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2 Mathematical models and practical
solvers for uniform motion
deblurring

Jiaya Jia

Recovering an unblurred image from a single motion-blurred picture has long

been a fundamental research problem. If one assumes that the blur kernel – or

point spread function (PSF) – is shift-invariant, the problem reduces to that

of image deconvolution. Image deconvolution can be further categorized to the

blind and non-blind cases.

In non-blind deconvolution, the motion blur kernel is assumed to be known

or computed elsewhere; the task is to estimate the unblurred latent image. The

general problems to address in non-blind deconvolution include reducing possible

unpleasing ringing artifacts that appear near strong edges, suppressing noise, and

saving computation. Traditional methods such as Weiner deconvolution (Wiener

1949) and Richardson-Lucy (RL) method (Richardson 1972, Lucy 1974) were

proposed decades ago and find many variants thanks to their simplicity and

efficiency. Recent development involves new models with sparse regularization

and proposal of effective linear and non-linear optimization to improve result

quality and further reduce running time.

Blind deconvolution is a much more challenging problem, since both the blur

kernel and latent image are unknown. One can regard non-blind deconvolution as

one inevitable step in blind deconvolution during the course of PSF estimation

or after PSF has been computed. Both blind and non-blind deconvolution is

practicably very useful, which is studied and employed in a variety of disciplines,

including, but not limited to, image processing, computer vision, medical and

astronomic imaging and digital communication.

This chapter discusses shift-invariant single image motion deblurring methods,

which assume that the image is uniformly blurred with only one PSF, which may

not be known in prior. This set of problems have a long history in theoretical

and empirical research and are notably advanced in recent 5-10 years with a few

remarkably effective models and solvers.

2.1 Non-blind deconvolution

Ideally, a blur observation is modeled as a linearly filtered version of the latent

unblurred signal. This process can be expressed as

b = l⊗ f , (2.1)
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Figure 2.1 Visual artifacts caused by inverse filter. (a) Blurred image and PSF. (b)
Close-ups. (c) Output of inverse filtering.

where b, l and f are the blurred image, latent unblurred image, and PSF (or

blur kernel) respectively. In the frequency domain,

F(b) = F(l) · F(f), (2.2)

where F is the Fourier transform.

If F(f) does not contain zero or very small values and the blurred image is

noise-free, the latent image l can be obtained simply by inverting the convolution

process using inverse filtering, the simplest method that solves for l. This process

is expressed as

F(l) = F(b)/F(f). (2.3)

This strategy practically may produce severe visual artifacts, such as ringings,

with the following reasons. First, inversion of f may not exist, especially for

low-pass filters. Second, motion PSFs caused by object or camera motion are

typically band-limited and their spectrums have zero or near-zero values at high

frequency. Third, image formation causes problems including image noise, quan-

tization error, color saturation, and non-linear camera response curve. They make

blur violate the ideal convolution model and lead to a more flexible form

b = l⊗ f + n, (2.4)

where n denotes error in the blurred image, which we call image noise in general.

One deconvolution result by direct inverse filter is shown in Figure 2.1.

Development of more advanced non-blind deconvolution methods dated back

to 1970’s. Early representative approaches include Wiener Deconvolution (Wiener

1949), Least Square Filtering (Miller 1970, Hunt 1973, Tikhonov & Arsenin

1977), Richardson-Lucy method (Richardson 1972, Lucy 1974) and recursive

Kalman Filtering (Woods & Ingle 1981). Readers are referred to (Andrews &

Hunt 1977) for a review of these early approaches.

Simply put, many algorithms minimize an energy consisting of two terms, i.e.,

the data term Edata (corresponding to likelihood in probability) and regularization
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(also known as prior) Eprior. Edata measures the difference between the convolved

image and the blur observation, and is written as

Edata = Φ(l ⊗ f − b), (2.5)

where Φ is a distance function. A common definition is Φ(·) = ‖·‖2 (Wiener 1949),

representing the L2-norm of all elements. It is also called Gaussian likelihood.

Eprior is denoted as a function Ψ(l), which has different specifications in ex-

isting approaches. Given Edata and Eprior, latent image l can be estimated by

minimizing the energy incorporating these two terms, expressed as

min
l

‖l⊗ f − b‖2 + λΨ(l), (2.6)

where λ is a weight. In what follows, we discuss a few representative non-blind

deconvolution methods with respect to model design and solver construction.

Their respective strength, disadvantage, and relation are also presented.

2.1.1 Regularized approaches

A number of early methods incorporated square regularization constraints. Two

representative forms are Ψ(l) = ‖l‖
2

and Ψ(l) = ‖∇l‖
2
, where ∇ is the gradient

operator. They enforce smoothness on image values and image gradients, and

are called Tikhonov and Gaussian regularizers respectively. Substituting them

into Eq. (2.6) yields

min
l

‖l⊗ f − b‖2 + λ‖l‖2 and (2.7)

min
l

‖l⊗ f − b‖2 + λ‖∇l‖2, (2.8)

for overall energy minimization. Weight λ is typically a small value.

The main advantage of these constrained least square methods is on the sim-

plicity of formation, which results in a solver similar to inverse filter. Taking the

Tikhonov method as an example, there exists a closed form solution l∗ for Eq.

(2.7) by setting its first order derivative to zero with respect to l. Rearranging

Eq. (2.7) in a matrix form and denoting by E the total energy yield

E = ‖Fν(l)− ν(b)‖2 + λ‖ν(l)‖2

= ν(l)TFTFν(l)− 2ν(b)TFν(l) + ν(b)T ν(b) + λν(l)T ν(l),

where F is a sparse convolution matrix generated from f , and ν is the operator

that transforms the image into its vector form. The partial derivative is

∂E

∂ν(l)
= 2FTFν(l)− 2FT ν(b) + 2λν(l). (2.9)

By setting the above equation to zero, the optimal solution l∗ is

ν(l∗) =
FT

FTF + λΛ
ν(b), (2.10)

where Λ is an identity matrix, the same size as FTF .
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(a) (b)

(c) (d)

Figure 2.2 Error introduced when using the Tikhonov regularization term. (a) Blurred
image with the ground truth PSF. (b) Deblurred image with Tikhonov regularization.
(c) Ground truth latent image. (d) Map of δl computed using Eq. (2.13).

Regularization bias

If there is neither kernel error nor image noise and the kernel matrix F is in-

vertible, the ground truth latent image l̂ is simply the reversion of convolution,

expressed as

ν (̂l) = F−1ν(b) =
FT ν(b)

FTF
. (2.11)

The difference between Eqs. (2.10) and (2.11) makes it possible to analyze how

the regularization term introduces bias in deconvolution in an ideal noise-free

situation. It serves as guidance for future deconvolution model design.

