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Lo Regularized Stationary-Time Estimation
for Crowd Analysis
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Abstract—In this paper, we tackle the problem of stationary crowd analysis which is as important as modeling mobile groups in crowd
scenes and finds many important applications in crowd surveillance. Our key contribution is to propose a robust algorithm for estimating
how long a foreground pixel becomes stationary. It is much more challenging than only subtracting background because failure at a
single frame due to local movement of objects, lighting variation, and occlusion could lead to large errors on stationary-time estimation.
To achieve robust and accurate estimation, sparse constraints along spatial and temporal dimensions are jointly added by mixed
partials (which are second-order gradients) to shape a 3D stationary-time map. It is formulated as an L, optimization problem. Besides
background subtraction, it distinguishes among different foreground objects, which are close or overlapped in the spatio-temporal
space by using a locally shared foreground codebook. The proposed technologies are further demonstrated through three applications.
1) Based on the results of stationary-time estimation, 12 descriptors are proposed to detect four types of stationary crowd activities.
2) The averaged stationary-time map is estimated to analyze crowd scene structures. 3) The result of stationary-time estimation is also
used to study the influence of stationary crowd groups to traffic patterns.

Index Terms—Stationary-time estimation, stationary crowd analysis, crowd video surveillance

1 INTRODUCTION

N large cities with high population densities, the assem-

bly of large crowds in public areas, such as train stations
and shopping malls, causes major concerns on public safety
and transportation efficiency. Crowd analysis in video sur-
veillance attracts considerable attention and has important
applications in crowd management and traffic control [1],
[2], [3], [4], [5], [6].

By estimating traffic flow and predicting crowd behav-
iors, crowd analysis can be used to detect abnormal crowd
behaviors and control traffic to avoid congestion. It also pro-
vides valuable information for public space design in order
to achieve maximal space usage and to increase robustness
to crowd gathering.

Existing works focus on detecting motion patterns of
crowds [1], [3], [4], [5] and analyzing the interactions
between moving pedestrians [6], [7], [8], [9]. However, sta-
tionary crowds, which are able to provide surprisingly rich
information for scene analysis and modeling, were not suffi-
ciently studied in the literature.

1.1 Stationary Groups in Crowd Analysis
Stationary group is one of the basic elements in crowd scene
modeling. People stay in a scene for a longer time for certain
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reasons (which are often of security interest), and usually
have more influence on traffic patterns than those passing
through the scene quickly. Therefore, detection and analysis
of stationary groups provide useful information for crowd
scene understanding and leads to interesting applications in
crowd surveillance.

First of all, emergence, dispersal, stationary duration, and
status of stationary groups may incur great security interest.
From these detected activities, we can discover valuable infor-
mation, such as relation of people and possible abnormality.
Fig. 1 shows four activities to be detected in this paper. They
are group gathering, group stopping-by, group relocating,
and group deformation, respectively. For example, in group
gathering, the members could have friendship or share the
same goal.

Second, stationary groups change traffic flow and
decrease traffic efficiency. Previous works mainly model
the global motion patterns of pedestrians based on scene
structures (e.g., entrances, exits, walls, and roads) and the
interactions between individual moving pedestrians.
However, studies [10], [11], [12] showed that stationary
groups might have a greater impact on changing traffic
patterns than moving pedestrians in some scenarios.
When people move around, they adjust speed but not
direction to avoid collisions with other moving pedes-
trians. Such self-organized behaviors keep traffic flow effi-
cient. However, if stationary groups exist, other moving
pedestrians might be forced to change walking directions
to avoid them. As shown in Fig. 2, the emergence and dis-
persal of stationary groups might cause the dynamic varia-
tions of crowd traffic patterns. It is thus of great
importance to incorporate stationary groups into dynamic
scene modeling. Moreover, stationary groups decrease
traffic efficiency as pedestrians need to walk longer way to
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(a) group gathering

(c) group relocating

(b) group stopping-by

(d) group deforming

Fig. 1. Four major types of stationary group activities to be detection based on our proposed stationary-time estimation algorithm. (a) People join a
group from different directions at different times. When all people arrive, the whole group moves to the same destination. (b) A group of people enters
the view together, stay for a period of time, and leave together. (c) After staying at a place for a while, people move to another location and become
stationary again. (d) People in a group have their own activities, taking photos for example.

bypass stationary group regions and special attention
should therefore be paid to these regions.

Last, stationary groups help us better understand scene
structures. It is informative to investigate where stationary
groups are likely to emerge and how long they tend to stay.
An average stationary-time map is shown in Fig. 3. It pro-
vides guidance for crowd management, as well as provision
of facilities and support.

1.2 Stationary-Time Estimation

All the above mentioned applications rely on the estimation of
stationary-time, i.e., the period of time since a pixel becomes
stationary foreground for the same object. As shown in Fig. 4,
our method produces a 3D stationary-time map in the spatio-
temporal space for an input video sequence. This is different
from the map calculated by background subtraction, where
each pixel is either 0 or 1. We have experimented with simply
detecting foreground at individual frames and computing
how long a pixel has been in the foreground. The result is usu-
ally poor. We thus treat the estimation of stationary-time as
a new challenge. As demonstrated by the applications in

Fig. 2. The emergence and dispersal of stationary groups might cause
dynamic variations of traffic patterns. Stationary groups and main traffic
flows are marked in red and blue.

wnipap Buo
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Fig. 3. Averaged stationary-time distribution over 4 hours of a train sta-
tion scene. Stationary groups tend to emerge and stay long around the
information booth and in front of the ticketing windows.

Section 6 and our recent work [13], it is an important step for
further analysis on stationary crowds.

1.3 Challenges of Stationary-Time Estimation

Stationary-time estimation is able to provide more informa-
tion than background subtraction and more difficulties arise
in the meanwhile. Fig. 5 illustrates the inherent challenges.
1) Background subtraction does not distinguish between

(b) Output stationary-time map

Fig. 4. Estimating a 3D stationary-time map for a video sequence.
Results from a few frames are shown. The period of time since each
pixel has been stationary up to each frame is represented by the inten-
sity level. Brighter pixels correspond to longer stationary-times.

Original frames Expected results Error results
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Fig. 5. Challenges of stationary-time estimation. Three example cases
show that results from background subtraction are erroneous. (a) Two fore-
ground objects with spatio-temporal overlap. (b) Local movement of
objects also leads to estimation errors. (c) If a foreground pixel is misclassi-
fied as background in one frame, stationary-time resets to 0, which is
wrong. In (c3), mis-classification happens in the middle, making time reset.
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different foreground objects. If two objects overlap, the esti-
mated stationary-time could be longer than what it should
be in the overlapping region. This phenomenon happens
frequently in crowd scenes and is illustrated in Fig. 5a. 2)
People’s local movements are common during the station-
ary period and the stationary-times of foreground pixels
with local movements should be accumulated, instead of
being frequently reset to 0. This challenge is illustrated in
Fig. 5b. However, matching locally moving foreground
objects especially in crowd scenes is not easy. 3) Most back-
ground subtraction methods do not take temporal consis-
tency into account. If a foreground pixel is misclassified at
one frame, stationary-time could be mistakenly reset to 0
which leads to large under-estimation of stationary-time.
This challenge is illustrated in Fig. 5c. Given all these chal-
lenges coupled together, none of the existing approaches is
ready to solve the problem of stationary-time estimation.

