
Computer Vision and Image Understanding 118 (2014) 97–110
Contents lists available at ScienceDirect

Computer Vision and Image Understanding

journal homepage: www.elsevier .com/ locate/cviu
Efficient keyframe-based real-time camera tracking q
1077-3142/$ - see front matter � 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.cviu.2013.08.005

q This paper has been recommended for acceptance by Nikos Paragios.
⇑ Corresponding author. Fax: +86 571 88206680.

E-mail address: zhangguofeng@cad.zju.edu.cn (G. Zhang).
1 http://www.cs.cornell.edu/snavely/bundler/.
2 http://www.zjucvg.net/acts/acts.html.
Zilong Dong a, Guofeng Zhang a,⇑, Jiaya Jia b, Hujun Bao a

a State Key Lab of CAD&CG, Zhejiang University, Hangzhou, PR China
b Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
a r t i c l e i n f o

Article history:
Received 22 September 2011
Accepted 21 August 2013
Available online 30 August 2013

Keywords:
Keyframe selection
Real-time camera tracking
Global localization
Online map extension
a b s t r a c t

We present a novel keyframe-based global localization method for markerless real-time camera tracking.
Our system contains an offline module to select features from a group of reference images and an online
module to match them to the input live video for quickly estimating the camera pose. The main
contribution lies in constructing an optimal set of keyframes from the input reference images, which
are required to approximately cover the entire space and at the same time to minimize the content
redundancy among the selected frames. This strategy not only greatly saves computation, but also helps
significantly reduce the number of repeated features. For a large-scale scene, it requires a significant
effort to capture sufficient reference images and reconstruct the 3D environment. In order to alleviate
the effort of offline preprocessing and enhance the tracking ability in a larger scale scene, we also propose
an online reference map extension module, which can real-time reconstruct new 3D features and select
online keyframes to extend the keyframe set. In addition, we develop a parallel-computing framework
that employs both GPUs and multi-threading for speedup. Experimental results show that our method
dramatically enhances the computing efficiency and eliminates the jittering artifacts in real-time camera
tracking.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Vision-based camera tracking aims to estimate the camera
poses from input images or videos. It is the foundation for solving
a wide spectrum of computer vision problems, e.g., 3D reconstruc-
tion, video registration and enhancement. Offline camera tracking
has been well studied, with several state-of-the-art softwares
(e.g., bundler,1 ACTS2), as well as extensive research findings
[24,40,46]. Real-time camera tracking [14,31,30] has recently at-
tracted much attention, as it has found many applications for mobile
robotics and augmented reality.

In this paper, we propose a practical real-time camera tracking
system by combining global localization (GL) and parallel tracking
and mapping schemes, which involves an incomplete offline pre-
processing for representing the 3D environment using features
and an online step for real-time feature matching and reference
map (i.e. 3D features and keyframes) extension. Specially, the off-
line step extracts sparse invariant features from the captured refer-
ence images and uses them to represent the scene. The 3D
locations of these invariant features can be estimated by the offline
structure-from-motion (SfM). Afterwards, taking these features as
the reference, for each online image, we can extract the features
and establish the correspondences with the reference ones, so that
the camera pose can be quickly estimated.

We generally call the above scheme as GL scheme because it
matches features of the input frame to the whole model directly.
It is robust to large camera motion and also precludes the possibil-
ity of error accumulation. It, however, has the following common
problems with previous work. First, it relies excessively on the fea-
ture distinctiveness, which cannot be guaranteed when the space
scale is large or the scene contains repeated structures. It was ob-
served that the matching reliability decreases quickly when the
number of features increases, which greatly affects the robustness
and practicability of this system in camera tracking. Second, since
GL scheme relies on the offline reconstruction result, it will fail if
the camera moves to a new place which is not covered by reference
images. PTAM [28] and MonoSLAM [15] are two state-of-the-art
techniques proposed to solve the tracking problem in unknown
scenes, which have been successfully adopted by many practical
systems. However, they are restricted to deal with a small scene
with only thousands of features.

In this paper, we solve the above problems and develop a com-
plete real-time tracking system. Our contribution is threefold. First,
we propose an effective keyframe-based method to enable global
localization in large-scale scenes. A novel keyframe selection algo-
rithm is employed to effectively reduce the online matching ambi-
guity and redundancy. These keyframes are selected from all
reference images to abstract the space with a few criteria: (i) the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2013.08.005&domain=pdf
http://dx.doi.org/10.1016/j.cviu.2013.08.005
mailto:zhangguofeng@cad.zju.edu.cn
http://dx.doi.org/10.1016/j.cviu.2013.08.005
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu

98 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
keyframes should be able to approximate the original reference
images and contain as many salient features as possible; (ii) the
common features among these frames are expected to be mini-
mum in order to reduce the redundancy; (iii) the features should
be distributed evenly in the keyframes such that given any new in-
put frame in the same environment, the system can always find
sufficient feature correspondences and compute accurate camera
poses.

Second, with the extracted keyframes, in the real-time camera
tracking stage, we contribute an extremely efficient algorithm to
find candidate keyframes which are most similar to the online in-
put frame. Because the frame is only matched with the candidate
keyframes, the computation can be greatly saved compared to
the conventional global feature matching.

Third, we develop an online reference map extension method to
significantly enhance the ability of camera tracking and global
localization. Especially, while the camera moves into a new place
which is not sufficiently covered by reference images, new online
keyframes will be inserted into the existing keyframe set, with
newly reconstructed 3D features, so that the camera motion can
still be reliably estimated.

All of above modules are integrated under a parallel-computing
framework using GPU and multi-threading for further speedup. A
preliminary version of the work appeared in [16]. In this paper,
we have made the following improvements.

1. Introduced an improved real-time camera tracking framework
based on an incomplete offline reference map reconstruction,
which combined global localization and online reference map
extension to make the camera tracking more robust in a larger
scale scene with less offline preprocessing effort.

2. Used GPU to accelerate SIFT feature extraction and reduce sys-
tem latency.

3. Introduced the two-pass keyframe-based matching, which can
quickly obtain a set of evenly distributed 2D–3D correspon-
dences to make the camera pose estimation more reliable. Tem-
poral information was also utilized to improve the matching
efficiency and robustness.

2. Related work

2.1. Markless real-time camera tracking

The simultaneous Localization and Mapping (SLAM) techniques
have been extensively studied [14,17,7,15,29] for real-time camera
tracking. SLAM methods can simultaneously estimate camera
parameters as well as 3D scene structure online, using a partial
observation model. They typically use the frame-to-frame match-
ing and confining-search-region strategies for rapid feature match-
ing. However, drifting and tracking failure can frequently occur
because this scheme relies highly on the estimation accuracy in
past frames. The major issues that were addressed include relocal-
ization after camera lost [50,6,29], submap merging and switching
[5], and loop detection and closure [10,18,49].

To recover from tracking failure in SLAM, Williams et al. [50]
proposed a rapid relocalization method, which uses a variant of
Lepetit and Fua’s feature description and performs matching with
the randomized tree classifier [32]. However, this method is mem-
ory intensive requiring about 1.3 MB per feature. It thus is not suit-
able for handling a large-scale scene. Invariant feature descriptors
[35,4] require much less memory resource and can be used for glo-
bal localization; but the computation is more expensive.. Chekhlov
et al. [6] proposed using the appearance-based indexing on space
and scale to facilitate the use of invariant feature descriptors for
relocalization. This approach requires the camera pose information
to reduce the search space; or else, the matching is not reliable
when dealing with large maps.