We denote the error map of the recovered image as

δl = l∗ − l̂, (2.12)

where δl is the error introduced in deconvolution. Eqs. (2.11) and (2.12) together

lead to

ν(δl) = ν(l∗)− ν (̂l) = −
λν(b)

(FTF + λΛ)F
= −

λ

FTF + λΛ
ν (̂l). (2.13)

Because λ
FTF+λΛ can be regarded as a weight fixed by blur, this equation in-

dicates that δl generally appears as a high frequency map dependant of image

structures in ν (̂l) as shown in Figure 2.2(d). Intuitively, a large λ makes the re-
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(a) (b) (c)

Figure 2.3 Influence of image noise in deconvolution using Tikhonov Regularization.
(a) Input images with additive noise. (b) Deconvolution results. Artifacts are
primarily the amplified noise. (c) Difference maps between (b) and the ground truth
unblurred noise-free images.

sult lose details. If we consider inevitable image noise and PSF error, Tikhonov

regularizer actually enhances the stability of deconvolution, discussed below.

Noise amplification

Now consider the case that image noise δb is presented, which is common in

natural images. With derivation similar to Eq. (2.9), which takes derivatives and

sets them to zeros, expression is obtained as

ν(δl) =
FT ν(δb)

FTF + λΛ
+
−λν (̂l)

FTF + λΛ
. (2.14)

We have explained the second term given the same expression in Eq. (2.13). It

produces a map that contains high frequency structure in general.

In the first term, setting κ = FT

FTF+λΛ to represent a coefficient matrix, the

expression simplifies to κν(δb). It actually functions as adding noise with a ratio

κ, which makes results still noisy. Summing up the effects of the two terms in

Eq. (2.14), it is concluded that the deconvolution results contain noise while

lacking an amount of structural details compared to the ground truth image.

Two examples are shown in Figure 2.3.

Relation to Wiener deconvolution

Wiener filter is a method having been widely used in non-blind deconvolution

(Wiener 1949). Its specialty is on the use of image and noise power spectra to

suppress noise, expressed as

F(l) =
1

F(f)

(

|F(f)|2

|F(f)|2 + 1
SNR(f)

)

· F(b), (2.15)
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where SNR(f) is the signal-to-noise ratio and |F(f)|2 denotes autocorrelation.

It can be proven that the Tikhonov regularized method is equivalent to Wiener

filter with a proper λ. First, Eq. (2.10) can be rewritten as

(FTF + λΛ)ν(l) = FT ν(b). (2.16)

Because it holds that

Fν(l) = ν(f ⊗ l),

FT ν(l) = ν(f ⊕ l) = ν(f ′ ⊗ l),

F(f) · F(f ′) = |F(f)|2,

where f ′ is the flipped version of f , ⊕ denotes correlation, and · is an element-wise

multiplication operator, Eq. (2.16) finds the solution in image domain as

ν(f ′ ⊗ (f ⊗ l)) + λl = ν(f ′ ⊗ b). (2.17)

Taking the Fourier transform on both sides of Eq. (2.17) yields

F(f ′) · F(f) · F(l) + λF(l) = F(f ′) · F(b),

which can be further expressed as

l = F−1

(

F(f ′) · F(b)

F(f ′) · F(f) + λΛ

)

. (2.18)

Eq. (2.18) is the same as Eq. (2.15) when λΛ = 1
SNR(f) . This equivalence im-

plies that Wiener deconvolution has similar noise amplification and structure

information loss properties as Tikhonov regularized deconvolution.

2.1.2 Iterative approaches

Iterative computation was also used in several methods. The VanCittert (Van Cittert

1931) solver can be applied to iteratively estimate the deconvolved image as

lt+1 = lt + β(b− lt ⊗ f), (2.19)

where β is a parameter automatically or manually adjustable, controlling the

convergence speed. t and t+ 1 index iterations. Eq. (2.19) converges ideally to a

result close to that produced by inverse filter expressed in Eq. (2.3), which does

not incorporate any prior or regularization.

The widely employed Richardson-Lucy (RL) deconvolution (Richardson 1972,

Lucy 1974) can be expressed as

lt+1 = lt
(

f ′ ⊗ (
b

lt ⊗ f
)

)

, (2.20)

where f ′ is the flipped version of f , used in correlation instead of convolution.

How Eq. (2.20) is constructed is explained in quite a number of papers and tu-

torials available online, and is thus omitted here. Different from direct inversion
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(Eq. (2.3)), RL deconvolution is iterative and can be stopped halfway, which em-

pirically alleviates in part noise amplification. Performing it for many iterations

or making it converge, contrarily, could yield less satisfactory results. The fol-

lowing derivation shows that the RL method is equivalent to Poisson maximum

likelihood, without imposing any image or kernel prior.

When assuming independent and identically distributed (i.i.d.) Gaussian noise

n = b− l⊗ f , maximum likelihood estimation of l is generally expressed as

p(b|l) ∝
∏

i

exp(−
(bi − (l⊗ f)i)

2

2σ2
), (2.21)

where p(b|l) is the conditional probability (also known as likelihood), i indexes

pixels, and σ2 is the Gaussian variance. Similarly, assuming that noise n =

b− l⊗ f follows a Poisson distribution yields

p(b|l) ∝
∏

i

(l⊗ f)bi

i exp(−(l⊗ f)i)

bi!
, (2.22)

where i indexes pixels. Its logarithmic energy is

log (p(b|l)) ∝
∑

i

(bi log(l⊗ f)i − (l⊗ f)i) , (2.23)

where the constant bi! term is omitted. Taking partial derivative w.r.t. each pixel

on the log energy and setting them to zeros yield

f ′ ⊗ (
b

l⊗ f
− 1) = 0. (2.24)

Since f is a PSF, its elements amount to 1, making f ′ ⊗ 1 = 1. Eq. (2.24) thus

can be approximated by Richardson-Lucy deconvolution in iterations as

lt+1 = lt
(

f ′ ⊗ (
b

lt ⊗ f
)

)

. (2.25)

The above derivation shows that the RL method is equivalent to the Poisson

maximum likelihood estimator in theory. Because there is no prior on the latent

image l, the algorithm should be stopped halfway to reduce noise and other visual

artifacts. There has been research to improve RL. For example, Yuan, Sun, Quan

& Shum (2008), in the multi-scale refinement scheme, applied edge-preserving

bilateral filtering to the RL result. This nonlocal regularizer makes the iterative

method a bit more robust against noise.

2.1.3 Recent advancement

Effective non-blind deconvolution needs to deal with noise and suppress ringing

artifacts introduced by incorrect blur kernel estimates and sometimes by com-

pression or tone management in image formation. Understanding of these issues

lead to better means to regularize the deconvolution process in recent years, giv-

ing prior Eprior (denoted as Ψ(l)) a number of new forms. A general principle
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Figure 2.4 Different prior functions penalize values differently. The Gaussian prior
increases energy most quickly for large absolute values.

is that the prior should not penalize excessively estimation outliers in order not

to wrongly deviate final results. In what follows, without special mention, the

overall objective function is still the one expressed in Eq. (2.6):

min
l

‖l⊗ f − b‖2 + λΨ(l). (2.26)

Chan & Wong (1998) used a total variation regularizer, which is also know as

Laplacian prior, by setting

Ψ(l) = ‖∇l‖1, (2.27)

where ∇ denotes the first-order derivative operator, i.e.,∇l = (∂xl, ∂yl), concate-

nation of the two gradient images. ‖ · ‖1 is the L1-norm operator for all image

gradients. This prior, illustrated in Figure 2.4 by solid lines, has a stronger effect

to reduce the influence of large errors compared to the Gaussian prior used in

Eq. (2.8) (dashed curve in Figure 2.4).

