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Abstract—We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution

provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient

structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF),

thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure

propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to

achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters

and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative

evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art

techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple

and nonlinear structures are underway.

Index Terms—Tensor voting, closed-form solution, structure inference, parameter estimation, multiview stereo.

Ç

1 INTRODUCTION

THIS paper reinvents tensor voting (TV) [19] for robust
computer vision by proving a closed-form solution to

computing an exact structure-aware tensor after data commu-
nication in a feature space of any dimensions, where the goal
is salient structure inference from noisy and corrupted data.

To infer structures from noisy data corrupted by outliers,
in tensor voting, input points communicate among them-
selves subject to proximity and continuity constraints.
Consequently, each point is aware of its structure saliency
via a structure-aware tensor. Structure refers to surfaces,
curves, or junctions if the feature space is three dimensional
where a structure-aware tensor can be visualized as an
ellipsoid: If a point belongs to a smooth surface, the
resulting ellipsoid after data communication resembles a

stick pointing along the surface normal; if a point lies on a
curve the tensor resembles a plate where the curve tangent
is perpendicular to the plate tensor; if it is a point junction
where surfaces intersect, the tensor will be like a ball. An
outlier is characterized by a set of inconsistent votes it
receives after data communication.

We develop in this paper a closed-form solution to tensor
voting (CFTV), which is applicable to the special as well as
general theory of tensor voting. This paper focuses on the
special theory, where the above data communication is data
driven without using constraints other than proximity and
continuity. The special theory, sometimes coined “first voting
pass,” is applied to process raw input data to detect structures
and outliers. In addition to structure detection and outlier
attenuation, in the general theory of tensor voting tensor votes
are propagated along preferred directions to achieve data
communication when such directions are available, typically
after the first pass, such that useful tensor votes are
reinforced, whereas irrelevant ones are suppressed.

Expressing tensor voting in a single and compact equa-
tion, or a closed-form solution, offers many advantages: Not
only can an exact and efficient solution be achieved with less
implementation effort for salient structure detection and
outlier attenuation, formal and useful mathematical opera-
tions such as differential calculus can be applied, which is
otherwise impossible using the original tensor voting
procedure. Notably, we can prove the convergence of tensor
voting on Markov random fields (MRFTV), where a
structure-aware tensor at each input site achieves a stationary
state upon convergence.

Using CFTV, we contribute a mathematical derivation
based on expectation maximization (EM) that applies the
exact tensor solution for extracting the most salient linear
structure, despite the fact that the input data are highly
corrupted. Our algorithm is called EMTV, which optimizes
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both the tensor and fitting parameters upon convergence
and does not require random sampling consensus
(RANSAC) typical of existing robust statistical techniques.
The extension to extract salient multiple and nonlinear
structures is underway.

While the mathematical derivation may seem involved,
our main results for CFTV, MRFTV, and EMTV, that is, (11),
(12), (18), (19), (26), and (30), have rigorous mathematical
foundations, are applicable to any dimensions, produce
more robust and accurate results, as demonstrated in our
qualitative and quantitative evaluation using challenging
synthetic and real data, but, on the other hand, are easier to
implement. The source codes accompanying this paper are
available in the supplemental material, which can be found
iat http://www.cs.ust.hi/!cktang/tv_code.zip.

2 RELATED WORK

While this paper is mainly concerned with tensor voting,
we provide a concise review on robust estimation and
expectation maximization.

Robust estimators. Robust techniques are widely used
and an excellent review of the theoretical foundations of
robust methods in the context of computer vision can be
found in [20].

The Hough transform [13] is a robust voting-based
technique operating in a parameter space capable of
extracting multiple models from noisy data. Statistical
Hough transform [6] can be used for high-dimensional
spaces with sparse observations. Mean shift [5] has been
widely used since its introduction to computer vision for
robust feature space analysis. The Adaptive Mean Shift [11]
with variable bandwidth in high dimensions was intro-
duced in texture classification and has since been applied to
other vision tasks. Another popular robust method in
computer vision is in the class of random sampling
consensus procedures [7], which have spawned a lot of
follow-up work (e.g., optimal randomized RANSAC [4]).