Klein and Murray [28] presented an impressive real-time SLAM
system for small AR workspaces, where tracking and mapping are
separately processed in different threads. Castle et al. [5] extended
this work to allow multiple tracking cameras to simultaneously
work in several maps. Based on the framework of PTAM, J. Stueh-
mer and Cremers [27] and Newcombe and Davison [37] tried to re-
cover the dense 3D structures of the scene, which are useful for
some AR applications. Angeli and Davison [1] also clustered the
3D points of PTAM online with consistent appearance and position
to aid AR tasks. However, all of them are only suitable to handle
small desktop scenes due to the frequent use of expensive bundle
adjustment. In order to deal with large work spaces, SLAM meth-
ods typically need to divide the map into a series of sub-ones, each
of which is small enough to enable real-time processing [19,8], or
use multiple cameras [22]. Under this background, overlap detec-
tion and loop closure among multiple submaps becomes an impor-
tant issue. Several methods [10,18,49] have been proposed to
address it. Recently, Hauke Strasdat and Konolige [25] proposed a
double window optimization framework for scalable SLAM, which
scales for both accurate local reconstruction and large-scale loopy
camera motion. Their method can be integrated with the PTAM
framework easily to achieve realtime camera tracking in a larger
scene. However, this method relies heavily on loop closure, and
the estimated camera pose and 3D structure may drift without
loops.

If the 3D representation for the space is available, real-time
camera tracking can be quickly accomplished. Several markerless
algorithms [48,11] employed the object’s CAD model to facilitate
camera pose estimation. However, these CAD models are usually
difficult, if not impossible, to be constructed. Skrypnyk and Lowe
[45] proposed modeling natural scenes using a set of sparse invari-
ant features. The developed system contains two modules, i.e. the
offline feature-based scene modeling and online camera tracking. It
relies on the distinctiveness of the SIFT features, and is therefore
limited to a relatively small workspace. For large scenes such as ur-
ban environments, not only the tracking process, but the 3D mod-
eling of the scenes is a problem because of the camera drift. Gay-
Bellile et al. [21] proposed to use the coarse 3D city models from
Google Earth to correct the drift while reconstructing the 3D land-
marks. They used vocabulary tree to recognize the viewpoints dur-
ing the on-line localization and integrated a SfM process to model
the scene variations. The main drawback of their framework is the
requirements of city models. We solve these problems with a two-
stage tracking system in this paper.

2.2. Keyframe-based methods

Keyframe selection is a common technique to reduce data
redundancy. In the real-time camera tracking method of [28], a
set of online keyframes were selected, which facilitated bundle
adjustment for the 3D map recovery. In [29], the keyframes were
used for relocalization with simple image descriptors. For model-
based tracking, Vacchetti et al. [48] selected keyframes manually
in the offline mode, and matched each online frame to a keyframe
with the closest visible area. To track multiple objects simulta-
neously, Park et al. [39] selected a set of snapshots of each object
as keyframes. The online frames were compared with the keyframe
set in a round-robin fashion.

In all these methods, keyframes are selected manually or
through a simple procedure, which cannot guarantee optimality
for the tracking task when the camera undergoes complex motion.
There has been research in video processing [34,23,47] aiming to
extract the frames for video reconstruction, browsing, or retrieval.
In our method, a set of optimal keyframes are selected for

Fig. 1. Framework overview. Our system employs a parallel-computing framework, where both GPU and multi-threading are used. The system contains modules, which run
in separate working threads, and are synchronized by the frame time stamp.

3 http://www.vision.caltech.edu/bouguetj/calib_doc/.

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 99
representing and abstracting a space. They are vital for efficient on-
line feature matching.

2.3. Feature-based location recognition

There are approaches which employ invariant features for ob-
ject and location recognition [44,42,43,12,13,2]. These methods
typically extract invariant features for each image, and use them
to estimate the similarity of different images. For dealing effec-
tively with a large-scale image database, a vocabulary tree [38,9]
was adopted to organize and search millions of feature descriptors.
It is thus notable that these methods do not extract sparse key-
frames to reduce the data redundancy, and cannot be directly used
for real-time tracking. The appearance-based SLAM method of [13]
considered the inter-dependency among features and applied the
bag-of-words method to increase the speed of location recognition.
However, the computational cost is still high.

A keyframe-based method to deal with tracking failure and
closing loops in the real-time monocular SLAM was described in
[18]. This method builds visual vocabulary incrementally, which
is used to match online images. For relocalization, the online frame
needs to be compared with all local nodes (or keyframes), which
would cause obvious system latency if the number of nodes is
large. In contrast, our keyframe recognition algorithm is able to
produce matching almost instantly. The processing time can be
nearly constant even when lots of keyframes are selected.

Irschara et al. [26] proposed a fast location recognition technique
based on SFM point clouds, which is tightly related to our work. In
order to reduce the 3D database size to improve recognition perfor-
mance, synthetic views are involved to introduce a compressed 3D
scene representation. In comparison, our method selects an optimal
set of keyframes from the input reference images by minimizing an
energy function, which yields a balance between the representation
completeness and the redundancy. In addition, our two-pass key-
frame-based matching can obtain reliable and evenly distributed
2D–3D correspondences with low resolution images and less fea-
tures, which is very important for robust camera pose estimation.

3. Framework overview

We first give an overview of our framework in Fig. 1. It contains
two modules. In the offline module, we gather a group of reference
images to model the space. SIFT features [35] are detected to estab-
lish the multi-view correspondences. Then we use the SfM method
[52] to estimate the camera poses for these reference images to-
gether with the 3D locations of the matched SIFT features. Note
that we do not need to capture the scene completely, because in
our online module, our system can quickly recover and extend
the local 3D structure to remedy the incomplete structure
information.

In the online module, we estimate the camera parameters for
each input frame at real-time rate given a captured live video in
the same space. We assume that the intrinsic parameters of the
camera are already known, which can be recovered by using an off-
line SfM technique or a camera calibration tool.3 For each online
image, we need to estimate the 6-DOF pose of the camera relative
to its surroundings. Instead of frame-by-frame matching using all
reference images, in our approach, we select several optimal key-
frames to represent the scene, and build a vocabulary tree for online
keyframe recognition. With the 3D locations of reference features,
we can establish sufficient and evenly distributed 2D–3D correspon-
dences for all matched features, which enable the estimation of the
camera poses of all live frames.

After estimating the camera pose of the input frame, we will
further determine whether to select the input frame as a new key-
frame. If the input frame is selected as a keyframe, we will extract
more SIFT features and match them to nearby keyframes for trian-
gulating new 3D features. The selected keyframe with recon-
structed 3D features is fused with the existing reference map to
make the camera tracking more robust.
4. Offline optimal keyframe selection

Given a live frame, directly using all reference images for fea-
ture detection and matching to estimate the camera pose is
impractical. So the first step is to process reference images taken
with the camera moving in a workspace in the offline module.
We propose selecting keyframes from all reference ones to boost
the feature detection efficiency and reduce the ambiguity in the
following matching process. To this end, there should exist as
many salient features as possible in a minimum set of keyframes.
The features should also be (near-) uniformly distributed in the
scene.

In the beginning, we apply SfM to all reference images to
compute 3D points for the corresponding features. This process

100 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
involves matching SIFT features based on the descriptors [35] in
different frames. As a result, each 3D point corresponds to a few
features in multiple frames.

For simplicity’s sake, we cluster the matched features in differ-
ent reference images and unify their representation by averaging
their descriptors. Each of the resulted feature tracks is denoted as
x, which contains a series of common features located in multiple
frames. It is written as X ¼ fxiji 2 f ðXÞg, where f ðXÞ denotes the
reference image set spanned by X . All xs in each X map to a sin-
gle 3D point. It is notable that jf ðXÞj should be at least 2, other-
wise its 3D position cannot be determined. In practice, the larger
jf ðXÞj is, the more precise the 3D information of X will be. We
denote the subset of X where jf ðXÞP lj as VðbIÞ, namely superior
feature tracks. l is usually set to 5 in our experiments, and we only
estimate the 3D locations of these superior feature tracks.