1.4 Method Overview and Main Contributions

A robust stationary-time estimation algorithm is proposed.
Given a video clip, all pixels are encoded as one of the mul-
tiple foreground codewords or as the background. The fore-
ground codebook and the encoding of foreground pixels
are jointly optimized by minimizing the reconstruction cost
of foreground regions. To distinguish foreground regions
from the background during the encoding process, the
rough result of background subtraction is used to guide the
encoding process.

As the encoding result might be quite noisy, sparse con-
straints in both spatial and temporal dimensions are jointly
added to encourage the spatio-temporal consistency of the
encoding result. The sparse constraint is formulated as the
Ly norm of second order spatio-temporal gradients, which
is much more powerful in regularization than the com-
monly used local smoothness prior applied to image and
temporal spaces separately.

A joint optimization pipeline is adopted to alternatively
optimize for the encoding cost and the sparse constraint.
Optimization is performed on a batch of frames instead of
individual ones. This process is robust to occasional local
movements of stationary objects, occlusions, and mis-classi-
fication. Stationary-times of foreground pixels belonging to
different codewords are accumulated separately to generate
the final estimation result.

Our contributions are summarized into the following
three aspects. 1) A robust stationary-time estimation algo-
rithm is proposed, and it is a basic step for stationary crowd
analysis. A novel guided foreground encoding term and an
Ly sparse prior term are proposed to solve the new chal-
lenges arising in stationary-time estimation. An optimiza-
tion pipeline is introduced to solve the highly non-convex
problem by alternatively solving a series of sub-problems.
2) Several novel applications based on stationary-time esti-
mation are introduced. 2.a) Twelve new crowd descriptors
are proposed to detect four stationary group activities as
illustrated in Fig. 1. 2.b) The average stationary-time map
can be used to help understand crowd scene structures as
shown in Fig. 3. 2.c) The influence of stationary groups on
traffic patterns can be studied based on detected stationary
groups and the clustered traffic flows, as shown in Fig. 2.
3) A dataset with annotated ground truth is provided to the

public for stationary-time estimation and stationary group
activity analysis, which is the first in its kind.

2 RELATED WORKS

A straightforward solution to stationary-time estimation is
to accumulate time of foreground pixels detected by back-
ground subtraction methods. The adaptive Gaussian mix-
ture model [14] is one of the popular approaches and it was
improved by Zivkovic [15]. Kim et al. [16] modeled complex
background variations with a codebook. The Bayesian back-
ground subtraction method [17] employs joint features of
color and location, and performs nonparametric density
estimation to handle local movements on background. Chal-
lenges of using these approaches have been discussed in
Section 1. Robust PCA [18] separates foreground objects
and background as a sparse matrix and a low rank matrix.
It is not suitable for this estimation task as foreground pixels
with long stationary-time are very likely to be classified as
background.

For other possible solutions, keypoint tracking [19],
tracking-by-detection [20], optical flow estimation [21], [22],
and pedestrian detection [23], [24] cannot generate satisfac-
tory results because of their unreliable performance in
crowded scenes, which is demonstrated by our experiments
in Section 5.2.

There are significant amount of works on crowd motion
analysis. Lagrangian coherent structures [1], Lie algebra
representation [25] and topic models [3], [26], [27], [28], [29]
have been widely used to model crowd motion patterns.
Social force models [30], [31] can be used for pedestrian sim-
ulation [32], tracking [7], interaction analysis [8], and abnor-
mal event detection [6] in crowd. All these works target on
moving pedestrians. Stationary groups, although can also
provide valuable information, are lack of attention in exist-
ing research works.

It is of interest to detect social groups and analyze their
activities [12], [33], [34], [35], [36], [37]. Cristani et al. [38]
studied the interactions of standing people in a sociological
view. Other works along this line mainly considered mov-
ing groups. Pedestrians were grouped based on their rela-
tive distances and the similarities of moving patterns [33],
[35], [39]. Various features and models were proposed to
recognize different mobile group behaviors [36], [40], [41],
[42], [43]. As discussed in Fig. 1, stationary groups have
their own characteristics and special features are needed to
characterize their activities and properties.

3 STATIONARY-TIME ESTIMATION

In this section, we introduce an optimization based algo-
rithm to estimate the stationary-time of all pixels in color
video, which is defined as the period of time since each pixel
becomes stationary foreground for the same object. To
achieve this goal, the problem is converted to encoding all
pixels into either one of the multiple foreground codewords
or the background. The objective function of the foreground
encoding process consists of two terms, a guided foreground
encoding term that jointly optimizes a foreground codebook
and all pixels” encoding results (Section 3.1), and a sparse
gradient prior term that effectively encourages the spatio-
temporal consistency of the encoding results (Section 3.2).
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The stationary-time can then be easily calculated for each
foreground codeword separately (Section 3.4). A long video
sequence is divided into short clips with overlap, such that
information of codewords and stationary-time can be consis-
tent across clips.

3.1 Guided Foreground Encoding

Given a video clip, encoding foreground pixels aims at
simultaneously looking for an optimal foreground code-
book D and determining which codeword in D each fore-
ground pixel belongs to. It is achieved by minimizing
reconstruction cost of replacing foreground pixels with
assigned foreground codewords. In the remaining of this
paper, “codeword” refers to “foreground codeword”.

Each foreground pixel or codeword is associated with a 5D
feature vector. Let p be a general pixel. The feature vector of p
is written as I, = [R,, G, B,, X, Y,]", where [R,, G,, B,] and
[X,,Y,] are the RGB values and the spatial coordinates of p.
Each feature channel is independently normalized to [0, 1] to
indicate the same importance. Let {d;, ..., dy} (d; € R**! for
it =1,..., M) represent M codewords that form the codebook
matrix D = [dy,...,dy] € R, These codewords can be
regarded as M cluster centers of the input foreground pixels.
Pixels belonging to the same codewords denote that they
belong to the same stationary part. The encoding result of p is

represented by an M-dimensional binary vector a,, € {0,1}"
and all pixels” encoding results are denoted as «. The entries
of a, can only be 1 or 0, and at most one element can be 1. If
all the entries are 0, p is labeled as background and ||e, ||, = 0.
If the ith element is 1, p is assigned with codeword d; and
[leep||; = 1. As our goal is to distinguish foreground individu-
als with M codewords, the codebook size M should be no
smaller than the number of pedestrians.