There are other ways to define Ψ(l). Shan, Jia & Agarwala (2008) constructed

a natural prior for the latent image as concatenating two piece-wise continu-

ous convex functions, plotted as the “Concatenating” curve in Figure 2.4. The

expression is

Ψ(li) =

{

a|∇li| |∇li| ≤ ξ

b(∇li)
2 + c |∇li| > ξ

(2.28)

where i indexes pixels and ∇li represents partial derivative for li in either x

or y direction. ξ is the value on which the linear and quadratic functions are

concatenated. a, b, and c are three parameters. Ψ(l) actually can be used to

approximate natural image statistics when a is large and b is very small.

To make the resulting structure be less smoothed, Levin, Fergus, Durand &



Models and solvers for uniform motion deblurring 9

Likelihood Prior

Wiener (Wiener 1949) Gaussian Gaussian
L-S (Tikhonov et al. 1977) Gaussian Gaussian

RL (Richardson 1972, Lucy 1974) Poisson /

Chan & Wong 1998 Gaussian Laplacian
Wang et al. 2008 Gaussian Laplacian
Shan et al. 2008 Gaussian Concatenating
Yuan et al. 2008 Poisson Non-local (Bilateral)

Krishnan and Fergus 2009 Gaussian Hyper-Laplacian
Yang et al. 2009 Laplacian Laplacian
Xu and Jia 2010 Laplacian Laplacian

Table 2.1 Comparison of a few non-blind deconvolution methods with respect to the
employed prior and likelihood. “L-S” stands for least square methods.

Freeman (2007) suggested a hyper-Laplacian prior, written as

Ψ(l) = ‖∇l‖α, (2.29)

where α < 1, representing a norm corresponding to a sparser distribution.

Additionally, methods of Yang, Zhang & Yin (2009) and Xu & Jia (2010)

suppress noise via a TV-L1 objective, which uses the Laplacian data term, i.e.,

Edata = ‖l⊗ f − b‖1, making the objective function be expressed as

min
l

‖l⊗ f − b‖1 + ‖∇l‖1. (2.30)

This function can suppress strong Gaussian and, particularly, impulse image

noise with the robust constraint on the data term.

The likelihood and prior forms of different recent methods are listed in Table

2.1. Gaussian likelihood and Laplacian prior are most frequently used thanks to

their simplicity in expression and reasonable ability to resist noise and error.

Albeit not quadratic, objective functions incorporating the Laplacian prior in

Eq. (2.27), concatenating term in Eq. (2.28), hyper-Laplacian prior in Eq. (2.29),

and the robust data term in Eq. (2.30) as a TV-L1 energy can be solved efficiently

through half-quadratic splitting, which decomposes the original problem into a

quadratic minimization one and a simple single-variable optimization process.

Details are provided in Section 2.1.4.

2.1.4 Variable splitting solver

An effective scheme to solve sparsely constrained non-blind deconvolution is

variable splitting, implemented by half-quadratic penalty methods (Geman &

Reynolds 1992, Geman & Yang 1995). This scheme has been used in many re-

cent methods (Shan et al. 2008, Wang, Yang, Yin & Zhang 2008, Krishnan &

Fergus 2009, Xu & Jia 2010). In what follows, we discuss the half-quadratic
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penalty solver for minimizing

E = ‖l⊗ f − b‖2 + λ‖∇l‖α, (2.31)

with a (hyper) Laplacian prior, where 0.5 ≤ α ≤ 1. Objective functions with

the concatenating prior expressed in Eq. (2.28) and the TV-L1 function in Eq.

(2.30) can be solved similarly.

The basic idea is to separate variables involved in convolution from those in

other terms, so that they can be estimated quickly and reliably using Fourier

transform. It is realized by using a set of auxiliary variables ψ = (ψx, ψy) for

∇l = (∂xl, ∂yl), and adding extra condition ψ ≈ ∇l. Eq. (2.31) is accordingly

updated to

EL = ‖l⊗ f − b‖2 + λ‖ψx‖
α + λ‖ψy‖

α + γ‖ψx − ∂xl‖
2 + γ‖ψy − ∂yl‖

2, (2.32)

given the isotropic implementation of the α-norm. γ is a weight. When its value

is infinitely large, the desired conditions ψx = ∂xl and ψy = ∂yl can be satisfied.

In this case, minimizing EL converges to minimizing E.

Given this variable substitution, it is possible now to iterate between optimiz-

ing ψ and l. This process is efficient and is able to converge to an optimal point,

since, in each iteration, the global optimum of ψ is reached in a closed form,

while fast Fourier transform can be used to update l.

Updating ψ
With estimated l in previous pass, Eq. (2.32) is simplified to

E′
ψ = λ‖ψx‖

α + λ‖ψy‖
α + γ‖ψx − ∂xl‖

2 + γ‖ψy − ∂yl‖
2. (2.33)

With a few algebraic operations to decompose ψ into the set containing all

elements ψi,x and ψi,y corresponding to all pixels i, E′
ψ can be written as a sum

of sub-energy terms

E′
ψ =

∑

i

(

E′
ψi,x

+ E′
ψi,y

)

, (2.34)

where each E′
ψi,υ

, υ ∈ {x, y} only contains a single variable ψi,υ ∈ ψυ , given by

E′
ψi,υ

= λ|ψi,υ |
α + γ(ψi,υ − ∂υli)

2, (2.35)

where li is pixel i in l. Each E′
ψi,υ

contains only one variable ψi,υ ; so it can

be optimized independently. For any α smaller than 1, minimizing Eq. (2.35)

depends on two variables, i.e., joint weight γ/λ and image-dependent ∂υli. By

sampling values from them, a 2D lookup table can be constructed off-line, based

on which optimal results are obtained efficiently. Possible errors caused by the

discrepancy of actual values and nearest samples are controllable (Krishnan &

Fergus 2009). For the special cases that α = 1/2, α = 2/3 and α = 1, analytic

solutions are available. We discuss the case that α = 1, where ψi,υ is expressed

as

ψi,υ = sign(∂υli)max

{

|∂υli| −
λ

2γ
, 0

}

, (2.36)
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which is the 1D shrinkage formula (Wang et al. 2008). Its computation is efficient.