We define the keyframe selection problem as follows. Given a
total of n reference images Î ¼ fIiji ¼ 1;2; . . . ;ng, where n could
be a large value if dense frames are provided, we aim to select an
optimal set of keyframes F = {Ikjk = i1, i2, . . ., iK}, which minimizes
the cost defined in the function EðF;bIÞ. The keyframe number K is
adaptive in our method to maximize the flexibility. EðF;bIÞ consists
of two terms, i.e., the completeness term Ec(F) and the redundancy
term Er(F), modeling respectively the feature completeness and
frame redundancy:

EðF;bIÞ ¼ EcðFÞ þ kErðFÞ; ð1Þ

where k is a weight. The two terms are described further below.
4.1. Completeness term

For real-time camera tracking, it is expected that any feature in
the live frame can find matches with the reference ones to provide
enough information for its 3D coordinate determination. So our
completeness term is to constrain that the selected keyframes con-
tain features in as many superior feature tracks as possible.

We define the saliency of one track as the combination of two
measures, i.e. the feature count in different reference images
jf ðXÞj and the Difference-of-Gaussian (DoG) strength, and write it
as

sðXÞ ¼ DðXÞ �minðjf ðXÞj; TÞ; ð2Þ

where T is the threshold to prevent a long track to suppress other
features’ contribution to the function. It is usually set to 30 in our
experiments. A large value in jf ðXÞj indicates high reliability to
compute the corresponding 3D point for X in SfM. DðXÞ is expressed
as

DðXÞ ¼ 1
jf ðXÞj

X
i2f ðXÞ

DiðxiÞ;

where Di denotes the DoG map [35]. DðXÞ denotes the average DoG
map for all features in f ðXÞ. The larger DðXÞ is, the higher saliency
the feature track X has.

Despite the above two measures, another important criterion to
make real-time camera tracking reliable is the spatially near-uni-
form distribution of all features. It is a basic guarantee for finding
matches given any online frame in the same space.

The feature density d(yi) for the pixel y in image i is the fea-
ture count in the local window. Its computation is described in
Algorithm 1. The local window size is generally set to 31 � 31
for 640 � 480 images. If there are 300 uniformly distributed
features, the feature density of these features will be 1. In our
experiments, we generally extract 300 features for each online
image. With the feature density of all images, we define the track
density as
dðXÞ ¼ 1
jf ðXÞj

X
i2f ðXÞ

dðxiÞ;

where d(xi) denotes the feature density of the pixel at xi in image i.

Algorithm 1. Feature density computation for image i
1. Initialize all densities to zeros.
2. for j = 1, . . ., m, % m is the number of features in image i

for each pixel y 2W(xj),
%W is a 31 � 31 window centered at xj and
%xj is the coordinate of feature j

di(y) += 1.

Finally, our completeness term is defined as:

EcðFÞ ¼ 1�
X
X2VðFÞ

sðXÞ
gþ dðXÞ

 !, X
X2VðbIÞ

sðXÞ
gþ dðXÞ

0B@
1CA; ð3Þ

where scalar g controls the sensitivity to feature density. V(F) and
VðbIÞ denote the set of superior features in the keyframes F and all
reference frames Î respectively. dðXÞ is put in the denominator to
discourage selecting multiple features in a small region, which
can help scatter superior features more uniformly in images.
4.2. Redundancy term

Redundancy term leads to the reduction of keyframe
overlapping. Since we have detected feature set f ðXÞ, the redun-
dancy minimization problem is equivalent to minimizing the fea-
tures in each f ðXÞ included in multiple keyframes. We therefore
define

ErðFÞ ¼
1

jVðbIÞj
X
X2VðFÞ

ðjf ðXÞ \ Fj � 1Þ; ð4Þ

where 1=jVðbIÞj is for normalization with respect to the number of
the superior features in all reference frames. jf ðXÞ \ Fj indicates
the number of features in f ðXÞ that are also included in the key-
frames. jf ðXÞ \ Fj ¼ 1 means no redundancy.
4.3. Keyframe selection

An exhaustive search in the reference images can certainly find
the optimal set of keyframes that minimizes the cost in Eq. (1).
However, it is not computationally efficient to evaluate the 2n sub-
sets. In [34], with a fixed number of keyframes, dynamic program-
ming (DP) was used to search for the solution for video
summarization. Note that this scheme does not suit our system be-
cause our objective function has a much more complex format and
the number of keyframes is supposedly not fixed. Further, the
method of Liu and Kender [34] assumed that only adjacent frames
possibly overlap, and accordingly proposed a greedy algorithm
while we do not make the same assumption.

Our keyframe selection algorithm is based on a steepest-des-
cent method as described in Algorithm 2. It proceeds in the fol-
lowing way. To begin with, we construct an empty frame set F
and then progressively add frames. In each pass, a new keyframe
that reduces the most energy is added to F. This process continues
until the cost cannot be reduced anymore. The computation com-
plexity is O(n2). In our experiments, it takes only a few seconds to
find keyframes from hundreds or thousands of images.

Fig. 2. A vocabulary tree. All feature descriptors are originally in the root node, and are partitioned hierarchically. Each node has a weight to represent its distinctiveness.

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 101
Algorithm 2. Keyframe selection
1. Let F = ;.
2. If 8Ii 2 fbI n Fg; EðF [fIigÞP EðFÞ, exit.
3. Otherwise, I0 ¼ arg min

Ii2fbInFgEðF [fIigÞ, and F = F [{I0}, go to

step 2.
5. Online keyframe recognition and matching

With the collected keyframes, we perform feature matching for
online camera tracking. However, it is still costly to find all the
matches between the input frames and all keyframes, especially
when there exist a considerable number of keyframes. We observe
that any incoming frame only covers a small portion of the space;
so it is inevitable that many keyframes do not share any common
content with the input. We thus exclude those unrelated key-
frames to save computation by employing a vocabulary-based fast
selection algorithm.

5.1. Vocabulary tree construction

Given a set of keyframes, we construct a visual vocabulary tree
by hierarchically clustering all the descriptors of the superior fea-
ture tracks. Our tree construction is similar to those of [38,43]
where the vocabulary V is organized in l levels with the branching
factor b. The root node contains all descriptors. The K-Means meth-
od is used to partition the descriptors into b clusters; then all of
them become children of the root node. This process continues,
recursively partitioning nodes until a specified level l is reached.
The final vocabulary tree has jVj nodes, and each node i is associ-
ated with a mean descriptor for all feature tracks under it. Fig. 2
gives an illustration. Each node i thus is related to a group of key-
frames Li spanned by the tracks. Ni(k) denotes the number of supe-
rior features in keyframe k that are clustered under node i.

We assign each node i a weight wi, which represents the distinc-
tiveness. In our system, the weight is defined as

wi ¼ log
K
jLij

; ð5Þ

where K is the total number of the keyframes and jLij denotes the
number of the keyframes spanned by the tracks for node i. Nodes
near the root generally relate to a large group of keyframes (with
large jLij). Their frequent appearance implies small importance in
the following keyframe selection. We thus assign small weights to
them. On the contrary, the leaf nodes are associated with a small
number of keyframes and are more important for identification.

The count of all nodes jVj is determined by the branching factor
b and tree depth l. For example, if 20–80 keyframes are selected
and each keyframe contains about 500–1000 features in the supe-
rior tracks. We generally set b = 10 and l = 5.

5.2. Candidate keyframe searching

In [38,43], an appearance vector is used to describe an image,
where each element corresponds to one node in a vocabulary tree.
The similarity of two images is approximated as the distance be-
tween the corresponding vectors. Note that the computation com-
plexity of this strategy grows linearly with the number of
keyframes.

