
systems in the spatial domain in order to solve the decon-
volution problem. They, thus, require much computational
time and prefer strongly symmetric PSFs for effective matrix
computation.

On the other hand, Fourier domain restoration filters,
e.g., the Richardson-Lucy (RL) filter [4], adopt the Discrete
Fourier Transforms (DFT) and assume the periodicity of the
data. For a 2D DFT, this assumption implies that the left-
and right-hand sides of the image are connected and so are
the top and bottom boundaries. When DFT is performed, the
missing pixels at the left-hand side will be taken from the
right-hand side, and vice versa. Since the data obtained by
DFT may not coincide with the missing ground truth data,
discontinuities usually appear along the boundaries and the
Gibbs oscillations (sometimes called ripples) are generated
in the deconvolved image. Such oscillations can propagate
inside the image and degrade the quality of the reconstruction
prevailingly. A common way to remedy this problem is to
extrapolate the image data at the border and meanwhile main-
tain the intensity or gradient smoothness. Linear interpolation
between image boundaries or the ‘edgetaper(·)’ function in
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Matlab are widely used. Aiming at restoring astronomical
photographs, the methods described in [5, 6] are based on the
collected astronomical statistics and assume high levels of
noise.

In this paper, we propose a simple method that combines
the advantages of boundary conditions with the effectiveness
of FFT to reduce the visual artifacts caused by the boundary
value problem to a great extent. The main idea is to develop
an interpolation method to smooth out the image boundaries
using the tile generation. Our method does not require the
symmetry of PSF and can be applicable to both natural images
and astronomical photographs.

2. THE PROPOSED METHOD

We divide the image deconvolution into two stages. The first
stage produces a tile, that is, an extrapolated image from the
blurred observation. Next, a Fourier domain restoration filter
is applied to the extrapolated image. Since any FFT-based
restoration filter is applicable in our algorithm, we use the
RL filter in all our experiments. Below we detail our image
extrapolation scheme.

2.1. Tile Generation

We borrow the “tile” concept from the texture synthesis field
and define it as a rectangular image block whose intensities
at the left- and right-hand sides as well as the top and bottom
boundaries follow some patterns. According to this defini-
tion, if a set of blocks are periodically tiled in a certain order,
it can be guaranteed that no distinct discontinuities between
neighboring blocks is observed.
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Fig. 2. Illustration of the tile generation. (a) A block (representing
an input image) G of size M ×N . (b) A set of tiles are arranged fol-
lowing an order such that the boundaries of adjacent blocks have the
same intensity values (denoted by the color codes). (c) A rectangular
tile T is from the left-upper corner (M+1

2
, N+1

2
) to the right-bottom

corner ( 3M
2

, 3N
2

).

We show the creation of a valid tile T in Fig. 2. The input
image of size M × N is shown as a block G in Fig. 2(a),
each edge of which is assigned with a color. We design three
padding blocks A, B, and C with the same size as G, and
arrange them in a manner shown in Fig. 2(b). This yields an
expanded image of size 3M × 3N . These padding blocks
satisfy the boundary constancy constraint, where the borders
of adjacent blocks have the same intensity value (or color). It
is illustrated using the paired colors in Fig. 2(b).

Let (1, 1) denote the top-left pixel of the constructed
tile. By cutting out the region from corner (M+1

2 , N+1
2 )

to (3M
2 , 3N

2 ), we get an expanded image T , as shown in
Fig. 2(c). T has a desired characteristic for deconvolution
using FFT, that is, it can be periodically laid out to form an
infinitely large image without color discontinuities at the tile
boundaries.

2.2. Padding Block Construction

With the above tile generation scheme, we introduce our
method to construct the three blocks A, B, and C such that
the boundary problem can be reduced effectively. There are
two main considerations. First, ringing artifacts are caused
around sharp edges. We thus propose filling pixels with
smooth colors between adjacent blocks. Second, when the
FFT-based deconvolution methods are applied, in order not
to cause the ringing artifact, the periodicity of the data should
be guaranteed. The expanded image is with new borders that
make it self-tileable.

Let X(i, :) and X(:, j), respectively, denote the i-th row
(i = 1, . . . , M ) and j-th column (j = 1, . . . , N ) in image
block X , where X ∈ {G,A,B,C}. In what follows, we first
describe how A is constructed. Blocks B and C are formed
in a similar way and will be briefly discussed.

We expand block A by a few pixels vertically, which re-
sults in a larger square block A′ containing A and its outer-
border ∂A. ∂A is defined as

A′(i, :) = (H ⊗ G)(M − α + i, :), (1)

A′(M + α + i, :) = (H ⊗ G)(i, :), (2)

where α is the width of the new border ∂A and i ∈ {1, · · · , α}.
The new block A′ is of size (M + 2α) × N and the border
∂A contains the neighboring pixel information obtained from
block G. H is a Gaussian kernel to smooth out the image and
reduce the noise. ⊗ is a convolution operator.

To achieve the second-order smoothness, we minimize the
sum of second-order partial derivatives in block A. So we
construct a membrane surface for the pixel values of A de-
fined as the solution of a minimization problem:

min
∫ ∫

A

|ΔA|2 with A|∂A = A′|∂A, (3)

where Δ. = ∂2.
∂x2 + ∂2.

∂y2 is the Laplacian operator. To make the
solver efficient, we treat the boundary condition as a regular-
ization term. The pixels in block A are computed by solving
a regularized least square problem

min
(‖ΔA‖2 + λ‖A − A′‖2

∂A

)
, (4)

where λ is a weight that controls the pixel value smoothness
of block A. In this way, the smooth transition within block A
and between A and G can be produced. Fig. 3(a) shows one
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Fig. 3. The computed intensity values in blocks (a) A, (b) B, and
(c) C for the example in Fig. 1(b). Points used to set boundary con-
ditions are shown in blue.