The encoding can be achieved by minimizing the cost of
reconstructing foreground regions using codewords,

min

|Da, — 1, ||2. 1)
P gl =1} ’

The codebook D is initialized by k-means clustering, and is
then jointly optimized with the encoding result e, for all
foreground pixels. Note that I, contains the spatial coordi-
nates of p. Optimizing the reconstruction of spatial coordi-
nates of foreground pixels implicitly encourages pixels in a
local region to share the same codeword.

There exists a trivial solution to the foreground encoding
term (1), which simply labels all the pixels as background.
A guidance term is needed to encourage the resulting fore-
ground regions to be similar to the result of background
subtraction. A background subtraction result [16] is adopted
to guide foreground encoding,

miny (|l |, - u,)’, )
p

where v, denotes p’s background subtraction result.

By combining (1) and (2), the guided foreground encod-
ing term is denoted as Q(D,«), which balances the fore-
ground encoding errors and the deviation from the rough
background subtraction result,
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Fig. 6. lllustration of the foreground encoding that separates foreground
objects close or overlapped in the spatio-temporal space. (a) 3 frames
from the same region. After person B arrives, A leaves. (b) Temporal
slice image along the yellow line, where A and B overlap. (c) Foreground
pixels assigned with three different codewords. They are well separated.
(d) Foreground codewords (colored) and estimated stationary-time
(gray-scale) of input frames. The learned codebook D with M = 3 are
shown on the right. Each codeword d; is represented by one rectangle.
The R, G, B color values are shown as the colors of the rectangles while
the X, Y coordinates are illustrated as the locations of the rectangles.

>
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Q(D,a) = D, — Lll3 + 1) (lapll, = w)* @)
P

where 7 is a parameter indicating the confidence on w,,.
Q(D, ) is minimized w.r.t. the foreground codebook D and
the encoding results of all pixels a.

Fig. 6 shows one example of our encoding result where
multiple codewords are assigned to different foreground
regions. With A/ = 3, the learned five-dimensional codeword
vectors are visualized in Fig. 6. The corresponding fore-
ground segmentation result is shown in Figs. 6b, 6¢, and 6d.

By sharing codewords in local regions, the under-estima-
tion errors caused by local movements of foreground objects
(shown in Fig. 5b) can be effectively eliminated. By cluster-
ing foreground pixels into different codewords, different
pedestrians or body parts can be well separated even they
occlude each other in the spatio-temporal space as shown in
Fig. 6c. After the encoding result is generated by our algo-
rithm, stationary time of different codewords can be accu-
mulated separately (detailed in Section 3.4). Whenever a
new codeword is generated, its stationary time is accumu-
lated from zero. The over-estimation in the overlapping
regions can be avoided as shown in Figs. 5a and 6d.

3.2 Sparse Gradient Prior

The stationary-time of a foreground pixel p increases if it stays
with the same encoding result «,,. Due to lighting variation,
local movement, and occlusion, the estimation of «,, could be
quite noisy if using Q(D, a) alone. The estimated stationary-
times might be constantly reset to 0, as shown in Fig. 5c. We
observed that the change of «, on ideal stationary objects
should be very sparse. We accordingly impose a sparse gradi-
ent prior ¢(e) to eliminate noise and maintain spatio-temporal
consistency,
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Fig. 7. By utilizing the sparse prior, we estimate « better from noisy
and/or locally moving objects. (a) Stages of two pedestrians arriving,
staying, locally moving, and leaving (horizontal-axis: time; vertical-axis:
scanline pixels highlighted by the orange dashed line). (b) Pixels with
non-zero 9, , values. (c) Pixels with non-zero 9,+9; values. (d) Our fore-
ground encoding result with 9, in (b). (e) Erroneous encoding result
with a,+9, in (c).

cler) = #{p| |10z 0pll5 + [0y c0tp[ |, # O}a )

where 9, ; and 9, are the second-order gradients w.r.t. z — ¢
and y — t space derivatives. If the current pixel p is indexed
by the spatial and temporal coordinates (z,,y,,t,), its
second order gradient can be calculated numerically as
8-75:ta7] = [afp«,y‘[»tp - aT[)fU[utp_l] - [al'p_l\?/[)vtp - aI[)_l«,yp«,tp_l]’ and
8y~,fap = [aﬂﬁpﬁyp:fp - "‘mp,yp«,tpfl] - [afp@/p*lfp - aﬂ"/p:?/pflﬁfp*ﬂ' #
counts the number of nonzero values in the mixed partials.

3.2.1 Ly Norm Sparse Constraint

The sparse constraint is formulated as an Ly, norm term,
which has unique properties in gradient domain compared
with L; norm.

Non-zero L, gradients of a, denote changes of encoding
results along spatial and temporal dimensions while zero
Ly gradients of a), denote invariance of encoding results.
For the stationary time estimation problem, we need to min-
imize the number of encoding changes along spatial and
temporal dimensions to regularize the solution, which is
quite suitable to be modeled by the L, norm sparse
constraints.

Moreover, Ly norm globally regularizes the number of
non-zero gradients and all non-zero gradients of «,, share the
same importance. However, the cost of L; norm loss function
increases if the gradient magnitude is large. Mathematically,
Ly norm satisfies positive scalability constraint
Ly(az) = |a| - L1 (z), which indicates L; norm penalizes more
on larger gradient magnitudes. Some noises with small gra-
dients cannot be removed which may lead to frequent
changes of encoding results and large stationary time estima-
tion errors. Contrarily, Ly norm satisfies Ly(z) = Ly(az) with
any non-zero a. Itis preferable for the stationary-time estima-
tion problem as Ly norm penalizes changes of «, equally
regardless of the magnitudes of the changes.

In addition, various solvers [44] are proposed to solve
different computer vision problems with L, norm con-
straints and decent results were achieved.

3.2.2 Second-Order Gradients

To enforce spatio-temporal consistency of the foreground
encoding result, a simple prior incorporating first-order gra-
dients along each dimension may be used,

c’(a) = #{p| ||3map||2 + ||ayap||2 + ||3tap||2 # 0}- (5)

We compare this prior with that in (4) to show second-
order gradients are more effective. In (5), any nonzero val-
ues in z, y, or ¢ gradients result in nonzero ¢’. When calculat-
ing ¢, a stationary person produces the result shown in
Fig. 7c, where all body boundaries inevitably produce many
nonzero values. When using ¢’ as a prior for regularization,
all these boundary pixels will be regularized, which is not
our intention.