Updating l

With Ψ estimated above, l is updated by minimizing

E′
l
= ‖l⊗ f − b‖2 + γ‖ψx − ∂xl‖

2 + γ‖ψy − ∂yl‖
2. (2.37)

Since the major computation is on convolution, frequency domain operation is

applied. Denoting the Fourier transform operator and its inverse as F and F−1

respectively, E′
l

is updated to

E′
F(l) = ‖F(l) · F(f) −F(b)‖2 + γ‖F(ψx)−F(l) · F(∂x)‖

2
2 +

γ‖F(ψy)−F(l) · F(∂y)‖
2
2, (2.38)

where F(∂υ), υ ∈ {x, y}, is the filter ∂υ in the frequency domain. It can be

obtained by the Matlab function “psf2otf”.

According to Plancherel theorem in harmonic analysis, which states that the

sum of square of a function equals to the sum of square of its Fourier transform,

the energy equivalence E′
l

= E′
F(l) can be established for all possible values of

l. It further follows that the optimal l∗ that minimizes E′
l

corresponds to the

counterpart F(l∗) in frequency domain that minimizes E′
F(l):

E′
l
|l∗ = E′

F(l)|F(l∗). (2.39)

Accordingly, the optimal l∗ is given by

l∗ = F−1(arg min
F(l)

E′
F(l)). (2.40)

Since E′
F(l) is a sum of quadratic energies of unknown F(l), it is a convex function

and can be solved by simply setting the partial derivatives ∂E′
F(l)/∂F(l) to zeros.

The solution of l∗ can be expressed as

l∗ = F−1

(

F(f) · F(b) + γF(∂x) · F(ψx) + γF(∂y) · F(ψy)

F(f) · F(f) + γF(∂x) · F(∂x) + γF(∂y) · F(∂y)

)

, (2.41)

where (·) denotes the conjugate operator. The division is an element-wise one.

The above two steps respectively update ψ and l until convergence. Note that

γ in Eq. (2.32) controls how strongly ψ is constrained to be similar to ∇l, and

its value can be set with the following consideration. If γ is too large initially,

the convergence is quite slow. On the other hand, if γ is overly small before

convergence, the optimal solution of Eq. (2.32) must not be the same as that

of (2.31). A general rule (Shan et al. 2008, Wang et al. 2008) is to adaptively

adjust γ in iterations. In early stages, γ is set small to stimulate significant gain

for each step. Its value increases in every or every a few iterations, making ψ

gradually approach ∇l. γ should be sufficiently large at convergence.
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(a) Input (b) RL (c) Gaussian

(d) Ground truth (e) Hyper-Laplacian (f) Laplacian

Figure 2.5 Visual comparison of non-blind deconvolution methods with the data term
defined in Eq. (2.5) and priors set as none (Richardson-Lucy), Gaussian,
hyper-Laplacian and Laplacian respectively.

(a) Input (b) Wiener Deconvolution (c) Shan et al. 2008

(d) Ground truth (e) Krishnan and Fergus 2009 (f) Xu and Jia 2010

Figure 2.6 Visual comparison of results produced by a few efficient non-blind
deconvolution methods.

2.1.5 A few results

We show a few examples to visually compare the aforementioned methods and

models. In Figure 2.5, results from aproaches incorporating different prior terms
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are shown. The input blurred image and PSF contains noise, making RL and

the Gaussian prior method produce a level of ringing artifacts and image noise.

Laplacian and hyper-Laplacian priors, in comparison, perform better in terms

of robustness against these problems. Based on publicly available executables or

codes, we deconvolve another input image in Figure 2.6(a) similarly containing

noise and PSF errors. The results shown in (c), (e) and (f) are visually pleasing.

Laplacian and hyper-Laplacian priors used to produce the results are effective

to suppress a medium level of image noise.

In terms of computation complexity, Wiener deconvolution involves simplest

operation and thus runs fastest. Methods incorporating concatenating and Lapla-

cian priors can produce higher quality results; their corresponding algorithm is

also efficient when written in optimized C. The method of Krishnan & Fergus

(2009) makes use of a lookup table, which is constructed offline with respect to

parameters. This table much speeds up the solver.

2.2 Blind deconvolution

Blind deconvolution solves shift-invariant (uniform) motion deblurring

b = l⊗ f + n (2.42)

by estimating both f and l. n represents inevitable additive noise.

There have been many blind deconvolution methods. Approaches proposed

before year 2005 mainly use the strategy to separately estimate the blur PSF

and latent image, which results in alternating optimization. For example, Ayers

& Dainty (1988) iterated between updating the blur PSF and latent image in a

style similar to Wiener filter; Fish, Brinicombe, Pike & Walker (1995) performed

blind deconvolution in a maximum likelihood fashion, using the Richardson-Lucy

iteration; Chan & Wong (1998) applied the Total Variation regularizer to both

the PSF and image. These methods are not elaborated in this book because they

have respective limitations in handling natural image blur especially when noise

and complex-structure PSFs present. The remaining of this chapter will focus

on recent understanding and more advanced development of models and solvers.

The major difficulty for successful natural image motion blur blind deconvo-

lution is on the high dimension of solution space. Any PSF f can be fitted into

Eq. (2.42) to find corresponding l and n, making it challenging to define proper

criteria for optimization. Figure 2.7 shows an example. Two solutions in the right

two rows indicate huge ambiguity for PSF and image estimation. A small change

on estimation steps could significantly deviate the solution.

Modern objective functions can generally be expressed as

min
l,f

Φ(l ⊗ f − b) + λ1Ψ(l) + λ2Υ(f), (2.43)

similar to the one shown in Eq. (2.6), where λ1 and λ2 are two weights. Φ, Ψ, and
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(a) (c) (d)

(b) (e) (f)

Figure 2.7 Ambiguity of solution. (a) Ground truth latent image. (b) Blurred input.
(c)-(d) One latent image estimate and the corresponding noise map n. (e)-(f) Another
latent image result and corresponding noise map. (d) and (f) are normalized for
visualization.

Υ are different functions to constrain noise, latent image and PSF respectively.

Among them, Φ and Ψ can use the same expression introduced above in non-blind

decconvolution. Generally, Φ(l⊗ f −b) is set to ‖l⊗ f−b‖2 (or ‖∇l⊗ f −∇b‖2),

which is a quadratic cost on pixel values (or the derivatives of them). Ψ(l) can

be set the same way as Eqs. (2.27)-(2.29) to follow sparse gradient distributions.

The new Υ is ideally a sparse function since a motion PSF tends to have most

elements close to zero. Its L1-norm form is

Υ(f) = ‖f‖1.

With these three functions, the objective function can be written as

min
l,f
‖l⊗ f − b‖2 + λ1‖∇l‖α + λ2‖f‖

1, (2.44)

where α setting to 2, 1, and a value between 0 and 1 corresponds to respectively

quadratic, Laplacian, and hyper-Laplacian functions. Note that different meth-

ods may alter these terms or use extra ones in the above objective, but, overall,

the constraints are enough for blind deconvolution.