Algorithm 3. Candidate keyframe selection
1.
 Set the matching value C(k) = 0 for each keyframe k.

2.
 For each online frame, the detected m features are

matched respectively from the root node to leafs in the
vocabulary tree as follows:
for each feature x in the live frame do

for each level of V do
find the node i containing the feature most similar
to x,
if its weight wi > s,

for each keyframe k 2 Li, do
C(k) += Ni(k) � wi.

end for
end for

end for
3.
 Select K keyframes with the largest C.
Here, we introduce a more efficient keyframe recognition algo-
rithm (Algorithm 3 with an illustration in Fig. 2). The computa-
tional complexity is Oðm � ~LÞ, where ~L is the average number of
the keyframes that are associated in each node in the matching
process from the root to leafs, i.e., ~L ¼ avgijLij.

It is particularly worth noting that in Algorithm 3, we have used
a threshold s to exclude nodes with small weights. These nodes are
primarily located close to the root because they, due to inclusion of
multiple features tracks, are generally associated with many
frames. So ~L only counts the keyframes included in the near-leaf
nodes. As a result, the time spent for keyframe recognition in-
creases very slowly with the expanding of keyframes.

102 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
5.3. Two-pass keyframe-based matching

Algorithm 4. Two-pass keyframe-based matching
Fi
yi
1.
g. 4.
elds 4
For each feature xj in the online image, set C1(xj) = 0 and
C2(xj) = 0.
2.
 Perform first-pass Matching:

for i = 1, . . ., 64 do
for each unmatched feature xj 2 Bi and C1(xj) = 0 do

set C1(xj) = 1, and

for k ¼ 1; . . . ;K do
find the 10 features fN k
s ðxjÞjs ¼ 1; . . . ;10g from

keyframe k that are most similar with xj. If N k
1ðxjÞ

satisfies the 2NN heuristic, stop the matching of Bi.

end for
end for

end for
3.
 Estimate the fundamental matrix between the online
frame and each

keyframe, and use it to remove matching outliers.
4.
 If there are already N inlier matches, stop.

5.
 Perform second-pass matching:
for i = 1, . . ., 64 do

for each feature xj 2 Bi and C1(xj) = 1 do
if C2(xj) = 0, set it to 1 and

for k ¼ 1; . . . ;K do
screen the features and obtain f ~N k
s ðxtÞjs ¼ 1; . . .g

by the epipolar geometry. If one of them satisfies
the local 2NN heuristic and is very similar to p(xj),
stop the matching of

Bi.
end for

end for
end for

6.
 Repeat steps 2–5 until N matches are found or all xs have

C1(x) = 1 and

C2(x) = 1.
After selecting the most related keyframes for an online image,
we perform feature matching. For robust and efficient camera pose
estimation, the images should contain (1) sufficient but not exces-
sive feature matches since too many feature matches significantly
increase the computation cost. (2) The matched features should be
distributed in images as uniform as possible to minimize estima-
tion error. All these criteria are important; but not all of them
are considered in previous work. We propose a two-pass key-
frame-based matching to satisfy them.

This method aims to find the common SIFT features between
the input online frame eIj and candidate keyframes. We divide the
online image into 64 blocks, denoted as {Biji = 1, 2, . . ., 64}. Fig. 3
Two-pass keyframe-based matching. (a) Selected candidate keyframes. (b) The ma
3 matches. The new ones are shown in red. (For interpretation of the references to
gives an illustration. Each of them contains a list of features that
are sorted by their DoG strength. Ideally, if each block contributes
one feature match, we will have a total of 64 matched feature pairs,
which are enough for robust camera pose estimation. However, in
practice, not all blocks can make it. We thus use the method de-
scribed in Algorithm 4 to find matches that are well distributed
in the image. The detailed explanation is as follows.

In the beginning, since all blocks in the online image do not
have matched features, we sort them according to the number of
features. For each feature xj in block Bi, we use the ANN method
[3] to search for 10 most similar features in terms of the distance
of descriptors from each candidate keyframe k, denoted as
fN k

s ðxtÞjs ¼ 1; . . . ;10g. KD-trees are used to speed up searching in
this process. Then we employ the following 2NN heuristic pro-
posed by [35] to measure the matching confidence:

c ¼ jjpðN
k
1ðxjÞÞ � pðxjÞjj

jjpðN k
2ðxjÞÞ � pðxjÞjj

: ð6Þ

c measures the global distinctiveness. Cases that c is smaller
than a threshold e, where e = 0.7 in experiments, indicate no
ambiguously similar features in matching. We thus take N k

1ðxjÞ
as the match of xj. The search continues until a suitable match is
found or all the features in Bi are visited (i.e., for any feature xj 2 Bi,
C1(xj) = 1). This matching step refers to step 2 in Algorithm 4.

After the first-pass matching, we estimate the fundamental ma-
trix associating eIt with each candidate keyframe using RANSAC
[20]. The results are used to reject outliers among all matches. If
there are less than N (N is usually set to 50–100 in our experi-
ments) remaining inliers, the second-pass matching is performed.

Among the reference features that do not match to those in the
online frame, many are simply because the 2NN heuristic is not
satisfied. So in the second pass, we rematch a few of these indis-
tinctive features using a local 2NN heuristic constrained by epipo-
lar geometry.

First-pass matching yields the fundamental matrix between eIj

and each candidate keyframe k. For each feature xj in the online
frame, we screen out the reference features fN k

s ðxjÞjs ¼ 1; . . . ;10g
whose distance to the epipolar line, corresponding to xj, is larger than
2 pixels. The left-over features are denoted as f ~N k

s ðxjÞjs ¼ 1; . . .g. If
feature xj has its correspondences, they are very likely to be among
~N kðxjÞs. We thus define the local 2NN heuristic

jjpð ~N k
1ðxjÞÞ � pðxjÞjj

jjpð ~N k
2ðxjÞÞ � pðxjÞjj

< e: ð7Þ

If one feature in the candidate keyframes satisfies (7) and has
jjpðxjÞ � pð ~N k

1ðxjÞÞjj < 1where 1is a threshold, we regard ~N k
1ðxjÞ

and xj as matchable. This strategy refers to step 5 in Algorithm 4.
tched features in the first pass. 23 matches are obtained. (c) Our two-pass matching
colour in this figure legend, the reader is referred to the web version of this article.)

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 103
It can robustly and faithfully add back feature matches, as demon-
strated in Fig. 4.

The above steps repeat until N feature matches are found or all
features x in eIt have been visited (i.e., C1(x) = 1 and C2(x) = 1). Final-
ly, based on the matches, 2D (features) – 3D (reference points) cor-
respondences are established, which make the camera pose be
easily computed by the method of [45].

6. Reference map extension with online keyframe selection

With the above keyframe-based camera tracking method, we
can reliably track the camera poses if the camera moves around
the place that has been captured in offline stage. However, if
the camera moves into a new place, or the appearance changes
too much due to lighting variation, the camera pose will not be
accurately estimated. In order to address this problem, we also
involve a parallel tracking and mapping module to online recon-
struct new 3D features and extend the reference map. In the
PTAM system [29], it needs to project each of the map features
to current frame via a prior motion model for locally searching
for the correspondence, which is, however, inappropriate for a
large-scale scene as it is limited to work on a small scene with
thousands of scene points. In contrast, our system can always
perform real-time global localization and camera tracking even
in a very large scene.