There is no such problem in (4). Nonzero ¢’ caused by
spatial boundaries would be eliminated if the object is sta-
tionary when calculating second-order gradients 9,; and
d,, for those pixels. As shown in Fig. 7b, only a few moving
boundary pixels yield nonzero c. Thus only penalizing
these pixels would result in a very sparse encoding result,
robust to noise and outliers. We compare the final results
of our system by using these two priors respectively in
Figs. 7d and 7e, and observe that the second order gradient
is effective to produce reasonable encoding results for
foreground pixels.

3.3 Joint Objective Function
Egs. (3) and (4) are integrated to a joint objective function,

min {Q(D, @) + Ac(@)}, st a, = {0, 1} [la, ], < 1. (6)

The data term Q(D,«) produces M mid-level semantic
codewords from hundreds of intensity levels, which lead to
robust stationary-time estimation against local movements.
The prior c(a) captures the structural sparsity for each code-
word of stationary objects in the spatio-temporal space. It
guarantees the stability of «, and avoid frequent change of
a, even for a large M.

3.4 Pixel-Wise Stationary-Time Estimation
Stationary-time can be estimated based on the change of a.
If the foreground codeword of a pixel is d; starting from
frame ¢, and it is changed to a different codeword d; or
background at frame t,, its stationary-time is ¢, —¢;. If a
pixel is changed from background to a foreground code-
word, it locally searches for a pixel with the same codeword
in previous frames. If such a matched pixel is found, its sta-
tionary-time will be inherited by the current pixel, instead
of counting from zero. This avoids under-estimation caused
by foreground local movements, including waving hands,
looking around, turning around, and some other body
movements, which are quite common and frequent during
the stationary period.

If a frame is close to the boundary of a video clip, estima-
tion is not reliable. We use overlapping video clips with
shared buffer frames. Only estimated stationary-time in
frames outside the buffer is kept for reliability’s sake. If an
object stays longer than the duration of a clip, the foreground
codewords are matched across clips using the overlapping
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part so that the stationary-times can continue in accumula-
tion. Codebook D is dynamically updated to track the
change of background.

4 OPTIMIZATION

D and « in (6) are coupled and optimization is highly non-
convex. A set of axillary vectors o) € R" are introduced to
relax the original problem as

Do

minU{Q(DaO‘O) +ﬂlz|ap—a2|§+)\c(a)}, )
p

M M
sit.oay = {0,137, HaPHl < 17“2 ={0,1} 7”“2”] <L

When g, is large, &) approaches a,,. It makes the challenging
problem boil down to two sub-ones. Satisfactory results are
achieved by solving the two sub-problems iteratively (Sec-
tions 4.1 and 4.2) and increasing B, after each iteration. This
strategy was used in [44] and proved effective to solve L
gradient minimization problems.

4.1 SolveforDand o)

With «,, fixed, the sparse prior term is a constant and can
therefore be omitted. The first sub-optimization problem of
(7) can be written as

mng{wa%+ﬁlznap—agn§},
p

D,

(8)
s.t. ag ={0,1}", ||a2||1 <L

Similar to k-means, D and «' are estimated iteratively.
Given ', D is obtained by solving a least square problem.
Given D, ag can be obtained by naively pixel-wise searching

(M +1) possibilities of foreground codewords and
background.
4.2 Solvefora,
Given D and ag fixed, the second sub-problem is
main{ﬂlZnap —a? +Ac<a>}. (©)
»

The constraint that a;, = {0, 1} is first omitted and then
added back using thresholding after «, converges. (9) is
non-convex. We further employ axillary vectors h and v to
approximate 9, and 9, in a similar way as (7), which
yields

. 2
glﬁg{/gl ; lety, — eyl + Ac(h, v)

(10)

+ By Z (Haa'.tap - hp”g + [19y.0, — Vp”%) }
p

c(h,v) = #{p||[h, |5 + [[v,|5 # 0}. We solve (10) again with

two sub-optimization problems (Sections 4.2.1 and 4.2.2)

iteratively in the same way as solving (7).

4.2.1  Solve for (h,v)
Given ¢, (10) is equivalent to

(h,v) = arg Iﬂli,n{Ac(hﬂ V) + By Zp: 110, o, — hp”g

2
+ By Z |0yt — Vp|2}'
)

(11) is independent on p, thus can be pixel-wisely solved,

(h,,9,) = (0,0)  if  N/By > |3, s0tyll3 + 18,00, |l5
pp (010, 0y 1x,)  elsewhere

an

Here (h,,,v,) is used to approximate (9, ;a;, 3, +ctp,). In this
step, we need to decide whether to preserve the change of
a,. If \/By > ||0.40,[5 + ||0,0@,|[5, the change of «, would
be removed and (ﬂpﬁp) would be set as zero. Otherwise,

the change would be preserved and (h/\p, v,) would be set as
the original second order gradient (9, ;c,, 9, ;).

With a larger A, more non-zero gradients are set to
zeros. It is because the optimization has a higher weight
on the sparsity constraint and the changes of «, along
temporal and spatial dimensions are more likely to be
removed. With a larger |\am‘ta1,\|§ + |\ay¢al,\|§, the gradient
of a), is less likely to be set to zero. It is because the ground
truth change of «, is significant and removing the change
may lead to large error. B, also influences the final encod-
ing results. Initially, B8, is small, the changes at more loca-
tions are allowed to be removed. After several iterations,
B, is large, the removal of the changes of a, becomes more
difficult. In this way, we can keep the optimization process
more stable and the optimization would eventually con-
verge with some large $, value.

4.2.2 Solve fora

Given (h,v), (10) is equivalent to the following quadratic
optimization problem with a closed-form solution:

a :argrr}xin{ﬂl Z | —052 [

P

+ B, Z <|aw,tap - hp”% + [[0y.c0p — Vp||§> }

p

(12)

4.3 Discussions on Convergence

We propose to solve (9) with alternative relaxing and
rounding, which is common for many binary optimization
problems [45]. In the experiments, we observe that the
numerical optimization results of «, are quite close to the
allowable states (1 or 0) even without the binary constraints.
Thus we can adopt this alternative optimization strategy in
our framework. After several iterations, a decent solution is
yielded. e, is recovered, and binary constraints are satisfied
in the meanwhile.

The weights g,, B,, and B; indicate the relaxation degree
and are initialized as 1. Initially, a loose relaxation (small )
is used to avoid local minimum. Afterwards, we gradually
reduce the relaxation degree (increase p) to approximate
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Fig. 8. lllustration of convergence of « in one = — ¢ plane. Initial estima-
tion and following updates in different iterations are shown. Noise is
gradually removed.

our objective function (non-convex). Our optimization con-
verges after 3-5 iterations.

Energy non-increasing can be theoretically guaranteed in
our framework, since all sub-problems have optimal solu-
tions. Similar to all other Ly norm problems (NP-hard), mea-
suring the distance between a solution to the optimal one is
still an ongoing problem for the theoretic community [46].
Our framework can provide a decent solution for stationary
crowd analysis in practice. The relaxation steps and smooth-
ing results of one example are shown in Fig. 8.