Fig. 4. Illustration of the tile generation. The rectangular region in
the central white box indicates a valid tile.

example of the computed block A. Outer-border pixels are
shown in blue.

Similarly, block B is first expanded to B′ of size M ×
(N + 2α) horizontally. So the new outer-border ∂B is con-
structed as B′(:, i) = (H ⊗ G)(:, N − α + i) and B′(:, N +
α + i) = (H ⊗ G)(:, i), where i ∈ {1, · · · , α}. Then block
B is computed in a way similar to estimating A.

After we compute blocks A and B, block C is symmetri-
cally expanded into a block C′ of size (M +2α)× (N +2α)
with a new border ∂C defined as

C ′(i, :) = B′(M − α + i, :), C ′(M + α + i, :) = B′(i, :),
C ′(:, i) = A′(:, N − α + i), C ′(:, N + α + i) = A′(:, i),

where i ∈ {1, · · · , α}. Then block C is computed similarly
by solving a linear optimization problem with regularization
terms. The final expanded image is shown in Fig. 4 with a
central white box indicating a valid tile.

The restoration filter is applied to a tile of size 2M × 2N ,
4 times of the original blurry image size. The RL deconvolu-
tion algorithm requires 4 FFTs per iteration and hence incurs
a cost of O(N2 log2 N) operations for an N ×N image. The
computational cost on our expanded tile is increased by a fac-
tor of about 16 (when M = N ). However, it can be reduced
by using smaller-size blocks A, B, and C.

3. EXPERIMENTS

We conducted several experiments using symmetric and non-
symmetric PSFs and compare them with reflective BC[1],
anti-reflective BC[2], and the ‘edgetaper(·)’ function in Mat-
lab. Besides visual evidences, we also provide numerical
analysis, which calculates and compares Boundary Peak

Signal-to-Noise Ratio (BPSNR) in the critical boundary re-
gions of the reconstructed image. In our experiments, we
regard the points, with their distance to the image border
smaller than 0.1 ∗ min(M,N), as boundary points.

Different levels of noises are added to the blurred images
to test the effectiveness of our boundary artifact reduction al-
gorithm. In experiments, zero mean white Gaussian noises
are added and the noise level in each example is measured by
the Signal-to-Noise Ratio (SNR), given by 20 log10(σG/σn),
where σG and σn are the standard deviations of the blurred
image G and noise, respectively. All our experimental results
are acquired by using the RL algorithm with 200 iterations
and setting α = 10 and λ = 1.
Result 1: Comparison of the deconvolution results for

an input image blurred with a symmetric PSF and no addi-
tive noise. As shown in Fig. 5, our algorithm generates high
quality restoration results and comparable BPSNR to anti-
reflective BC algorithm. We suggest readers to view these
figures in their original resolution.

Original Image Blurred Image(Gaussian PSF )

(a) BPSNR = 40.8 (b) BPSNR = 52.7 (c) BPSNR = 54.5

Fig. 5. Restoration results with symmetric PSF and no additive
noise. (a)-(c) Restoration results of reflective BC [1], anti-reflective
BC [2], and our algorithm, respectively.

(a) BPSNR = 50.1 (b) BPSNR = 53.4 (c) BPSNR = 56.5

Fig. 6. Restoration results with a non-symmetric PSF (Fig. 1(b))
and additive noise (SNR = 92.8). (a)-(c) show restoration results
using ‘edgetaper(·)’ in Matlab, anti-reflective BC, and our algorithm,
respectively.

Result 2: Comparison of the deconvolution results for an
image blurred with a non-symmetric PSF and additive noise.
As shown in Fig. 6, both anti-reflective BC and our algorithm
suppress the ripples near the image border and outperform
‘edgetaper(·)’.
Result 3: Comparison of the BPSNR-SNR curves of dif-
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Fig. 7. The BPSNR-SNR curves of different algorithms.

(a) (b) (c)

Fig. 8. (a) Original Image. (b) Blurred image using a PSF of size
20× 20 (shown at its bottom-right corner). (c)The restoration result
of our algorithm (BPSNR = 46.4).

ferent algorithms using the example in Fig. 1. As illustrated
in Fig. 7. our algorithm yields comparable restoration per-
formance to anti-reflective BC and better performance than
reflective BC.
Result 4: Comparison of the average computation time of

different algorithms for the examples in Figs 5 and 6. Table 1
shows that our algorithm runs a bit slower than ‘edgetaper(·)’
which requires no extrapolation of the blurry image.

Table 1. Average running time of different algorithms.
Algorithm Test 1(s) Test 2(s)
reflective 643 135

anti-reflective 560 146
edgetaper(·) 39 40
our algorithm 68 62

More experimental results and comparisons are shown in
Figs. 8 and 9.

4. CONCLUSIONS

In this paper, we have proposed a simple method for reduc-
ing the boundary ringing artifacts in image deconvolution.
Our method combines the advantages of boundary smooth-
ness with FFT to reduce the artifacts caused by the boundary
value problem. It does not require the symmetry condition
of the PSF and can be adopted by any FFT-based restoration
methods. Experiments show that our algorithm yields quan-
titatively satisfying restoration results with reasonably short
running time.

(a) (b)

(c)BPSNR = 37.6 (d)BPSNR = 39.9 (e) BPSNR = 40.0

Fig. 9. (a) Original Image. (b) Blurred image using a PSF of size
20× 20 (shown at its bottom-right corner). (c)-(e) show the restora-
tion results of reflective BC [1], anti-reflective BC [2], and our algo-
rithm, respectively.
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