This objective also corresponds to a posterior probability

p(l, f |b) ∝ p(b|l, f)p(l)p(f),

∝ exp(−Φ(l⊗ f − b)) · exp(−λ1Ψ(l)) · exp(−λ2Υ(f)), (2.45)

in the probability framework (Shan et al. 2008, Fergus, Singh, Hertzmann, Roweis

& Freeman 2006).

Solving Eq. (2.44) by simply estimating the PSF and latent image iteratively

cannot produce correct results. Trivial solutions or local-minima can, contrarily,
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Figure 2.8 Coarse-to-fine PSF estimation in several levels.

be obtained. The trivial solution is the delta-function PSF, which contains a one

in the center and zeros for all other elements, and exactly the blurred image as

the latent image estimate (Levin, Weiss, Durand & Freeman 2009). Without any

deblurring, the resulting energy in Eq. (2.44) could be even lower than that with

correct deblurring for many images. In addition, simple iterative optimization is

easily stuck in poor local minima.

To tackle the blind deconvolution problem, there are mainly two streams of

research work. They are respectively full posterior distribution approximation

p(l, f |b) using maximum marginal probability estimation and energy minimiza-

tion directly in Eq. (2.44). Most existing methods estimate PSFs in a multi-scale

framework where the PSF is first estimated on the small-resolution image in an

image pyramid. The estimate is then propagated to the next level as initializa-

tion to refine the result in a higher resolution. This process repeats for a few

passes, which improves numerical stability, avoids many local minima, and even

saves computation by reducing the total number of iterations. An illustration

of multi-level PSFs is shown in Figure 2.8. The following discussion is based on

estimation in one image level.

2.2.1 Maximum marginal probability estimation

Theoretically, the blur PSF can be perfectly obtained by maximizing the follow-

ing marginalized probability, expressed as

p(f |b) =

∫

p(l, f |b)dl, (2.46)

where p(l, f |b) is the full posterior distribution defined in Eq. (2.45). Empirically,

a huge difficulty exists regarding computational tractability of integration on the

latent image l. Even if one treats the latent image as discrete, maginalization

still involves summing all possible image values, which is prohibitively costly.

To address this problem, Fergus et al. (2006) approximated the posterior dis-

tribution using parametric factorization, written as

p(l, f |b) ≈ q(f , l) = q(f)q(l) (2.47)

=
∏

i

q(fi)
∏

j

q(lj), (2.48)

where the first equation in Eq. (2.47) assumes independence between f and l,

making maginalization, i.e.,
∫

q(f , l)dl = q(f), valid. The second equation in
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Eq. (2.48) assumes pixel independence, to ease parameter estimation. Also by

assuming Gaussian distributions for both the kernel and latent image, the op-

timal kernel that maximizes the marginalized probability becomes mean of the

Gaussian distribution, i.e., f∗i = Eq(fi)(fi), where Eq(fi) is the expectation w.r.t.

distribution q(fi). This process corresponds to the mean field approach.

The final approximated distributions, in this case, are Gaussian moments, ob-

tained by minimizing a function representing the Kullback-Leibler divergence

KL(q(l, f)‖p(l, f |b)) between the approximating distribution and the true poste-

rior, following the variational Bayesian framework (Jordan, Ghahramani, Jaakkola

& Saul 1999, Miskin & MacKay 2000). More details of this approach, e.g., use

of gradients and unknown noise variance, can be found in the original papers.

Note that iteratively minimizing the KL divergence cost function is very time

consuming. For reference, the publicly available Matlab code takes 10 minutes

to process a 255× 255 image on a PC with an Intel i3 2.13GHz CPU.

Following this line, Levin, Weiss, Durand & Freeman (2011) proposed approx-

imating the conditional distribution p(l|b, f) ≈ q(l) instead of the joint distri-

bution p(l, f |b). It leads to an Expectation-Maximization (EM) framework that

treats l as a latent variable and computes expectation on it instead of integration

over all possible configurations. The M-step minimizes the log-likelihood

Eq(l)(− ln p(l,b|f)) = Eq(l)(‖l⊗ f − b‖2). (2.49)

The M-step leads to quadratic programming and can be efficiently solved using

frequency-domain acceleration.

The E-step, which use q(l) to approximate the conditional distribution, is

analogues to minimization of KL divergence in (Fergus et al. 2006). If a Gaussian

prior on the latent image is imposed, the E-step q(l) = p(l|b, f) has a closed-form

solution. Another difference compared to (Fergus et al. 2006) is that, instead of

considering the distribution of f , i.e., q(f), Levin et al. (2011) counted in only

a single f estimation in the M-step, which also makes it more efficient than

the maximum marginal probability implementation. It improves running time to

around 1.2 minutes for a 255× 255 image based on the author released Matlab

code. Approximating p(l|b, f) with the general sparse image priors is still costly,

especially compared to methods employing explicit edge recovery or prediction,

discussed below.

2.2.2 Alternating energy minimization

Energy minimization from Eq. (2.44) is another common way for uniform blind

deconvolution. It has reached great success based on a few milestone techniques

proposed in recent a few years. Alternating minimization can now be applied to

many natural images that are blurred with very large PSFs and/or with signif-

icant noise. The process is also efficient. For example, top performing methods

(Cho & Lee 2009, Xu & Jia 2010, Xu, Zheng & Jia 2013) written in optimized

C++, or even Matlab, take around 5 seconds to process an 800 × 800 image.
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Figure 2.9 1D example showing how transparency is produced on a motion blurred
object. Left: motion blurred bar, whose two ends are blended to the background and
cause semi-transparency. Right: binary transparency map without object motion blur.

Additionally, this set of methods is flexibly expandable, and has been employed

as key steps in many non-uniform (resp., spatially-variant) motion deblurring

approaches.

The most important empirical strategy to make the solver avoid the trivial

solution is to generate an intermediate sharp-edge representation. This idea was

introduced by Jia (2007), who selected object boundaries for transparency esti-

mation and performed PSF estimation only in these regions. It is based on the

observation that an opaque object with sharp edges has its boundary blended to

background after motion blur, as illustrated in Figure 2.9.

With this finding, the original energy function (2.44) can be updated to esti-

mation of the PSF and transparency map, instead of the latent natural image.

The transparency value for a blurred pixel is denoted as αi. It ranges in [0, 1].

Its latent unblurred value is αo. Ideally for solid objects, the αo map is a bi-

nary one, i.e., αo(i) = {0, 1} for any pixel i. These variables update the original

convolution model (2.42) to

αi = αo ⊗ f + n. (2.50)

The corresponding objective function is updated too. Note that this model does

not cause the trivial solution problem. Thanks to value binarization in the latent

transparency map αo, direct optimization can lead to satisfactory results if the

input transparency values αi are accurate enough.