5 EXPERIMENTS

Extensive experiments on real and synthetic data are con-
ducted to evaluate the proposed stationary-time estimation
method and its major components.

5.1 Datasets and Experiment Setup

Two datasets are used for evaluation, one is the Train Sta-
tion dataset [47] and the other is collected by us. For each
foreground pixel, its stationary-time up to the current frame
is manually annotated. 17 frames (with over 8 million pix-
els) uniformly sampled from the two datasets are annotated
at pixel level. They cover 70 percent frames in dataset I and
100 percent frames in dataset II. If the estimated stationary
time 7' of the current frame is correct, all the previous 7'
frames should be correct. Examples of annotated stationary-
time maps are shown in Fig. 9. Details of the datasets are
recorded in Table 1.

A one-minute video is spatially fragmented into 6 x 4
small video clips of size 160 x 135 and its frame rate is
downsampled to 2.4 fps. For such a short clip, it takes
around 30 seconds to optimize with an Intel CPU @3.3 GHz

Fig. 9. Annotated stationary-time maps on (a) the Grand Central dataset
[47] and (b) the dataset collected by us.

TABLE 1
Details of Datasets

Dataset I [47] Dataset II
Scene type Indoor Outdoor
Video length 3,500 seconds 800 seconds
Frame rate 24 fps 24 fps
Resolution 960 x 540 768 x 576
Number of annotated frames 8 9
Number of stationary pixels 147.930 553.505
on the annotated frames ’ ’
Total number of pixels 4,147,200 3,081,312

on the annotated frames

in MATLAB. The optimization process for a one-minute
video takes 12 minutes.

We empirically set  as 1.5, A as 20, and the increasing
ratio of B as 2 for both datasets. Their influences on the final
encoding results are investigated in Section 5.5.

Several measures are used. The average estimation error
on stationary-time (ET) for all foreground pixels is obtained.
We compute the ratio between the estimation error and the
ground truth for each foreground pixel. Then all the ratios
on foreground pixels are averaged. This measure is denoted
as average estimation error ratio on stationary-time (ERT).
If a pixel has become stationary longer than 10 seconds up
to the current frame, it is regarded as a stationary pixel. Sev-
eral detection measures used include 1) false alarm rate
(FAR), 2) missed detection rate (MDR), and 3) total error
rate (TER).

Various baselines are evaluated and results are reported
in Tables 2 and 3. We tested replacing the proposed second-
order gradients (4) with first-order ones (5) (denoted as
“Ours (FOrder)”), and replacing the proposed L; norm
prior with L; norm one (denoted as “Ours (L;)”). We also
evaluate the results of excluding the two important compo-
nents of the proposed method. First, foreground encoding
procedure is omitted (all the foreground pixels would be
assigned with the same codeword) and all other parts
remain the same. This comparison is denoted as “Ours
(NoCode)”. Second, the codeword sharing step is omitted
and the stationary-time cannot transfer among pixels. It is
denoted as “Ours (NoShare)”. Sharing codeword is
explained the first paragraph of Section 3.4. Moreover, we
also evaluate the performance of conducting 3D Markov

TABLE 2
Results of Stationary-Time Estimation on Dataset |
Methods FAR MDR TER ET(s) ERT
Ours 029% 3.49% 0.39% 10.04 12.21%
Ours (FOrder) 0.51% 590% 0.69% 16.12 26.77%
Ours (L;) 0.28% 4.91% 043% 1429 19.53%
Ours (NoCode) 0.33% 3.50% 0.43% 1694 21.02%
Ours (NoShare) 0.27% 13.74% 0.69% 19.24 24.33%
Encoding + MRF [48] 0.30% 891% 0.57% 15.16 19.81%
GMM [15] 0.27% 2451% 1.11% 29.46 43.98%
Codebook [16] 0.26% 21.03% 0.93% 29.51 40.14%
Bayesian [17] 0.33% 20.18% 1.01% 26.70 39.16%
Keypoint tracking [19] 0.30% 24.26% 1.09% 40.78 56.49%
Person tracking [20]  0.29% 30.52% 1.23% 52.32 59.91%

ET is measured in seconds.
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TABLE 3
Results of Stationary-Time Estimation on Dataset Il

Methods FAR MDR TER ET(s) ERT

Ours 091% 0.54% 0.86% 15.88 8.67%
Ours (FOrder) 1.37% 0.98% 1.32% 16.90 10.68%
Ours (L) 1.01% 0.76% 0.98% 17.04 12.44%
Ours (NoCode) 1.04% 0.55% 0.97% 27.76 15.30%
Ours (NoShare) 0.89% 4.15% 1.35% 32.46 18.11%
GMM [15] 0.92% 16.24% 3.06% 57.41 39.76%
Encoding + MRF [48] 0.90% 0.91% 1.89% 19.52 11.44%
Codebook [16] 1.03% 13.37% 2.75% 58.28 40.67%
Bayesian [17] 1.05% 12.26% 2.60% 45.20 32.19%
Keypoint tracking [19] 0.92% 5.75% 1.60% 54.14 38.86%
Person tracking [20] 1.01% 7.90% 1.89% 58.62 44.61%

ET is measured in seconds.

Random Field [48] smoothing after the proposed fore-
ground encoding process (denoted as “Encoding+MRF”).

We also compare our results with several background sub-
traction methods including the improved adaptive Gaussian
mixture model [15], the codebook based model [16], and the
adaptive Bayesian model [17]. Stationary-time is accumulated
if a pixel is detected as foreground. Two tracking algorithms,
including dense tracking [19] on detected foreground pixels
[16] and multi-person tracking method [20] are also tested.
Stationary-time is estimated as the length of the trajectory
since a pixel becomes foreground.

5.2 Result Analysis

Our approach outperforms all the alternatives on both the
indoor and outdoor datasets. Any component change or
removal results in larger ET and ERT. The first order gradi-
ent prior is not powerful enough to constrain the stationary
structure, thus “Ours (FOrder)” obtains a worse result than
the proposed second order gradient prior “Ours”. The L;
norm term is less effective at constraining the sparse struc-
ture of encoding result e, than the proposed L, norm term.
More experiments and discussions on the sparse gradient
prior are in Section 5.3. Without the encoding process, dif-
ferent persons cannot be distinguished and there would be
only one foreground codeword. Locally sharing of fore-
ground codeword results in over-estimation, so the false
positive rate of “Ours (NoCode)” is slightly higher than the
proposed method. If foreground codewords cannot be
shared, a lot of stationary-time information is lost and sta-
tionary-times restart from zero frequently, which leads to
the large mis-detection rate of “Ours (NoShare)”. The result
of 3D MRF demonstrates that our alternative optimization
scheme generates more accurate results than applying MRF
after the first subproblem. The parameters in two subpro-
blems (encoding and smoothing) affect each other, thus
should be optimized alternatively.