Algorithm 5. Online keyframe selection with 3D recontruction
1.
 Keyframe verification:

for each successfully tracked input frame do
if it simultaneously satisfies the following conditions:

(a) The number of matched 3D feature >20;

(b) The RMSE of re-projections is less than a

threshold;

(c) The distance to the nearest keyframe is larger than

a threshold;

then
the frame is considered as a keyframe candidate;

else
return false;

end if
end for

2.
 Find 4 nearest keyframes:
(a) Set T = {T0, T1, . . ., TK}, where K is the number of
keyframes and all elements are initialized to 0;
(b) for each matched feature X in keyframe candidate do

for each frame index i in f ðXÞ do
set Ti = Ti + 1;

end for
end for

(c) Select the top 4 keyframes with greatest Ti;
3.
 Triangulate new reference features:

for each selected candidate keyframe do
(a) Extract about 400 SIFT features from the input
frame;
(b) Match with the 4 most nearest keyframes;

(c) Triangulate the new matched features;

if the number of successfully triangulated features

>20, then

the input frame is considered as a new keyframe;
else

return false;
end for

end for
While reconstructing new 3D features, some online images will
be selected as keyframes for online extending the scene represen-
tation and tracking ability. The criteria of selecting online key-
frames could be similar to that introduced in Section 4. However,
if we directly employ the method introduced in Section 4 to select
keyframes, the computation will be too expensive for real-time
performance. So, we employ a simpler but effective online key-
frame selection method.

The algorithm is depicted in Algorithm 5. If an input frame sat-
isfies the following conditions, it may be a new keyframe. First,
there are sufficient number of matched 3D features (no less than
30), and the RMSE of the re-projections is small. Second, the input
frame is not very close to any of the existing keyframes. If the input
frame satisfies the above conditions, we will further select the four
keyframes which have most overlap with the input frame. Then we
extract more SIFT features (e.g. 400) from the input frame, and
match them with these 4 nearest keyframes. If the number of
matched features is larger than a threshold (20 in our experi-
ments), the input frame will be considered as a keyframe. With
the new matched features and the camera poses of keyframes,
we can easily triangulate the 3D locations. The new reconstructed
reference features will be included into the leaf nodes of the vocab-
ulary tree (similar to [41]). Specifically, we maintain two vocabu-
lary trees, where one is active for real-time keyframe recognition,
and the other is waiting for updating. Once a new keyframe is in-
serted, we immediate update the inactive vocabulary tree with
the newly reconstructed reference features, and change its status
from inactive to active. The original active vocabulary tree then be-
comes inactive and wait for update. The newly selected keyframe
will be added to the keyframe set F. Then, the new keyframe can
be treated in the same way as the offline keyframes during key-
frame-based matching, and the reference map is extended. After
adding the new keyframe, we immediately employ a local bundle
adjustment to refine the corresponding 3D structure of these 5
keyframes. A global bundle adjustment may be employed to fur-
ther refine the estimated 3D structure if necessary. It should be
noted that the above module runs on a separated thread, which
does not influence the tracking speed.

Algorithm 6. Add new keyframe to the map
1.
 All new reference features are assigned to the leaf nodes of
the vocabulary tree using the method in the step 2 of
Algorithm 3;
2.
 Update the weights of nodes which has new reference
features;
3.
 Add the new keyframe to the keyframe set F;

4.
 Employ a bundle adjustment to refine the 3D structure of

the new keyframe and its 4 nearest keyframes.
7. Implementation

In this section, we provide more details about implementation.

7.1. Parallel computing

Table 1 shows the time spent in different steps for one input
frame of the ‘‘Campus’’ example. The running times are tested in
a desktop PC with an Intel Core2 Quad Q9550 @ 2.83 GHz CPU
and a GeForce GTX 295 display card. We use the publicly available
SiftGPU implementation [51] to accelerate feature extraction. For
further speedup, we can first downscale the online image (e.g. from
resolution 640 � 480 to 320 � 240) and then extract SIFT features

bin list feature list

1

20

21

64

null

(a) (b)

null2

Fig. 3. Matching blocks. (a) One image is evenly divided into 64 blocks, each
contains a few features sorted by the DoG values. (b) The sorted blocks with respect
to the number of features.

104 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
for online camera tracking. This strategy can significantly reduce
the running time without much influencing the system robustness.
The running time is about 23 ms per frame (320 � 240 pixels) with
300 extracted features, which is enough for online feature match-
ing. Besides GPU acceleration, we also applies multi-core CPUs to
improve the performance. In our system, the SIFT extraction (on
GPU) and matching (on CPU) run on each frame. This makes our
system able to handle fast camera motion and very robust. Our
framework contains two parallel hierarchies – that is, the inter-
frame and intra-frame computations.

For the inter-frame process, we assign the computation tasks
for different frames to separate threads. Therefore, the frame rate
can easily be several times higher than using a single-core CPU.
However, the system latency (i.e. the elapsed time between captur-
ing and rending a frame) is not reduced because the total compu-
tation time for each frame does not decrease. To tackle it, we assign
feature matching to multiple threads, as the features can be
matched independently and simultaneously on multiple threads.
With this intra-frame parallelism, the average matching time and
latency can be further reduced. Fig. 1 illustrates the workflow of
our parallel computing system. All the modules are connected
and synchronized by thread-safe buffers. Even with 3D rendering
in the augmented reality, our system can yield real-time
performance.
7.2. Utilizing temporal information

Given an incoming image, our keyframe-based tracking scheme
can quickly compute the candidate keyframes, and use them to
estimate the camera pose. If the input is an online video sequence,
while estimating the camera pose for each frame, the information
of the past frames can be utilized.

In the keyframe recognition step, we introduce the following
method to speed up search of candidate keyframes for image eIt
Table 1
Processing time per frame with a single thread. K is the number of the candidate
keyframes.

Module Average processing time (ms)

Feature extraction �23
(resolution: 320 � 240)
Keyframe recognition �2
Keyframe-based matching � 4�K
Temporal matching �8
Camera pose estimation �5
with previously computed results for frame eIt�1. The basic idea is
that if a keyframe Ik has the most features matching to those ineIt�1, it is quite possible that Ik and eIt also share many common fea-
tures. We thus search for 10 keyframes closest to Ik with respect to
the distance between the computed camera centers, then 3 of them
that are with the most similar orientations, along with Ii, are used
for online feature matching with eIt . This process continues until
the camera information and matching result in the previous frame
are not available (e.g., in case of camera lost). Then, we resort to the
method described in Section 5.2 for candidate keyframe searching.

Similar strategies are also used to improve the matching effi-
ciency. Since the matched features in frame eIt�1 already find their
3D locations for camera pose estimation (as described in Sec-
tion 5.3), we employ the KLT method [36] to search for the corre-
spondences of these features in eIt and similarly assign them the 3D
positions. However, due to occlusion, noise or out-of-view, feature
dropout inevitably occurs. In these cases, keyframe-based match-
ing is still employed to maintain a stable number of feature
matches. Compared to using only the keyframe-based matching,
utilizing the temporal information can effectively alleviate the fea-
ture ‘dropout’ problem.

Finally, the estimated camera poses of past frames are used as
in the jittering reduction method of [45] to further improve the
robustness of camera tracking.
8. Experimental results

We have conducted experiments with some challenging live vi-
deo sequences. The reference and live frames are captured by a
Logitech Quick-Cam Pro 9000 or C905 web camera or a Sony
HDR XR550 camera.
8.1. Large-scale outdoor examples

We first show an outdoor example in Fig. 5. This example is very
challenging for real-time camera tracking due to the large scale re-
peated structures. Fig. 5(a) shows the recovered 72,616 sparse 3D
points in the offline stage. The number of the reference images is
1913. Fig. 5(c) shows the selected keyframes in our method. By
our optimization, they do not significantly overlap and their cover-
age is almost the entire space, as shown in Fig. 5(b). The reference
frames, captured live frames, and real-time rendering results are
shown in the supplementary video.