Later on, Joshi, Szeliski & Kriegman (2008), instead of generating the trans-

parency map, directly detected edges and predicted step ones. These pixels are

used to guide PSF estimation, also avoiding the trivial solution.
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(a) Blurred images (b)

(c) (d)

Figure 2.10 Illustration of optimization in iterations. (a) Blurred image. The ground
truth blur kernel and simple initial kernel are shown in the two rectangles. (b)-(d)
Restored images and kernels in three iterations.

2.2.3 Implicit edge recovery

Following this line, several other methods also implicitly or explicitly predict

edges from the blurred image to guide PSF estimation. A general procedure

employed in (Shan et al. 2008) iterates between PSF estimation and latent image

recovery. PSF estimation is achieved by converting Eq. (2.44) to

min
f

‖l⊗ f − b‖2 + λ2‖f‖
1. (2.51)

Latent image l estimation, accordingly, is obtained by a non-blind deconvolution

process, expressed as

min
l

‖l⊗ f − b‖2 + λ1‖∇l‖1. (2.52)

Its solver has been presented in Section 2.1.4. Eqs. (2.51) and (2.52) iterate until

convergence.

To solve Eq. (2.51), writing it as matrix multiplication yields

min
ν(f)
‖Aν(f)− ν(b)‖2 + λ2‖ν(f)‖

1, (2.53)

where A is a matrix computed from the convolution operator whose elements

depend on the estimated latent image l. ν(f) and ν(b) are the vectorized f and
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b respectively. Eq. (2.53) is of a standard L1-regularized minimization form, and

can be solved by transforming optimization to its dual problem and computing

the solution via an interior point method (Kim, Koh, Lustig & Boyd 2007) or

by iterative reweighed least squares (IRLS).

This algorithm can produce reasonable kernel estimates and avoids the trivial

solution because it adopts a special mechanism to set parameters λ1 and λ2 in

Eqs. (2.51) and (2.52), which control how strong image and kernel regularization

is. At the beginning of blind image deconvolution, the input kernel is not accu-

rate; the weight λ1 is therefore set large, encouraging the system to produce an

initial latent image with mainly strong edges and few ringing artifacts, as shown

in Figure 2.10(b). This also helps guide PSF estimation in the following steps to

eschew the trivial delta kernel. Then, after each iteration of optimization, the λ

values decrease to reduce the influence of regularization on the latent image and

kernel estimate, allowing for recovering more details. Figure 2.10 shows interme-

diate results produced in this process, where the PSF is gradually shaped and

image details are enhanced in iterations.

Normalized L1 regularization

An algorithm similar to that of Shan et al. (2008) was afterwards proposed by Kr-

ishnan, Tay & Fergus (2011). It incorporates a normalized L1 regularization term

on image gradients, written as ‖∇l‖1/‖∇l‖2, where ∇l denotes gradients of l.

Normalized L1 modifies traditional L1 regularization ‖∇l‖1 by weight 1/‖∇l‖2,

which makes the resulting ‖∇l‖1/‖∇l‖2 value generally smaller than that of

‖∇b‖1/‖∇b‖2. This means the trivial blurred image solution is not favored by

regularization. In this algorithm, blind deconvolution can be achieved by itera-

tively solving

min
∇l

‖∇l⊗ f −∇b‖2 + λ3
‖∇l‖1

‖∇l‖2
, (2.54)

and

min
f

‖∇l⊗ f −∇b‖2 + λ4‖f‖
1, (2.55)

where λ3 and λ4 are two weights. Because λ3

‖∇l‖2 in Eq. (2.54) is, in fact, a weight

in each iteration. Its function is similar to λ1 in Eq. (2.52). Both of the weights

decrease during iterations to accommodating more and more details in PSF

estimation, which guide blind deconvolution and avoid the trivial delta kernel

solution.

2.2.4 Explicit edge prediction for very large PSF estimation

Explicit edge prediction was developed and used in (Money & Kang 2008, Cho

& Lee 2009, Xu & Jia 2010) with shock filter (Osher & Rudin 1990). It directly

restores strong edges from intermediate latent image estimates in iterations.
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(a) Blurred Image b (b) Thresholded Ĩ (c) Thresholded Ĩ

Figure 2.11 Illustration of shock filter. Given the input image (a), optimization is
performed in iterations. (b) and (c) are generated in two iterations.

Shock filter performs iteratively. Given an image I, in pass t + 1, the shock

filtered result Ĩt+1 is expressed as

Ĩt+1 = Ĩt − sign(∆Ĩt)|∇Ĩt|, (2.56)

where ∆ and ∇ are the Laplacian and gradient operators.

Shock filter can be used in iterative blind deonvolution. It produces step-

like edges from intermediate latent image estimates produced in each iteration.

After removing small-magnitude edges by gradient domain threshold, only a few

strongest edges are kept, as illustrated in Figure 2.11(b). Then this thresholded

edge map Ĩ substitutes for l in Eq. (2.51) for PSF estimation in the next iteration.

In early iterations, the thresholded edge map Ĩ is rather coarse and is obviously

different from the blur input b. It thus effectively avoids the trivial solution. In

following iterations, more details are added to the edge map, as shown in Figure

2.11(c), to further refine the PSF estimate.

This strategy, however, could suffer from the convergence problem because

each shock filtering process might raise the cost resulted from Eq. (2.51) instead

of reducing it in each PSF estimation iteration. The shock filtered map also

does not guarantee to contain correct edges for large PSF estimation. To address

these issues, a general and unified framework was proposed in (Xu et al. 2013)

where the edge map is predicted by a family of sparsity functions to approxi-

mate L0-norm regularization in the new objective. It leads to consistent energy

minimization and accordingly fast convergence. The L0 scheme is mathemati-

cally established with high-sparsity-pursuit regularization. It assures only salient

change in the image is preserved and made use of.

To simplify mathematical expressions, in what follows, I describe a framework

robust in optimization for large-kernel blind deconvolution, which still employs

shock filter. It is similar to that of (Xu & Jia 2010). The method starts with

construction of an image pyramid with n levels. After processing the coarsest

level, its result propagates to the finer one as an initialization. This procedure

repeats until all levels are processed. In each level, the method takes a few iter-

ations to select edges and initialize PSF. The final PSF refinement is performed

in the highest resolution to improve detail recovery.
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(a) (b)

Figure 2.12 Ambiguity of motion deblurring. Two latent signals (dashed lines) in (a)
and (b) are Gaussian blurred, shown as the solid curves. In (a), the blurred signal is
not total-variation preserving and is shorter than the input. The dot-dash curve with
the same height as the blurred signal, however, is an optimal solution during
deblurring. The bottom horizontal lines indicate the kernel size.

Edge selection

In this phase, PSF is estimated with salient-gradient map construction and kernel

estimation. To make this process fast, coarse image restoration is adopted to

quickly obtain the l estimate.

Initially, the blurred image is Gaussian smoothed and then is shock filtered

using Eq. (2.56). Note that the output, i.e., salient-edge map, for many cases,

cannot be directly used to guide PSF estimation due to the following fact: if the

scale of an object is smaller than that of the blur kernel, the edge information of

the object might adversely affect kernel estimation.