With large mis-detection rates and large errors of esti-
mated time, background subtraction and tracking based
methods are not suitable for stationary-time estimation. The
false positive rate of the proposed method is slightly higher
than a few comparisons because of the smoothing effect
yielded by the sparsity prior. However, the mis-detection
rate of our method is much lower. The stationary-time esti-
mation error (ET) is also at least 2.5 times lower than [15],
[16], [17], [19], [20]. If some shadow cannot be perfectly

removed by the initial background subtraction, false posi-
tives may arise.

In general, the adaptive Bayesian model [17] works better
than other approaches, because it adds smoothness con-
straints in the spatial domain and between two successive
frames. However, it is still not similarly good as ours because
of the reasons discussed in Sections 1 and 2. This smoothness
prior causes more false positives than ours, which manifest
the necessity to employ the second-order gradient sparse
prior. Both tracking algorithms cannot achieve satisfactory
results because of their unreliable performance for crowded
scenes. In addition, for the tracking-by-detection method
[20], it only provides bounding-box results which roughly
annotate pedestrians’ locations and sizes, while our problem
requires pixel-level stationary time maps. For the keypoint
tracking method [19], it tends to generate fragmented track-
lets for the same keypoint and might frequently reset station-
ary time back to zero.

5.3 Evaluation of the Proposed Sparse Gradient
Prior

In this section, experimental evaluation is conducted to

prove the effectiveness of the proposed sparse constraint,

i.e.,, Ly norm of second order gradient. Its advantages have

been discussed in Section 3.2.

Different levels (0 — 0.5) of noise are added to a synthetic
video clip to test the robustness of the proposed sparse con-
straint. Noise is added by randomly switching between
background and foreground pixels. The switching probabil-
ity is denoted as noise level. Zero noise level means no
noise. 0.5 noise level removes all the information of the orig-
inal video. The synthetic video clip is manually designed. It
contains multiple stationary foreground pedestrians of dif-
ferent sizes, which are simplified as cylinders. For synthetic
data, it is easy to quantitatively add noise and calculate
error rates for evaluating the regularization power of differ-
ent methods. In Fig. 10, only one x — ¢ plane is shown and
these pedestrians appears as rectangles in the images.

Fig. 10 shows the spatio-temporal planes of the input
noisy videos and the reconstruction results of different
methods. The first row shows six « — ¢ planes of the input
video clips with different noise levels from 0 to 0.5. As the
noise level increases, the pedestrian rectangles are blurred
and no information remains when it reaches 0.5.

The average filtering, Ly norm of first order gradient
prior, and L; norm of second order gradient prior are used
for comparison to show the effectiveness of the proposed L
norm of second order gradient prior. Reconstruction results
of the three comparisons at different noise levels are shown
in the following rows in Fig. 10. Results of the proposed
prior are shown in the last row. The error rate of each case
is measured as the percentage of erroneous pixels in total
pixels. Error rate curves of different methods are shown in
Fig. 12a.

The proposed method outperforms all the other compari-
sons from the results shown in Figs. 10 and 12a. When no
noise is added, both the L; norm second order gradient
prior and the Ly norm first order gradient prior can achieve
the same zero error rate as the proposed Lj, norm second
order gradient prior. However, the average filtering results
in a non-zero error rate because the rectangle corners are
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Fig. 10. Reconstruction results when adding noise to the whole synthetic
video. Only one z —t plane of the input/output video is shown. Input
frames with different noise levels are in the first row. Corresponding
reconstruction results using average filtering, L, norm constraint of first
order gradient, L; norm constraint of second order gradient, and L,
norm constraint of second order gradient, are in the following four rows.
Noise level ranges from 0 to 0.5, shown in different columns. Black rec-
tangles simulate foreground pedestrians of different sizes.

smoothed. When noise level increases, results of the average
filtering show lots of error patches in both foreground and
background regions.

The second order gradient priors can maintain the rect-
angle shape while a lot of information is lost when using
the first order gradient prior. Error rate curves of first and
second order gradient priors start to increase at the noise
level of 0.15 and 0.30, respectively. Even when the noise
level reaches 0.5, reconstruction result of second order gra-
dient priors are mostly lines parallel to the temporal dimen-
sion, which is close to the pattern of stationary pixels.
However, first order gradient prior results in meaningless
noisy patches. Our investigation shows that the target shape
structure is important for the selection of sparse priors.
Although the first order gradient prior achieves good
results in many other image processing tasks, it is much less
effective for our problem. The stronger regularization
power of our proposed Ly norm second order gradient prior
can also be demonstrated through the comparison with ;
norm second order gradient prior.

The most challenging regions for stationary-time estima-
tion are foreground boundaries, because noise caused by
occlusion, interaction, and local movements mostly happens
in these regions. Another experiment is conducted and noise
is only added on foreground boundaries. Noisy inputs are
shown in the first row of Fig. 11. Other settings are the same
as the previous experiment. Results are shown in Figs. 11 and
12b. Ly norm second order gradient prior also performs best.

5.4 Analysis of the Background Subtraction Errors

In our algorithm, rough background subtraction result u, is
used to guide the foreground encoding process. Our optimi-
zation pipeline penalizes the differences between the
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Fig. 11. Reconstruction results when adding noise around foreground
boundaries of the synthetic video. Other settings are the same as those
in Fig. 10.

encoded foreground pixels and the rough guidance u,. The
sparse constraint helps correct inaccurate background sub-
traction result to a certain degree.

In order to test the robustness of the proposed pipeline
against errors of background subtraction results, one experi-
ment is designed on a synthetic video by adding random
noise on the ground truth background subtraction result.
Different noise levels (0 — 0.5) and noise sizes (1 x 1 and
3 x 3) are tested. The noisy background subtraction results
and the final encoding results are shown in Fig. 13. The
curves of encoding error rates with varying noise percen-
tages are shown in Fig. 14.

From the results, we can observe that our method is able to
correct a certain degree of errors of background subtraction
through the joint optimization with the sparse gradient prior.
From Fig. 13, we can see that our proposed optimization
framework can generate satisfactory results even with quite
poor background subtraction results (noise level = 0.35 for
noise size 1 x 1, and noise level = 0.30 for noise size 3 x 3),
which demonstrates that our method is very robust to the
errors in background subtraction result.

