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Abstract

Closed contour is an important objectness indicator. We

propose a new measure subject to the completeness and

tightness constraints, where the optimized closed contour

should be tightly bounded within an object proposal. The

closed contour measure is defined using closed path inte-

gral, and we solve the optimization problem efficiently in

polar coordinate system with a global optimum guaran-

teed. Extensive experiments show that our method can re-

ject a large number of false proposals, and achieve over

6% improvement in object recall at the challenging overlap

threshold 0.8 on the VOC 2007 test dataset.

1. Introduction

Object detection benefits from object proposal genera-

tion. A reasonable number of object proposals can speed up

the detection process and avoids exhaustive sliding window

search.

Closed contour is a useful cue in generating object pro-

posals. To find image contours, in [5], the observation that

objects with closed boundaries can be discriminated by the

norm of gradients in patches was made use of. In [26], a

simple box objectness score was proposed to measure the

number of edges in the box excluding those who overlap

with the box boundary. Albeit effective, these methods do

not explicitly output a closed contour, because of the intrin-

sic challenge that there exist an exponential number of ways

for pixels to connect to form closed curves.

This paper explicitly seeks an optimal closed contour for

object proposal generation. There are two issues to consid-

er, i.e., the mathematical definition of a closed contour in

the context of object proposals, and an efficient optimiza-

tion algorithm to compute the optimal closed contour given

the large number of candidates within a given image win-

dow.
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The subclass of closed contours we interested in is mod-

eled using the closed path integral subject to the complete-

ness and tightness constraints. We compute the optimal

contour by transforming the solution space to the polar co-

ordinate system. A spatial closed contour becomes a con-

tinuous path in polar coordinate system. Interestingly, this

problem becomes the shortest path searching, which can

be solved exactly and efficiently by dynamic programming.

The result is guaranteed to be a global optimum with the

time cost insignificant compared to naive search and com-

parison. Every optimized contour is assigned a contour s-

core to reflect the confidence.

Our second contribution is to employ the contour s-

cores in object proposal generation. Unlike previous work,

which prefers high-scoring proposals to indicate objectness,

we use the contour score to prune non-object proposals.

The reason for not accepting high-score proposals is that

a closed contour satisfying both the completeness and tight-

ness constraints does not always correspond to a semantic

object. On the other hand, if a proposal does not have such

a closed contour, it stands a high probability that this is a

non-object proposal. Figure 1 shows a number of examples.

Our empirical study over 50K proposals shows that 99.1%
of low-score windows are regarded as non-object proposals.

Based on this finding, we propose a new objectness scheme

that rejects proposals unlikely to be an object. At the time

of submitting this paper, our method yields an improvemen-

t of 6% over the best one regarding object recall with the

intersection-over-union (IoU) overlap set at 0.8. Our evalu-

ation is done on the PASCAL VOC dataset [9].

2. Related Work

The goal of generating object proposals is to produce a

set of reliable bounding boxes that likely to contain objects.

With a significant reduction in the number of candidate box-

es, computationally expensive classifiers [21, 23, 10] can be

employed in object detection to achieve state-of-the-art de-

tection performance. This pipeline has been widely adopted

in object detection, which further motivates research on im-

proving object proposal generation. Previous methods can
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Figure 1. If there is no closed contour near the boundary, the

chance that this window contains a complete semantic object is

small. A few examples are shown here with their edge maps. Note

that (c) is not an object window since it does not tightly enclose

the the flower pillow.

be classified into two categories: producing a large number

of proposals in the viewpoint of segmentation and the use

of objectness ranking.

Selective search [21] is a well-known method in the first

category, which merges super-pixels in a greedy manner.

When two super-pixels are merged, a bounding box is creat-

ed to tightly bound them. This process continues until there

is only one super-pixel left. In order to generate a num-

ber of good bounding boxes, several strategies were pro-

posed for reasonable diversity. The selective search work

was extended in [25], where more features are added and

weights are learned. In [15], randomness is considered dur-

ing the merging process. In [4, 8, 19, 24], segmentation

is employed while different object proposals are generated

by enumerating many foreground-background masks. Their

computation cost is generally high.

The method related to ours [16] uses a fixation point to

define the polar space for finding the optimal contour where

the focus is active visual segmentation. A feedback process

is used to establish the relationship between edges and re-

gions, whereas our contour box only uses an edge map. In

[12], the structure of super-pixel graph is reused to speed

up computation. A fast normalized-cut algorithm was pro-

posed in [2] to generate object proposals by grouping image

segments. Most of these methods can generate high-quality

segmentation masks. However, without a good objectness

score, it is difficult to reduce the large number of boxes into

a reasonable number to facilitate subsequent processes.