It is explained with the example shown in Figure 2.12. Two step signals, i.e.,

dashed curves in (a) and (b), are blurred with a wide Gaussian kernel, yielding

signals in solid curves. Due to the small width of the latent signal, its blurred

version in (a) reduces height, which mistakes PSF estimation. Specifically, the

shorter dash-dot signal, compared to the taller one, has the same total variation

as the blurred signal, and thus produce smaller energy in Laplacian regulariza-

tion. It is more optimal than the ground truth signal when minimizing Eq. (2.44)

with α = 1. Contrarily, the larger-scale object shown in Figure 2.12(b) has no

such ambiguity because it is wider than the kernel, preserving total variation

along its edges. This example indicates that if structure saliency is changed by

motion blur, corresponding edges produced by shock filter could misguide kernel

estimation.

This problem can be tackled by selecting positively informative edges for PSF

estimation and eliminating textured regions with fine structures. A metric to

measure the usefulness of gradients is

r(i) =
|
∑

y∈Nh(i)∇b(j)|
∑

j∈Nh(i) |∇b(j)|+ ε
, (2.57)

where b still denotes the blurred image and Nh(i) is a h× h window centered at

pixel i. ε is to avoid a large r in flat regions. ∇b(j) is signed. For a window con-

taining primarily texture patterns, ∇b cancel out a lot in measure |
∑

j ∇b(j)|.

In contrast,
∑

j |∇b(j)| is the sum of absolute gradient magnitudes in Nh(x),
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Figure 2.13 Edge selection in kernel estimation. (a) Blurred image. (b) r map (Eq.
(2.57)). (c)-(e) Is in the 1st, 2nd and 7th iterations without considering r. (f)
Deblurring result not using the r map. (g)-(i) Is maps computed according to Eq.
(2.59). (j) Our final result. (c)-(e) and (g)-(i) are constructed from ∇Is by solving
Poisson equations.

which estimates how strong image structure is inside the window. Their incor-

poration in r actually measures whether the window is a texture one or not. A

large r implies that local gradients are of similar directions and are not exten-

sively neutralized, while a small r corresponds to either texture or a flat region.

Figure 2.13(b) shows the computed r map. More explanations are provided in

(Xu, Yan, Xia & Jia 2012).

Pixels belonging to small r-value windows are then removed, encoded in mask

M = H(r − τr), (2.58)

where H(·) is the Heaviside step function, outputting zeros for negative and

zero values and ones otherwise. τr is a threshold. Finally, the selected edges are

formed by non-zero values in ∇Is, constructed as

∇Is = ∇Ĩ ◦H(M ◦ |∇Ĩ| − τs), (2.59)

where ◦ denotes element-wise matrix multiplication, Ĩ is the shock filtered image
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and τs is a threshold of gradient magnitudes. Eq. (2.59) excludes part of the

gradients, whose values depend jointly on the magnitude |∇Ĩ| and the prior

mask M. This selection process greatly robustifies following kernel estimation.

Figure 2.13(c)-(e) and (g)-(i) illustrate the correspondingly computed Is maps

in different iterations without and with the edge selection operation. The com-

parison in these two rows manifests that including more edges do not necessarily

benefit kernel estimation. They, contrarily, can confuse this process especially in

the first a few iterations. So an appropriate image edge selection process is vital.

To allow for inferring subtle structures eventually, one can decrease the values of

τr and τs in iterations, to include more and more edges. The maps in (e) and (i)

contain similar amount of edges; but the quality significantly differs. The step

to produce the results in (f) and (j) is detailed below.

Fast kernel estimation

With the selected edge maps, PSF initialization can be done quickly with a

simple quadratic objective function written as

Ee(f) = ‖∇Is ⊗ f −∇b‖2 + λ‖f‖2, (2.60)

Here, f is constrained in a simple quadratic term thanks to the effective gradient

maps ∇Is. Note that minimizing Ee makes the PSF estimate a bit more noisy

compared to that constrained by the Laplacian term in Eq. (2.53). The result

will be refined in the following steps.

Based similarly on Parseval theorem and the derivation in Eq. (2.39), comput-

ing FFTs on all variables and setting the derivatives w.r.t. f to zeros yield the

closed-form solution

f = F−1

(

F(∂xIs)F(∂xb) + F(∂yIs)F(∂yb)

F(∂xIs)2 + F(∂yIs)2 + λ

)

, (2.61)

where F(·) and F−1 denote FFT and inverse FFT respectively. F(·) is the com-

plex conjugate operator.

The algorithm for multi-scale kernel initialization is sketched in Algorithm 1.

Deconvolution starts from the coarsest level with edge selection in Eq. (2.59),

kernel estimation in Eq. (2.61) and fast deconvolution using Eq. (2.8). The es-

timates then propagate to the next level by spatial upscaling and repeating the

above steps to obtain a more accurate result. After all levels are processed, final

kernel refinement is performed in the original image resolution as described in

what follows.

Sparse kernel refinement

To remove remaining noise from kernel f0 output from Algorithm 1, one can ap-

ply hard or hysteresis threshold to set small values to zeros. This simple scheme

however ignores the blur model, possibly making the truncated kernel less accu-

rate. One example is shown in the top middle of Figure 2.14(b). Only keeping
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Algorithm 1 Kernel Initialization

INPUT: Blur image b and an all-zero kernel with size h× h

Build an image pyramid with levels {1, 2, · · · , n}.

for l = 1 to n do

Compute gradient confidence r for all pixels using Eq.(2.57).

for i = 1 to 5 do

(a) Select edges ∇Is for kernel estimation (Eq. (2.59)).

(b) Estimate kernel using Eq. (2.61).

(c) Estimate the latent image ll by fast non-blind deconvolution (Eq.

(2.8)), and update τs ← τs/1.1, τr ← τr/1.1.

end for

Upscale image ll+1 ← ll ↑.

end for

OUTPUT: Kernel estimate f0 and sharp edge gradient ∇Is for further re-

finement

Figure 2.14 Sparse Kernel Refinement. (a) Blurred image. (b) Top row: kernel f
0,

kernel by simply thresholding to remove small-value elements, and our kernel
refinement result f

s. Bottom row: S
1-S3, iteratively detected support regions by the

ISD method. (c) Restored image using f
s.

the large-value elements apparently cannot correctly preserve subtle structure in

the motion PSF.

This problem is solved by iterative support detection (ISD) that ensures de-

blurring quality while removing noise (Wang & Yin 2009, Xu & Jia 2010). The

idea is to iteratively secure PSF elements that already have large values by re-

laxing the regularization penalty, so that these pixels will not be significantly

affected by regularization in next-round kernel refinement.