5.5 Analysis of Parameter Settings

Our optimization framework has three main parameters, , A,
and the increase step of 8 (denoted as § ratio). As shown in
Fig. 15 and Table 4, six different parameter settings with

Add noise on the whole image

Noise only on foreground boundaries
001 ¥ -

" Average fitering
s L, first order

% Average filtering
—m— L first order

0.008-
—e— L, second order —e— L, second order
= -= - L, second order

0.006 === No filtering

- =~ L, second order

0.006 “+" Nofiltering

0.004 0.004

Error Rate
Error Rate

0.0021

03 035 04 005 01 015 02 025
Noise Percentage

0 005 01 015

02 025
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03 035 04

Fig. 12. Reconstruction error rate curves of different methods when add-
ing noise (a) to the whole synthetic video clip, and (b) around foreground
boundaries of the synthetic video.



990 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.39, NO.5, MAY 2017

Ground truth I L~
encoding I
Noise Noisy u,  Encoding  Noisy u,  Encoding
level 1x1) result 3 x3) result

Fig. 13. Encoding results when adding noise to the background subtrac-
tion results u,. Ground truth encoding is shown in the first row. Different
colors represent different foreground objects. The background subtrac-
tion results v, with different noise levels and the corresponding encoding
results are shown in the following rows. The noise level ranges from 0 to
0.5. In the w, map, black regions represent foreground pixels while white
regions represent backgrounds. Encoding results of different codewords
are shown in different colors.

respect to our default values are tested on a synthetic clip and
also on datasets I and I, including (1) increasing f ratio to 20,
(2) increasing B ratio to 200, (3) decreasing n to 0.15, (4)
increasing 1 to 15, (5) decreasing A to 2, and (6) increasing A to
200. The results show that our method is robust to small
changes of the parameters, and our current parameter setting
achieves the best performance on both datasets I and IL

B ratio controls the convergence speed of our joint optimi-
zation scheme. Increasing g ratio to 20 still generate satisfac-
tory results (Fig. 15(1)). However, when g ratio is too large,
large encoding errors appear (Fig. 15(2)). Ideally, smaller
ratio leads to better performance, but more iterations are
required for convergence.  balances the reconstruction of
foreground with codewords and the deviation from the rough
background subtraction result. With a smaller 7, more back-
ground subtraction noise can be removed (Fig. 15(3)) With a
larger 7, the final encoding results mainly depend on the ini-
tial background subtraction result (Fig. 15(4)). A balances the
data term and the regularization term. If we decrease A, the

Noise on background subtraction result
0.4

—e&— Noise of the size 1 x 1
0.3 —o— Noise of the size 3 x 3

0.2

Error rate

0.1

0 0.1 0.2 0.3 0.4 0.5
Noise percentage

Fig. 14. Encoding error rate curves when adding noise to the synthetic
background subtraction result.
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Fig. 15. Final foreground encoding results with different parameter
settings.

data term influences more on the final results. The noise can-
not be successfully removed without the sparse constraint
term (Fig. 15(5)). Larger A leads to smoother encoding result,
since the sparse regularization is quite strong (Fig. 15(6)).

6 APPLICATIONS

Several new applications are proposed in this section based
on our stationary-time estimation algorithm.

6.1 Stationary Group Activity Detection

We apply our proposed method to detect stationary group
activities and test it on the Ground Central Train Station
dataset [47]. This dataset has numerous stationary group
activities. We select four types of them as illustrated in
Fig. 1 for the detection purpose, because these activities are
of great interest in crowd surveillance and have enough
samples in this dataset.

The stationary group activity detection task contains
three main components, stationary group detection (Section
6.1.1), relevant trajectory selection (Section 6.1.2), and group
activity description (Section 6.1.3).

6.1.1 Stationary Group Detection

The first step is to automatically detect all stationary groups
in the entire video. Stationary-times of foreground pixels
are estimated, and stationary foreground pixels are then
selected by thresholding the estimated stationary-times. For
each frame, stationary foreground pixels are clustered into
groups with mean-shift [49]. Temporal overlaps of station-
ary foreground clusters are then used to match stationary

TABLE 4
Results of Stationary-Time Estimation by Modifying
Different Parameters

Parameters Dataset [ Dataset II

A n PBratio TER ET(s) TER ET(s)
(0) Proposed 20 1.5 2 0.39% 10.04 0.86% 15.88
(1) Bratio=20 20 1.5 20 0.42% 12.79 0.87% 22.63
(2) Bratio=200 20 1.5 200 0.50% 17.56 0.99% 29.76
(3) Decreasen 20 0.15 2 0.53% 15.28 0.92% 19.47
(4) Increase n 20 15 2 051% 16.17 1.04% 25.38
(5) Decrease A 2 15 2 0.54% 13.83 0.96% 27.11
(6) Increase A 200 1.5 2 0.49% 11.24 0.98% 23.42
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Fig. 16. Four examples of calculating D; to D, representing different
formation types. The left two figures show two histograms of incoming tra-
jectories over directions (£ 4(¢)) which result in different values of D; - D
(people joining the group from the same direction vs different directions).
The right two figures show two histograms of incoming trajectories over
time (€7 (t)) which result in different values of D;-D, (people joining the
group around the same time versus from different time).

group regions over time. In this way, stationary groups can
be detected.

It is important to accurately estimate stationary periods.
Let T, and T, be the time points when a stationary group
emerges and disperses. They help to identify the emergence
and dispersal periods of the group. Our motion descriptors
are designed for these specific periods.

6.1.2 Relevant Trajectory Selection

The second step is to select relevant trajectories for each
detected stationary group. Feature points are detected and
tracked with the KLT tracker [50]. Tracking is not reliable in
crowded environment. To avoid wrong data association, we
adopt a conservative tracking strategy where trajectories
with dramatic change of velocities are fragmented. Relevant
trajectories are selected according to the spatial and tempo-
ral overlap with stationary groups. Trajectories relevant to
the group are classified into three categories: incoming tra-
jectories (I), outgoing trajectories (O), and trajectories inside
a group (P).

6.1.3 Group Activity Descriptors

Pedestrians may join the group from the same direction
within a short period, or from multiple directions over an
extended period. All the group members may leave
together towards the same direction or disperse in many
directions at different time. The emerging and dispersal
processes are used to characterize group activities such as
gathering and stopping-by, while group topological states
and change of group centers are used to detecting group
deforming and relocating.

Twelve descriptors {D;,...,Dj2} are introduced to
reflect the relationship and goals of group members. These
descriptors are proposed based on the results of stationary
group detection and selected relevant trajectories to distin-
guish different stationary group activities.