For the second category, they seek different cues to de-

scribe objects. In [1], a number of objectness cues, such

as object contour, color, contrast, edge, edge density and

salient map are used to score a bounding box. Then the sam-

pled bounding boxes are ranked by the generated object-

ness scores. This method was modified in [18] by changing

the features and classifiers. In [4], proposals were ranked

by performing regression between features and their actual

overlap with an object.

In [5], a linear classifier was proposed to calculate the

objectness score based on gradient features, while in [26]

edges were used to calculate the objectness score by count-

ing the number of contours that are wholly contained in

a bounding box and removing those who straddle the box

boundary. In [17], a category-independent proposal genera-

tion method was proposed. In [3], Blaschko et al. comput-

ed additional objectness features at a low cost based a non-

maximal suppression (NMS) scheme on the cascade archi-

tecture. Still, the method does not exploit the cue of object

contour explicitly. Differently, we discover object contours

and score them in an optimization framework.

We also review other methods related to closed curves

using dynamic programming in polar coordinate system.

In [20], a dynamic programming-based algorithm was pro-

posed to extract multiple paths using constrained expanded

trellis (CET) for feature extraction and object segmentation.

In [6], Gorce et al. proposed dichotomic multiple search

(DMS) to find the global minimum as the circular shortest

path. While we share some similarity in terms of dynamic

programming and polar coordinates, the new completeness

and tightness constraints are important and unique to make

our method work for proposal generation.

3. Contour Box: Optimizing Closed Contours

In this section, we describe our method to optimize a

closed curve that predicts an object silhouette tightly bound-

ed by an image window. We first describe the way to model

a closed contour subject to the completeness and tightness

constraints. Then an efficient solution is presented to com-

pute it.

3.1. Closed Path Integral

The edge intensity at pixel location x is denoted by e(x).
Our optimized contour is defined as a closed curve. In

essence, edge evidence along the curve should be as com-

plete as possible while the curve should be close to the win-

dow border. In our implementation, we compute edges us-

ing the method of [7].

Completeness constraint An intuitive definition of com-

plete edge evidence requires the mean edge strength along

a closed curve to be sufficiently large. However, this defini-

tion cannot tell whether salient edges along a closed curve



(a) object (b) non-object
Figure 2. Two closed curves (in red) optimized with and without

adjusted edge evidence. Without the adjustment, the mean edge

intensities of the curves are similar, which are 0.6054 and 0.5957

respectively. After the adjustment, the mean edge intensities of the

right curve drops to 0.3418 while the left remains unchanged.

are missing or not. One example is shown in Figure 2(b),

where the mean edge strength along the red curve is reason-

ably strong. But there is a segment missing in order to form

the closed curve. We propose a simple adjustment of the

edge map as

φ[y] =

{

y y > τ
−γ y ≤ τ

(1)

where τ = 0.001 and γ = 1 are constants. Empirically, γ
is in range [0.8, 2]. This serves to penalize edge intensity

below τ or missing edges. The parameter τ is not critical in

our experiments.

With the adjusted edge map, we define the completeness

condition as maximizing the objective function

∮

c
φ[e(x)]dx
∮

c
1dx

, (2)

where c is a closed curve and
∮

c
1dx is a path length nor-

malization factor. Without this factor, maximizing Eq. (2)

would produce a unreasonably long curve that maximizes

the total edge values.

Tightness constraint According to the definition of ob-

jects, every window should tightly enclose an object. There-

fore, we expect the closed curve is near or on window bor-

ders. Put differently, we prefer a closed curve whose pixels

are reasonably far from centroid of the window.

To this end, we define the normalized distance to the

window centroid for every pixel as u(x) = ‖[2/h, 2/w] ·
(x − x0)‖2, where x0 is the centroid, ‘·’ is the point-wise

product, and w and h are respectively the width and height

of the given image window. We adjust u(x) using a nonlin-

ear function that penalizes non-closed curves as

ϕ[y] = min{y2, 0.7} (3)

to update the results. While there exist other non-linear ad-

justment functions, Eq. (3) is good enough in our experi-

Figure 3. Average map of all object boundaries in the VOC 2012

segmentation dataset. All object images are resized into 256×256

before averaging.

ments. To impose the tightness constraint, we maximize

∮

c
ϕ[u(x)]dx
∮

c
1dx

. (4)

Our object proposal generator is category-independent

without any presumed shape priors, while the tightness con-

straint implicitly prefers a round (or elliptical) shape, which

is a soft constraint. To justify our choice, Figure 3 shows

the average map of all the object boundaries in the VOC

2012 segmentation dataset. A rough annulus shape near the

boundary can be observed.