Table 2 shows how different ks influence the keyframe selec-
tion. It can be observed that if we select 123 keyframes, more than
95% of the reference feature tracks (corresponding to different 3D
points) in all reference images are included in the keyframes. Even
with only 33 keyframes, about 42.17% reference feature tracks can
be maintained. The keyframe sparsity makes online feature match-
ing robust and fast. In this example, we set k = 2.0 as it can main-
tain sufficient features. Some of the keyframe images seem very
similar to others, e.g. the first 3 keyframes in the first row, and
the last 2 keyframes. As a matter of fact, they contain different fea-
tures because of image noises and the imperfect repetition of fea-
ture extraction. Our keyframe selection is rather efficient, only
requiring 11 s for this example.

Our keyframe recognition is very efficient, which spends only
2 ms even with a single working thread. Fig. 6 shows the perfor-
mance comparison. Compared to the appearance-vector-based
method [38], our running time is much less. It is also less variant
to the change of the keyframe numbers. Even using all the reference
images (thousands of images) as keyframes, our keyframe recogni-
tion only requires a few milliseconds. However, selecting a subset
of images as keyframes is still necessary due to the following two
reasons. First, we need to build a KD tree for each keyframe.

Fig. 5. The recovered reference 3D points and the selected keyframes for the outdoor ‘‘Campus’’ example. (a) The computed 3D points in the offline stage by SfM. (b) The
computed keyframes viewed in 3D. The cyan points represent the 3D points included in at least one keyframe. (c) The selected keyframes.

Table 2
The statistics of feature completeness and energies of Ec and Er with different ks and
keyframe numbers.

k Keyframe number Ec Er Feature completeness (%)

0.1 123 0.020207 0.584265 95.7998
1.0 65 0.194271 0.142999 70.2325
2.0 51 0.289593 0.071128 58.4981
5.0 33 0.443603 0.022406 42.1656
10 24 0.558724 0.006362 31.1694
100 12 0.739066 0.000220 16.4674 0 100 200 300 400 500 600 700 800 900

0

20

40

60

80

100

120

140

Frame Index

M
at

ch
 C

ou
nt

Global Matching
Keyframe−based Matching

Fig. 7. Comparison of global matching and our keyframe-based matching. For fair
evaluation and comparison, we do not limit the maximum number of matches.
Even without using the temporal information, our keyframe-based method yields
much more reliable matches than global matching.

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 105
Therefore, too many keyframes will require a significant memory
space. Second, if we choose all reference images as keyframes, there
will be significant overlapping among neighboring keyframes. The
selected candidate keyframes by keyframe recognition method will
0 50 100 150 200 250 300
0

2

4

6

8

10

Keyframe Number

R
ec

og
ni

tio
n

Ti
m

e
(m

s) Our method
Appearance−vector−based method

Fig. 6. Time spent in keyframe recognition. The computation of the appearance-
vector-based method [38] grows linearly with the keyframe number while our
method keeps it almost constant. The total running time of our method is much
less.
contain almost identical and similar features, which will make on-
line feature matching inefficient and unreliable.

We also compare our keyframe-based matching with the meth-
od of [45]. The latter one constructs a single KD tree for all reference
features. Each feature in a live frame is compared with those in-
cluded in the KD tree. We name this scheme global matching because
it relies on the global distinctiveness of features. Fig. 7 compares the
real-time matching quality in the indoor cubicle example. It is mea-
sured by the number of correct matches in processing one online
frame. It is noticeable that our keyframe method yields much more
reliable matches than the global one. The matching complexity of
each feature is O(logM) using the global matching, where M is the
total number of features. For our keyframe-based matching, it is re-
duced to K � Oðlog mÞ, where m is the average number of features in
each keyframe and K is the number of the candidate keyframes.

For global matching, the computation time grows with M. But
for our keyframe-based method, the computation time is much
smaller and does not grow with the total number of features. In

Fig. 8. The recovered 3D points and the selected keyframes of the ‘‘Street’’ example. (a) The computed 3D points corresponding to the computed reference features in the
offline stage. (b) The selected keyframes viewed in 3D. The cyan dots denote the 3D points covered by the keyframes.

Fig. 9. The online camera tracking results of the ‘‘Street’’ example. Top: online images with the inserted virtual objects. Bottom: the computed candidate keyframes.

106 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
our experiments, for each online frame, we extract about 300 SIFT
features. The global matching time is about 45 ms with a single
working thread. Our method only uses 16 ms with K ¼ 4 (single
working thread), and obtains high quality matches, as shown in
Fig. 7. With the temporal information, the number of the feature
matches is further increased.

Fig. 8 shows the ‘‘Street’’ example. It contains 3,385 reference
images. The camera moves along a street and captures several
buildings. The total moving distance is about 200 m. Fig. 8(a)
shows the recovered 72,004 3D points. The selected 76 keyframes
are shown in Fig. 8(b). The online tracking results are shown in
Fig. 9. Readers are referred to our supplementary video for more
details.

8.2. Comparison with other state-of-the-art methods

There has been a considerable amount of literature on camera
tracking, and on related topics such as landmark recognition, loca-
tion recognition, etc. Here, we discuss the differences of our method
with two recent comparable works [26,33]. The comparisons are
summarized in Table 3. Since these two methods do not allow to
online reconstruct new 3D features, we also turn off the online
map extension module for fair comparison. For fast location recog-
nition, Irschara et al. [26] proposed to use a greedy algorithm to
solve the view cover problem. Different from our method, they did
not explicitly model the energy function, instead they tried to select
the views which intersect with as many views as possible. The
resulting views along with the point set are similar to the selected
keyframes in our method, which contain as many features as possi-
ble, and the feature tracks should have long track length. This meth-
od also matches the input image to the closest views determined by
vocabulary tree for camera location recognition, but do not control
the number of extracted features and utilize the temporal informa-
tion for robust real-time camera tracking of video streams. It ex-
tracts about 1600 features from each input frame, and employ a
RANSAC procedure to verify the k top ranked keyframes. Due to
the large number of extracted features, the execution time of
matching each keyframe is about 25 ms (tested on a Intel Pentium
D 3.2 GHz with a GeForce GTX 280 display card in their paper).

In our system, the number of extracted features is restricted to
about 300, and the execution time of testing each keyframe is only
4 ms. Although fewer features are used, sufficient 2D–3D correspon-
dences can still be obtained by two-pass keyframe-based matching
with temporal tracking for robust camera pose estimation.

In the dual work, Li et al. [33] proposed another method to se-
lect a seed point set to represent a huge number of feature points. In
each selection iteration, they choose the feature point which covers
the most frames. There is not any corresponding notion in [33]
with keyframe, so efficient keyframe-based matching cannot be
used, and the proposed prioritized point-to-feature matching

Table 3
Comparison with other methods.

Methods Compressed representation Vocabulary tree Keyframe-based two-pass matching

Irschara et al. [26] Cover views Yes No
Li et al. [33] Seed points No No
Our method Keyframes Yes Yes

Fig. 10. Matching time of Li et al. [33]’s method for the ‘‘Campus’’ example. (a) The matching time of each input frame. (b) The Nearest Neighbour queries of Point-to-Feature
matching method. About 100 matches are required to locate the camera, the average number of NN queries of P2F method is about 5658, and the average matching time is
about 270 ms.

Fig. 11. The camera tracking results of PTAM for the indoor cubicle and outdoor ‘‘Campus’’ examples. (a,b) Two online frames in the indoor cubicle example. (c,d) Two online
frames in the outdoor ‘‘Campus’’ example. The large-scale space and fast camera movement make it difficult for PTAM to produce very good camera tracking results.