D;-D, characterize the emergence process, i.e., whether
members join a group from the same direction within a
short period, or from multiple directions over an extended

period. As shown in Fig. 16, £4(¢) and Ep(t) are computed
as the histograms of incoming trajectories (I) over direction
and time, where ¢ refers to direction angle and ¢ refers to
time. Both £4(¢) and Er(t) are clustered with mean-shift
and their dominant modes are denoted as M4 and Mr. D;
to D, are computed as:

D 2perm, £a(@) _ (¢ — $)Ea(9)
L Y@ A 2mEa(@)
Dy = > ienmy Er(t) D= Y It — T\Ex(t)

> or,<i<r, E7(t) iy (T — T,)Er(t)

where ¢ = argmax, £4(¢), f = argmax; Er(t) represent the
most probable incoming direction and arrival time, d(¢ — ¢)
is the angular distance, and 27 and (7, — T;) are normaliza-
tion terms. D; and Dj characterize the aggregation degrees
of the dominant modes over direction and time distribu-
tions, while D, and D, characterize the scatter degrees of
other modes.

Similarly, Ds-Dg characterize the dispersal process based
on outgoing trajectories (O), i.e., whether members leave a
group towards the same direction around the same time, or in
many directions at different times. Dy is the spatial variance of
a group center and can be used to detect group relocating.

D1o-Di2 characterize whether a stationary group keeps its
internal structure stable or not. They are computed based on
the topological variations of feature points inside the station-
ary group. In order to be robust to projective distortion and
cross-scene variation, Dyy-Dio are based on topological dis-
tance instead of geometric distance and only feature points
inside the stationary group are considered. These feature
points are collected from trajectory set (P). If a feature point ¢
stays inside a stable group, its k-nearest neighbor set A/, (i)
and topology of neighbors tend to remain unchanged over
time. j,(4) is introduced to measure the portion of changed
neighbors of feature point ¢ from ¢t—A to ¢, u(i)=
1—|N(i) N"N_a(i)|/K. The K’ invariant neighbors from
t — A to t are ranked according to their distances to point q.
R (i) and R;_a(4) are defined as the rankings of K’ invariant
neighbors at time ¢ and ¢ — A. R;(i) = [0} (), ...,0% (i)], and
Ria(i) = [0} ,(0),...,0 (9)]. (i) is calculated as the Ken-
dall tau distance between the two rankings R;(z) and R;_a ().
Similarly, () is computed based on rankings of angles.

Do, D1, and D, are computed as the average of all the
feature points during the whole stationary period based on
w(3), <,(¢), and x (i), respectively. Examples of these
descriptors are shown in Fig. 17.

6.1.4 Experimental Evaluation

All stationary groups containing these activities are manu-
ally annotated as ground truth. We only consider groups
whose stationary-time is longer than 30 seconds and sizes
are larger than 2,500 pixels, since large groups with long sta-
tionary-time draw attention in surveillance.

For each activity, 30 groups are randomly selected as
training samples. Linear SVM is trained for each activity
separately. D;-Ds are used for the detectors of group
gathering and stopping-by. Dy is used for the detector of
group-relocating. D;y-Dj2 are used for the detector of
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Fig. 17. Examples of descriptors Dy, to D, which characterize the stabil-
ity of the internal structures of stationary groups. The dynamic variations
of their values are shown. The topological structure of the group has
large variations from frame B to C, when its members start to line up to
take photos. The structure is stable at A and D, when the group mem-
bers have discussion together at A and when the members are already
linedup at D.

group-deforming. The trained detectors search through the
entire video. A true positive is counted if the overlap
between a detected group and the ground truth is larger
than 50 percent in the spatio-temporal space.

Table 5 reports the numbers of false positives and missed
detections of different approaches. All these approaches use
the same tracking result and group descriptors, but differ-
ent ways of estimating stationary-time. It is shown that esti-
mating stationary-time has large influence on the activity
detection results. To study the effectiveness of the proposed
method across datasets, the detectors trained on dataset I
are tested on both datasets, and the results are reported in
Table 5. Although there is no group gathering activity in
dataset II, we also report the number of false positives.

6.2 Scene Understanding

Stationary-time estimation can help scene understanding
and provide valuable statistics over time. For example, an
averaged stationary-time map computed over all the groups
in the four-hour Grand Central Train Station video is shown
in Fig. 3. It indicates where stationary groups tend to
emerge, and how long they generally stay. Such information
is important for crowd management, public facility design,
event monitoring, and traffic control. A simple scenario is
that if stationary groups appear at an entrance to a building,
alarm can be triggered for taking further action to improve
traffic there.

TABLE 5
Activity Detection Results (False Positive / Mis-Detection)

Activities Gather Stop by Relocate Deform
Training samples (datasetI) 30 30 30 30
Test samples (dataset I) 45 58 27 50
Ours 3/6 5/6 4/1 6/4
GMM [15] 4/23  6/25 4/9  7/19
Codebook [16] 3/22  4/23 4/8  7/18
Bayesian [17] 2/23  4/24 3/8 6/17
Tracking [19] 4/25 5/28 5/12  6/20
Test samples (dataset II) 0 9 2 4
Ours 1/0 0/2 1/0 1/2

Fig. 18. Examples of the dynamic changes of the stationary blocking
regions at two different times.

Moreover, the average stationary-time maps for small
temporal periods of ten minutes are shown in Fig. 18. The
dynamic changes of the stationary blocking regions of
the scene can be observed. Some travelers stay in front
of the ticket window to buy tickets (left), and in front of the
entrance to board trains (right). From the dynamic varia-
tions of stationary blocking regions, crowd behaviors can be
observed and their relations to scene structures can be better
understood.

6.3 Influence on Traffic Patterns

Stationary groups have great influence on traffic flow yet to
be discovered. To analyze the influence, we first cluster
pedestrian trajectories using the random field topic model
[51], and the most probable path is generated by averaging
clustered trajectories. Then the correlation between the
dynamic variations of stationary groups and the most prob-
able traffic paths can be discovered.

Some examples of influence of stationary crowd groups
on traffic patterns are shown in Fig. 19. In (al) and (b1), the
influences of stationary groups on traffic flows are not sig-
nificant as the blocking stationary groups are not large. In
(a2) and (b2), the influences are significant due to the block-
ing of large stationary groups. In (a3) and (b3), as the sta-
tionary groups are sparse and walking pedestrians choose
to go through the stationary regions to their destinations.
Traffic flow changes a lot due to the dynamic changes of sta-
tionary groups.

7 CONCLUSION

We have explored stationary crowd group analysis, which
has many important applications but was less studied in the
literature. A fundamental step is to estimate the stationary-
time of foreground pixels. We propose a robust algorithm
that optimizes a locally shared foreground codebook
and uses second-order gradient prior to constrain the 3D
stationary-time map. It is formulated as an L, minimization
problem and is solved by a practically effective scheme. The

(b1)

(b2) (b3)

Fig. 19. Examples of the influences of stationary crowds on pedestrian
traffic patterns. Stationary groups are detected by the proposed method
and are marked in green. The average pedestrian walking paths are
marked in red.
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effectiveness of the proposed method is demonstrated
through several applications such as detecting stationary
group activities, crowd scene understanding, and studying
the influence of stationary groups on traffic patterns.
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