Objective function We combine the two terms described

above to form the objective function

max
c∈C

1
∮

c
1dx

{

∮

c

φ[e(x)]dx + λ

∮

c

ϕ[u(x)]dx}, (5)

where C is the set of all closed paths in the window, and λ
is a parameter to be set during training. If Eq. (5) outputs

a small energy, there is no suitable object contour that is

complete and tight.

3.2. Solution in Polar Coordinates

We now describe how to solve the energy function (5).

Note the solution space of Eq. (5) is prohibitively large due

to the large number of possible closed paths in the set C.

Further, due to the normalized factor
∮

c
1dx, popular path

optimization algorithms cannot be applied directly.

To address these issues, we map our configuration from

the Cartesian coordinate system to the polar coordinate sys-

tem. An example is illustrated in Figure 4. A closed path in

x-y coordinate system is mapped to a continuous one-way

path in the polar coordinate system, where the radial coor-

dinate r and angular coordinate θ are obtained with respect

to centroid of the image window.

We use a linear interpolation approach to achieve dis-

crete mapping. Our polar coordinate map is stored as a

m × n matrix. That is, we quantize 360◦ into m bins and

radii into n bins. We use m = 90 and n = 50 in our exper-

iments.



(a) (b)
Figure 4. Mapping a curve from (a) Euclidean coordinates to (b)

polar coordinates.

We then rewrite Eq. (5) as

max
c∈C

1
∮

c
1dx

{

∮

c

M(x)dx}, (6)

where

M(x) = φ[e(x)] + λϕ[u(x)]. (7)

In polar coordinates, M(x) is denoted as g(r, θ).
Interestingly, the problem of optimizing our complete

and tight closed contour in Eq. (5) is equivalent to seeking

the optimal continuous path in polar coordinates from top to

bottom in our m×n matrix. Thus we optimize a continuous

path starting at (1, k) in polar coordinates and ending at a

point near (m, k), which ensures that the optimized path is

closed. We solve the optimization problem of

E(k, g) = max
a

{

m
∑

i=1

g(a[i], i)}

s.t. |a[i]− a[i− 1]| ≤ δ, i = 2, . . . ,m (8)

a[1] = k, |a[m]− k| ≤ δ, (9)

where a denotes a path and every a[i] is the radial coordi-

nate with angle i. Eq. (8) enforces the constraint that the

optimized curve should be continuous in polar coordinates.

We set δ = 3 in our experiments. The constraint (9) pre-

scribes that a connects the starting point to the ending one,

since a is closed.

This problem is a standard shortest path search one,

which seeks an optimal path from the source point (1, k)
to {(m, k− δ), . . . , (m, k+ δ)}. It can be efficiently solved

by dynamic programming where the global optimum exist-

s. The computation amounts to checking n possible starting

points, and then selecting the best path

max
k

E(k, g). (10)

By optimizing Eq. (10), we obtain the required path and its

energy – the latter is used to reject non-object proposals.

Discussion on the Two Coordinate Systems In our dis-

crete solution, a curve is composed of exactly m segments,

represented by m elements in the polar matrix M. Every el-

ement in the polar matrix records the mean intensity of the

corresponding segment in the Euclidean coordinate system.

All curves are normalized in terms of length.

The computation in the polar coordinates is simple.

Checking n starting points reduces the time complexity to

the order of the matrix resolution. Also, all continuous path-

s from top to bottom have the same length, thus natural-

ly canceling out the length normalization factor
∮

c
1dx in

the original objective function, which explains why dynam-

ic programming can now be applied. The time complexity

of our method is O(mn2), which is constant w.r.t. the win-

dow size.

Notwithstanding, there exist closed curves in the origi-

nal coordinate system that cannot be mapped to a continu-

ous path in the polar coordinate system. These exceptions

mainly arise when centroid of the image window is not en-

closed by the optimal curve. But we found this case is rare.