Fig. 12. An indoor example with/without online map extension. (a) The offline reconstructed reference 3D points with selected keyframes. (b–d) The augmented result
without online map extension. (e–g) The augmented result with online map extension.

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 107
schema is time-consuming. For the ‘‘Campus’’ example in Fig. 5, we
construct the seed points as 20-covers with 294 features, and the
compressed points as 400-covers with 18,317 features. It takes
about 150–600 ms (in our implementation) to find sufficient
number of inlier matches for robust camera pose estimation
(Fig. 10), which is impractical for real-time application.

Klein and Murray [29] employed online bundle adjustment
(BA) with parallel computing to avoid offline 3D reconstruction.

Fig. 13. An outdoor example with online map extension. (a,b) The augmented result of one frame and its corresponding tracking result viewed in 3D. The red curve is the
offline camera trajectory, and the yellow curve is the online camera trajectory. (c,d) The tracking and augmented result of another frame. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Comparison with PTAM. (a,b) Our real-time tracking result without offline preprocessing. (c,d) The tracking result by PTAM.

108 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
This strategy, albeit effective in a small-scale space, is not suitable
for camera tracking in a large scale one because SfM requires
computationally-expensive global BA which cannot be
accomplished online. We have experimented with sequences
using the publicly accessible PTAM code,4 where the input frame
rate is set to 5fps to give enough time to the local BA thread,
and each sequence is repeated for the global BA to converge.
Even with these operations, we found that PTAM only succeeded
in tracking the first half of the indoor cubicle sequence. Fig. 11
shows the results of PTAM for the indoor cubicle and outdoor
‘‘Campus’’ examples. The large-scale space and fast camera move-
ment makes it difficult for PTAM to produce very good camera
tracking results.
4 http://www.robots.ox.ac.uk/�gk/PTAM/.
8.3. Results comparison with and without online map extension

As we know, traditional GL methods typically assume that the
visited places have been sufficiently captured and reconstructed.
However, if the camera moves to a new place which is not suffi-
ciently covered by reference images, the camera pose estimation
will fail. Fig. 12 shows an indoor example. If we did not use online
map extension module, camera tracking would fail while the
camera came very close to the book, as shown in Fig. 12(c). The
reason is that the scales or viewing angles between online and ref-
erence images are too different, which eventually makes global
localization fail although scale-invariant features are used. With
online map extension, the camera pose can be robustly estimated
for this challenging case, as shown in Fig. 12(f). Fig. 13 shows an
outdoor example. As can be seen, the online camera significantly
deviated from the offline camera trajectory, and came very close

http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.robots.ox.ac.uk/~gk/PTAM/

Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110 109
to the building. With online map extension, the camera pose can be
robustly estimated by our system, which is, however, very difficult
for traditional GL methods. The scene scale of this example is also
out of the scope of tracking capability for traditional SLAM sys-
tems, such as PTAM.

It should be noted that our system can work even without off-
line preprocessing. In this extreme case, our system actually only
uses the online map extension module with keyframe-based
tracking to recover the camera pose in real-time. Compared to
PTAM, our online map extension is more robust and can handle a
larger scene. Fig. 14 gives a result comparison. Because PTAM pro-
jects each of the map features to current frame via a prior motion
model for robust matching, which seriously restricts its tracking
ability and scope. In contrast, our keyframe-based tracking scheme
does not have this limitation, and can handle a larger scale scene.
Please refer to our supplementary video for more detailed
comparison.
9. Conclusion and discussion

We have presented an effective keyframe-based real-time cam-
era tracking system. In the offline stage, keyframes are selected
from the captured reference images based on a few criteria. For
quick online matching, we introduce an efficient keyframe candi-
date searching algorithm to avoid exhaustive frame-by-frame
matching. Our experiments show that a small number of candidate
reference images are sufficient for achieving high coverage of fea-
tures in the input images. A two-pass keyframe-based matching is
employed to find sufficient and evenly distributed feature matches,
so that general camera tracking can be achieved. Compared to glo-
bal matching, our method not only simplifies feature matching and
speeds it up, but also minimizes the matching ambiguity when the
original images contain many non-distinctive features. Online map
extension module is also proposed to significantly extend the abil-
ity of global localization and camera tracking, so that our system
can still work well even the camera moves to a new place which
is not covered by offline reference images. A variety of challenging
examples demonstrate that the proposed system outperforms
state-of-the-art methods.

Acknowledgments

The authors thank the associate editor and all the reviewers for
their constructive comments. They also thank Wei Tan for his help
in producing part of the results. This work is partially supported by
the 973 Program of China (No. 2009CB320804), National Science
and Technology Support Plan Project (No. 2012BAH35B02), NSF
of China (No. 61103104), the Specialized Research Fund for the
Doctoral Program of Higher Education of China (No.
20110101130011), the Fundamental Research Funds for the Cen-
tral Universities, Zhejiang Provincial Natural Science Foundation
of China (Grant No. Z1111051), and a grant from the Research
Grants Council of Hong Kong (Project No. 412911).
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2013.08.005.

References

[1] A. Angeli, A.J. Davison, Live feature clustering in video using appearance and 3d
geometry, in: British Machine Vision Conference (BMVC), 2010.

[2] A. Angeli, D. Filliat, S. Doncieux, J.-A. Meyer, A fast and incremental method for
loop-closure detection using bags of visual words, in: IEEE Transactions on
Robotics Special Issue on Visual Slam, October 2008.
[3] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu, An optimal
algorithm for approximate nearest neighbor searching fixed dimensions, J.
ACM 45 (6) (1998) 891–923.

[4] H. Bay, T. Tuytelaars, L.J.V. Gool, Surf: speeded up robust features, in: ECCV (1),
2006, pp. 404–417.

[5] R.O. Castle, G. Klein, D.W. Murray, Video-rate localization in multiple maps for
wearable augmented reality, in: Proc 12th IEEE Int. Symp. on Wearable
Computers, Pittsburgh PA, 2008.

[6] D. Chekhlov, W. Mayol-Cuevas, A. Calway, Appearance based indexing for
relocalisation in real-time visual slam, in: 19th Bristish Machine Vision
Conference, BMVA, September 2008, pp. 363–372.

[7] D. Chekhlov, M. Pupilli, W. Mayol, A. Calway, Robust real-time visual SLAM
using scale prediction and exemplar based feature description, in: CVPR, 2007,
pp. 1–7.

[8] M. Chli, A.J. Davison, Automatically and efficiently inferring the hierarchical
structure of visual maps, in: Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2009, pp. 387–394.

[9] O. Chum, J. Philbin, J. Sivic, M. Isard, A. Zisserman, Total recall: automatic query
expansion with a generative feature model for object retrieval, in: ICCV, 2007,
pp. 1–8.

[10] L.A. Clemente, A.J. Davison, I.D. Reid, J. Neira, J.D. Tardós, Mapping large loops
with a single hand-held camera, in: Robotics: Science and Systems, 2007.

[11] A.I. Comport, E. Marchand, M. Pressigout, F. Chaumette, Real-time markerless
tracking for augmented reality: the virtual visual servoing framework, IEEE
Trans. Visual. Comput. Graph. 12 (4) (2006) 615–628. July–August.

[12] M. Cummins, P. Newman, Fab-map: probabilistic localization and mapping in
the space of appearance, Int. J. Rob. Res. 27 (6) (2008) 647–665.

[13] M.J. Cummins, P. Newman, Accelerated appearance-only slam, in: ICRA, 2008,
pp. 1828–1833.

[14] A.J. Davison, Real-time simultaneous localisation and mapping with a single
camera, in: ICCV, 2003, pp. 1403–1410.

[15] A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse, MonoSLAM: real-time single
camera SLAM, IEEE Trans. Pattern Anal. Machine Intell. 26 (6) (2007) 1052–
1067.