ISD is an iterative method. In each iteration i, after refining the kernel estimate

f i, a partial support is produced to put large-value elements into set Si and all

others to set Si. This process is denoted as

Si ← {j : f ij > ǫs}, (2.62)

where j indexes elements in f i and ǫs is a positive number evolving in iterations,

to form the partial support. ǫs can be configured by applying the “first significant
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Algorithm 2 Kernel Refinement

INPUT: Initial kernel f0, ∇b, and ∇Is (output of Algorithm 1)

Initialize the partial support S0 with f0 (Eq. (2.62)) and set i = 1.

repeat

Solve for f i by minimizing Eq. (2.63).

Produce Si (Eq. (2.62)).

i← i+ 1.

until
‖f i+1−f

i‖
‖f i‖ ≤ ǫf (ǫf = 1e−3 empirically)

OUTPUT: Kernel estimate fs

jump” rule. Briefly, we sort all elements in f i in an ascending order w.r.t. their

values and compute differences d0, d1 · · · between each two nearby elements.

Then we exam these differences sequentially starting from the head d0 and search

the first element, dj for example, that satisfies dj > ‖f
i‖∞/(2h · i), where h is the

kernel width and ‖f i‖∞ returns the largest value in f i. ǫs is thus assigned with the

value of the jth kernel element. Readers are referred to (Wang & Yin 2009) for

extra explanation. Examples of the detected support are shown in the bottom

row of Figure 2.14(b). Elements within S are less penalized in optimization,

resulting in an adaptive process.

Sparse kernel refinement in each iteration i+ 1 is achieved by minimizing

E(f) =
1

2
‖∇Is ⊗ f −∇b‖2 + γ

∑

j∈Si

|fj |. (2.63)

Threshold applies softly to kernel refinement in regularization, which automati-

cally maintains element sparsity faithful to the motion PSF. Algorithm 2 depicts

the kernel refinement procedure.

To minimize Eq. (2.63) with the partial support, iterative reweighed least

squares (IRLS) can be applied. By writing convolution into the matrix multipli-

cation form, the latent image l, kernel f , and blur input b are correspondingly

expressed as matrix A, vector ν(f), and vector ν(b). Eq. (2.63) is then mini-

mized by iteratively solving linear equations w.r.t. ν(f). In the t-th pass, the

corresponding linear equation is expressed as

[ATA + γdiag(ν(S̄))diag(̟−1)]ν(f)t = AT ν(b), (2.64)

where AT denotes the transposed A and ν(S̄) is the vector form of S. ̟ denotes

max(‖ν(f)t−1‖1, 1e−5), which is the weight related to the kernel estimate from

the previous iteration. diag(·) produces a diagonal matrix from the input vector.

Eq. (2.64) can be solved by a conjugate gradient method in each pass.

The finally refined kernel fs is shown in Figure 2.14(b). It maintains small-

value elements, which exist in almost all motion kernels. In the meantime, it is

reasonably sparse. Optimization in this phase converges in less than 3 iterations

referring to the loop in Algorithm 2.

Finally, given the PSF estimate f output from this algorithm, high quality
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(a) Input (b) (Shan et al. 2008)

(c) (Cho & Lee 2009) (d) (Levin et al. 2011)

Figure 2.15 Visual comparison of different blind deconvolution results. The input is a
camera captured blurred natural image.

(Methods) (Implementation) version 255 × 255 800 × 800 1024 × 768

(Fergus et al. 2006) (Matlab) v1.2 649.11 4343.24 6916.44
(Shan et al. 2008) (C++) v1.0 73.28 417.22 700.23
(Cho & Lee 2009) (C++) 0.79 5.78 11.60
(Xu & Jia 2010) (C++) v3.0 0.80 5.75 13.26
(Levin et al. 2011) (Matlab) 76.21 1084.19 1737.27
(Krishnan et al. 2011) (Matlab) 25.60 215.22 273.85
(Xu et al. 2013) (Matlab) 1.05 5.77 12.23

Table 2.2 Running time (in seconds) of different methods on CPU with respect to three
image resolutions. The kernel sizes are respectively 31 × 31, 41 × 41, and 51 × 51 for the
three sets of data. Note that Matlab implementation can generally be sped up when
reprogrammed in C or C++.

latent image reconstruction can be applied by non-blind deconvolution using

Eq. (2.31). Figure 2.14(c) shows the restored image that contains correctly re-

constructed texture and structure, manifesting the effectiveness of this blind

deconvolution framework.
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(a) Input (b) (Fergus et al. 2006)

(c) (Krishnan et al. 2011) (d) (Xu & Jia 2010)

(e) Input (f) close-up of (b) (g) close-up of (c) (h) close-up of (d)

Figure 2.16 Visual comparison of different blind deconvolution results. The input is a
camera captured blurred natural image. Close-ups are shown from (e)-(h).

(a) Input (b) (Xu & Jia 2010)

Figure 2.17 Deconvolution of a significantly blurred natural image. The blur kernel is
as large as 95 × 95.
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2.2.5 Results and running time

Two blind deconvolution examples and their results are presented in Figures

2.15 and 2.16. The input blurred natural images are with motion kernels with

resolutions 50 × 50 and 85 × 85 respectively in a spatial-invariant manner. All

methods that are compared in this section can remove part or all of the blur.

Difference can be observed by comparing the motion kernel estimates show in the

bottom right hand corner of each result and the finally deblurred images, which

depend on the quality of kernel estimates and different non-blind deconvolution

strategies employed during kernel estimation or after it. Note that these uniform

blind deconvolution methods provide basic and vital tools, which avail research

in recent years and in future to remove spatially-variant blur from natural images

caused by camera rotation and complex object motion.

Figure 2.17 shows a very challenging example where the input image is blurred

with a kernel as large as 95×95 pixels. The method of Xu & Jia (2010) can deblur

the input image and produce the high quality deconvolution result. The running

time of different methods on CPU is given in Table 2.2 tested on a PC with

an Intel i7 2.93GHz CPU and 8G memory. There is much room to speed up

the methods written in Matlab by programming them in C++. In general, as

the alternating energy minimization strategy does not need to estimate marginal

probability or sample distributions, it is generally more efficient and flexible.

Finally, code or executable for several representative natural image uniform

blind deblurring methods is publicly available. Respective links are listed below.

• (Fergus et al. 2006) (website and code)

http://cs.nyu.edu/%7efergus/research/deblur.html

• (Shan et al. 2008) (website and executable)

http://www.cse.cuhk.edu.hk/leojia/projects/motion%5fdeblurring

• (Cho & Lee 2009) (website and executable)

http://cg.postech.ac.kr/research/fast%5fmotion%5fdeblurring/

• (Xu & Jia 2010) (website and software)

http://www.cse.cuhk.edu.hk/leojia/projects/robust%5fdeblur

• (Krishnan et al. 2011) (website and code)

http://cs.nyu.edu/%7edilip/research/blind-deconvolution/

• (Levin et al. 2011) (code)

http://www.wisdom.weizmann.ac.il/%7elevina/papers/

LevinEtalCVPR2011Code.zip

• (Xu et al. 2013) (website and software)

http://www.cse.cuhk.edu.hk/leojia/projects/l0deblur
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