In the VOC 2007 training data, 99.3% of the object bound-

aries enclose centroid of the image window. In our experi-

ments, the difference of solutions respectively produced in

the two coordinate systems is insignificant.

3.3. Nonobject Indication

As discussed above, our contour score is used as a non-

object indicator. We determine the non-object threshold T
and label those proposals whose contour scores are low-

er than T as “non-objects”. To this end, we manually la-

bel 40,000 proposals as “with contour” and “without closed

object contour” respectively on pascal VOC 2007 dataset.

Then, we seek the best λ for Eq. (7) and T together in these

two categories. Finally, we label proposals whose contour

scores are smaller than T as “non-objects”.

4. Experiments

Following previous work [5, 15, 26, 11], we evaluate our

method on the VOC2007 dataset [9]. We compare our re-

sults with those state-of-the-arts [2, 5, 19, 26, 21, 15, 1].

The simple method of computing closed curves using level-

set [14] is also compared with, since it is a famous contour

generation strategy.

We use the author-released implementations with recom-

mended parameter settings. To evaluate the recall of bound-

ing boxes, we use the Intersection-over-Union (IoU) metric,

which computes the intersection of a candidate box and the

ground-truth divided by the area of their union. We report

the performance at the challenging IoU threshold 0.8.

4.1. Difference in the Two Coordinate Systems

We solve the problem in Eq. (5) in the polar coordinate

system. We carry out the following experiments to veri-
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Figure 5. Recall with different IoUs using 1,000 proposals. “ours

(C only)” means contour score only. “ours (C+S+A)” is the linear

combination of contour score, size and aspect ratio.
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Figure 6. Recall with different proposal numbers at IoU 0.8.

fy that our solution is a good approximation of the original

one. We randomly select 20,000 proposals and compute

their contour scores in both the Euclidian and polar coor-

dinate systems. Then, we solve the original Eq. (5) by ex-

haustively searching all possible closed curves. This is very

time-consuming and takes about 2 days to finish. We eval-

uate a ranking distance metric to evaluate the two results,

since we are concerned more with the relative score for re-

jecting non-object proposals. The ranking distance we use

is Kendall-tau rank distance, which is defined as

#{concordant pair} −#{discordant pair}
1

2
n(n− 1)

. (11)

n is the total number of scores (20,000 here). The Kendall-

tau rank distance lies in the interval [−1, 1]. Normally, a

distance with 0.8 indicates that two score lists are very close

in terms of element ranking. The distance of the results

computed in the two coordinate systems is 0.971, which in-

dicates that these two sets of results are almost identical.
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Figure 7. Recall of non-object proposals labeled by different meth-

ods (false positive rate).

4.2. Proposal Quality Comparisons

In this section, we empirically show that our Contour

Box, which adopts non-object proposal rejection using con-

tour scores, improves object recall and achieves state-of-

the-art performance. Following [5, 15, 26, 11], we evaluate

our results on the VOC2007 test set, which consists of 4,952

images with bounding box annotations for objects in 20 d-

ifferent categories.

We evaluate our performance using the standard recall-

over-IoU performance over 1,000 proposals: every method

reports 1,000 bounding boxes and its recall is tested over d-

ifferent IoUs. To produce 1,000 proposals, we first perform

the selective search [21] to generate around 10,000 propos-

als for every image. Then our contour score is used to dis-

card proposals labeled as non-object. The average number

of proposals we remove is 6783.3 per image.

Finally, we report 1,000 proposals by randomly sampling

from the remaining proposals. To explore the statistics of

object boxes, we also combine aspect ratio and size of ob-

ject boxes by weighting them with the contour score. The

2D weight is learned using linear SVM. Here, object aspect

ratio and size are respectively h

w
,

√
hw√
HW

, where h and w are

respectively height and width of the bounding box, H and

W are respectively height and width of the image.

Figure 5 shows the statistical comparison between our

method and SS [21], MCG [2], BING [5], EdgeBox [26],

Rantalankila [19], Objectness [1], Prime proposal [15],

Rahtu [17], and Blas [3]. We tune the code of Rahtu [17]

and Blas [3] and report curves with the best recall at IoU=
0.8.

In [26], a high IoU (0.7) is recommended for object de-

tection. Our method works well with an even higher IoU.

We observe about 6% improvement at the challenging over-

lap threshold 0.8. When evaluated within the IoU range

[0.9, 1], our method is still comparable to state-of-the-art
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Figure 8. Result examples with optimized closed paths. In every example, the left and right maps are respectively the results in the image

and polar coordinate systems, while the top and bottom are the original images and proposals with the optimal paths highlighted in red.