[16] Z. Dong, G. Zhang, J. Jia, H. Bao, Keyframe-based real-time camera tracking, in:
ICCV, 2009, pp. 1538–1545.

[17] E. Eade, T. Drummond, Scalable monocular slam, in: CVPR (1), 2006, pp. 469–
476.

[18] E. Eade, T. Drummond, Unified loop closing and recovery for real time
monocular slam, in: British Machine Vision Conference (BMVC), 2008.

[19] C. Estrada, J. Neira, J.D. Tardos, Hierarchical slam: real-time accurate mapping
of large environments, Trans. Robot. 21 (4) (2005) 588–596.

[20] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography,
Commun. ACM 24 (6) (1981) 381–395.

[21] V. Gay-Bellile, P. Lothe, S. Bourgeois, E. Royer, S.N. Collette, Augmented reality
in large environments: Application to aided navigation in urban context, in:
9th IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
2010, pp. 225–226.

[22] A.A. GerardoCarrera, A.J. Davison, Lightweight slam and navigation with a
multi-camera rig, in: European Conference on Mobile Robots, 2011.

[23] C. Gianluigi, S. Raimondo, An innovative algorithm for key frame extraction in
video summarization, J. Real-Time Image Process. 1 (1) (2006) 69–88.

[24] R.I. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision, second
ed., Cambridge University Press, 2004. 052154051.

[25] Hauke Strasdat, Andrew J. Davison, J.M.M. Montiel, K. Konolige, Double
window optimisation for constant time visual slam, in: Proceedings of
International Conference on Computer Vision, 2011.

[26] A. Irschara, C. Zach, J.-M. Frahm, H. Bischof, From structure-from-motion point
clouds to fast location recognition, in: CVPR, 2009.

[27] J. Stuehmer, S. Gumhold, D. Cremers, Real-time dense geometry from a
handheld camera, in: Proceedings of the DAGM Symposium on Pattern
Recognition, 2010.

[28] G. Klein, D. Murray, Parallel tracking and mapping for small AR workspaces, in:
ISMAR 2007, November 2007, pp. 225–234.

[29] G. Klein, D. Murray, Improving the agility of keyframe-based slam, in: ECCV,
vol. 2, 2008, pp. 802–815.

[30] T. Lee, T. Höllerer, Hybrid feature tracking and user interaction for markerless
augmented reality, in: VR, 2008, pp. 145–152.

[31] V. Lepetit, P. Fua, Monocular model-based 3D tracking of rigid objects, Found.
Trends. Comput. Graph. Vis. 1 (1) (2005) 1–89.

[32] V. Lepetit, P. Fua, Keypoint recognition using randomized trees, IEEE Trans.
Pattern Anal. Mach. Intell. 28 (9) (2006) 1465–1479.

[33] Y. Li, N. Snavely, D.P. Huttenlocher, Location recognition using prioritized
feature matching, in: Proceedings of ECCV, 2010.

[34] T. Liu, J.R. Kender, Optimization algorithms for the selection of key frame
sequences of variable length, in: ECCV (4), 2002, pp. 403–417.

[35] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110.

[36] B.D. Lucas, T. Kanade, An iterative image registration technique with an
application to stereo vision, in: IJCAI, 1981, pp. 674–679.

[37] R.A. Newcombe, A.J. Davison, Live dense reconstruction with a single moving
camera, in: CVPR, 2010.

[38] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in:
CVPR, IEEE Computer Society, Washington, DC, USA, 2006, pp.
2161–2168.

http://dx.doi.org/10.1016/j.cviu.2013.08.005
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0005
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0005
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0005
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0010
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0010
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0010
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0015
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0015
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0020
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0020
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0020
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0025
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0025
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0030
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0030
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0030
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0035
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0035
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0040
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0040
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0040
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0045
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0045
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0050
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0050
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0055
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0055
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0060
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0060
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0060
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0060

110 Z. Dong et al. / Computer Vision and Image Understanding 118 (2014) 97–110
[39] Y. Park, V. Lepetit, W. Woo, Multiple 3d object tracking for augmented reality,
in: 7th IEEE/ACM International Symposium on Mixed and Augmented Reality,
2008 (ISMAR 2008), September 2008, pp. 117–120.

[40] M. Pollefeys, L.V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops, R. Koch,
Visual modeling with a hand-held camera, Int. J. Comput. Vis. 59 (3) (2004)
207–232.

[41] Rongrong Ji, Xing Xie, H. Yao, Y. Wu, W.-Y. Ma, Vocabulary tree incremental
indexing for scalable location recognition, in: IEEE International Conference on
Multimedia and Expo, 2008, pp. 869–872.

[42] F. Schaffalitzky, A. Zisserman, Automated location matching in movies,
Comput. Vis. Image Understand. 92 (2–3) (2003) 236–264.

[43] G. Schindler, M. Brown, R. Szeliski, City-scale location recognition, in: CVPR, 2007.
[44] J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in

videos, in: ICCV, IEEE Computer Society, Washington, DC, USA, 2003, p. 1470.
[45] I. Skrypnyk, D.G. Lowe, Scene modelling, recognition and tracking with

invariant image features, in: ’04: Proceedings of the 3rd IEEE/ACM
International Symposium on Mixed and Augmented Reality, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 110–119.
[46] N. Snavely, S.M. Seitz, R. Szeliski, Photo tourism: exploring photo collections in
3d, ACM Trans. Graph. 25 (3) (2006) 835–846.

[47] B.T. Truong, S. Venkatesh, Video abstraction: a systematic review
and classification, ACM Trans. Multimedia Comput. Commun. Appl. 3 (1)
(2007) 3.

[48] L. Vacchetti, V. Lepetit, P. Fua, Combining edge and texture information for
real-time accurate 3D camera tracking, in: Third IEEE and ACM International
Symposium on Mixed and Augmented Reality, Arlington, Virginia, November
2004, pp. 48–57.

[49] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, J. Tardos, An image-to-
map loop closing method for monocular SLAM, in: Proc. International
Conference on Intelligent Robots and Systems, 2008.

[50] B. Williams, G. Klein, I. Reid, Real-Time SLAM Relocalisation, in: ICCV, 2007, pp.
1–8.

[51] C. Wu, SiftGPU: a GPU implementation of scale invariant feature transform
(SIFT), 2007. <http://cs.unc.edu/ccwu/siftgpu>.

[52] G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, H. Bao, Robust metric
reconstruction from challenging video sequences, in: CVPR, 2007.

http://refhub.elsevier.com/S1077-3142(13)00156-2/h0065
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0065
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0065
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0070
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0070
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0075
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0075
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0075
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0080
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0080
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0080
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0080
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0080
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0085
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0085
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0090
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0090
http://refhub.elsevier.com/S1077-3142(13)00156-2/h0090

	Efficient keyframe-based real-time camera tracking
	1 Introduction
	2 Related work
	2.1 Markless real-time camera tracking
	2.2 Keyframe-based methods
	2.3 Feature-based location recognition

	3 Framework overview
	4 Offline optimal keyframe selection
	4.1 Completeness term
	4.2 Redundancy term
	4.3 Keyframe selection

	5 Online keyframe recognition and matching
	5.1 Vocabulary tree construction
	5.2 Candidate keyframe searching
	5.3 Two-pass keyframe-based matching

	6 Reference map extension with online keyframe selection
	7 Implementation
	7.1 Parallel computing
	7.2 Utilizing temporal information

	8 Experimental results
	8.1 Large-scale outdoor examples
	8.2 Comparison with other state-of-the-art methods
	8.3 Results comparison with and without online map extension

	9 Conclusion and discussion
	Acknowledgments
	Appendix A Supplementary data
	References