(a)–(d) are four examples with closed contours where scores are 102.5, 90.4, 89.2 and 110.9 respectively. (c)–(d) are two examples without

closed contours and the scores are 34.9 , 25.6, 27.2 and 17.9 respectively.

methods [5] [21] [2] [26] ours

recall (in %) 27 44.5 42 44 49.5

Table 1. We randomly pick 200 occluded objects from the VOC

2007 and 2012 datasets. The recall at IoU 0.8 for different methods

given 1000 proposals are reported.

methods. Note our method applies the new contour score

to pick 1,000 proposals from selective search [21]. They

are significantly better than the 1,000 proposals reported by

selective search at almost all IoUs.

To show more about the performance, Figure 6 plots the

detection rates under varying numbers (from 1 to 1000) of

object proposals for overlap 0.8. Our method runs best s-

tarting at number 348.

4.2.1 Occluded Objects

Partially occluded objects are common in images. Our

method also works to an extent for these objects since the

non-occluded part still forms a complete and tight closed

path. Empirically, we randomly pick 200 occluded objects

from the VOC 2007 and 2012 datasets. Table 1 reports the

IoU 0.5 0.6 0.7 0.8 0.9

[13] (in %) 89.4 83.1 72.3 58.2 36.4

Ours (in %) 90.3 85.7 75.6 62.6 38.1

Table 2. Recall on applying our contour rejection scheme to the

proposals generated by [13], where the number of proposals is

1000.

recall at IoU 0.8.

4.2.2 Scoring on [13]

To demonstrate that our contour scoring is general, we ap-

ply our method to another proposal generator [13] besides

selective search. For every image in VOC 2012, our con-

tour rejection method works on the boxes generated by the

method of [13]. We report the recall performance on dif-

ferent IoUs in Table 2. The result shows that our contour

scoring achieves about 4.4% recall improvement at IoU 0.8.

4.3. Nonobject Identification Evaluation

A number of methods, such as [1, 26, 5] provide object-

ness scores, which can also be used to label non-object pro-

posals. In our experiments, we sort proposals in a descend-



Figure 10. Examples of object proposals. Our generated proposals are shown in red.

Figure 11. Examples of labeled non-object proposals are shown as green bounding boxes.

ing order regarding the objectness scores, and label the last

k proposals as non-objects. To make comparison fair, we

set k as the number of non-object proposals we have labeled

for every image using our method. The proposals used for

scoring are provided by the selective search [22], which pro-

duces about 10,000 boxes for every image.
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Figure 9. (a)–(c) input edge maps; (d)–(f) level set results; (g)–(i)

our results. The level set method [14] falls short to compute the

desired object without considering the completeness and tightness

constraints. Note that we can reject case (c) easily due to its low

completeness score.

We report the recall values of object proposals that are

mistakenly labeled as non-object proposals. A small recall

means that a small number of object proposals are mistak-

enly labeled as non-objects. Figure 7 shows results. Our

method is better than others using respectively calculated

object scores for non-object identification.

Figure 8 shows examples with optimized closed paths

and their corresponding contour scores in the two coordi-

nate systems. Some objects in those examples have compli-

cated structures.

The level-set method is a standard technique for comput-

ing closed paths. It is less optimal in our case as shown in

Figure 5 without exploiting the completeness and tightness

constraints. A few failure cases are shown in Figure 9.

Figure 10 shows high-scored proposals. While proposals

rejected by our method are shown in Figure 11. In the low-

scored non-object proposals, the optimized closed curves

do not have salient edge evidences and/or are not tightly

bounded by the window. The running time of our method is

about 2.3× 10−2 seconds on a PC using a single thread.

5. Conclusion and Future Work

We have presented a new method to explicitly compute

object contours subject to the completeness and tightness

conditions. We compute these contours in the polar coor-

dinate system where a complex search problem becomes

an easily tractable dynamic programming problem. As ev-

ery generated contour has a score, it can be used to select

good proposals. Our new scheme is not based on the best

scores but instead to sample proposals after removing the

low-score proposals because they are mostly non-objects.

We have validated our non-object proposal rejection

scheme. Our performance is reasonable. Our future work

will be to find other reliable features for identifying objects

and combine them with our contour cues. The executable

will be publicly available in our project website.
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