Like RANSAC [7], robust estimators, including the
LMedS [22] and the M-estimator [14], adopted a statistical
approach. The LMedS, RANSAC, and the Hough transform
can be expressed as M-estimators with auxiliary scale [20].
The choice of scales and parameters related to the noise
level are major issues. Existing works on robust scale
estimation use random sampling [26] or operate on
different assumptions (e.g., more than 50 percent of the
data should be inliers [23]; inliers have a Gaussian
distribution [15]). Among them, the Adaptive Scale Sample
Consensus (ASSC) estimator [28] has shown the best
performance where the estimation process requires no free

parameter as input. Rather than using a Gaussian distribu-
tion to model inliers, the authors of [28] proposed to use a
two-step scale estimator (TSSE) to refine the model scale:
First, a non-Gaussian distribution is used to model inliers
where local peaks of density are found by mean shift [5];
second, the scale parameter is estimated by a median scale
estimator with the estimated peaks and valleys. On the
other hand, the projection-based M-estimator (pbM) [3], an
improvement made on the M-estimator, uses a Parzen
window for scale estimation, so the scale parameter is
automatically found by searching for the normal direction
(projection direction) that maximizes the sharpest peak of
the density. This does not require an input scale from the
user. While these recent methods can tolerate more outliers,
most of them still rely on or are based on RANSAC and a
number of random sampling trials is required to achieve the
desired robustness.

To reject outliers, a multipass method using L1-norms
was proposed to successively detect outliers which are
characterized by maximum errors [24].

Expectation maximization. EM has been used in hand-
ling missing data and identifying outliers in robust
computer vision [8], and its convergence properties were
studied [18]. In essence, EM consists of two steps [2], [18]:

1. E-Step. Computing an expected value for the
complete data set using incomplete data and the
current estimates of the parameters.

2. M-Step. Maximizing the complete data log likelihood
using the expected value computed in the E-step.

EM is a powerful inference algorithm, but it is also well
known from [8] that: 1) Initialization is an issue because EM
can get stuck in poor local minima, and 2) treatment of data
points with small expected weights requires great care.
They should not be regarded as negligible, as their
aggregate effect can be quite significant. In this paper, we
initialize EMTV using structure-aware tensors obtained by
CFTV. As we will demonstrate, such initialization not only
allows the EMTV algorithm to converge quickly (typically
within 20 iterations) but also produces accurate and robust
solution in parameter estimation and outlier rejection.

3 DATA COMMUNICATION

In the tensor voting framework, a data point, or voter,
communicates with another data point, or vote receiver,
subject to proximity and continuity constraints, resulting in
a tensor vote cast from the voter to the vote receiver (Fig. 1).
In the following, we use n to denote a unit voting stick
tensor, v to denote a stick tensor vote received. Stick tensor
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Fig. 1. Inlier/outlier and tensor inverse illustration. (a) The normal votes received at a surface point cast by points in x’s neighborhood. Three salient
outliers are present. (b) For a nonsurface point, there is no preference to any normals. (c) The structure-aware tensor induced by the normal
observations in (a), which is represented by a d-D ellipsoid, where d � 2. The orange curve (dashed curve) represents the variance produced along
all possible directions. (d) The structure-aware tensor collected after collecting the received votes in (b). (e) and (f) correspond to the inverse of
(c) and (d), respectively.



vote may not be unit vectors when they are multiplied by
vote strength. These stick tensors are building elements of a
structure-aware tensor vote.

Here, we first define a decay function � to encode the
proximity and smoothness constraints ((1) and (2)). While
similar in effect to the decay function used in the original
tensor voting and also to the one used in [9], where a
vote attenuation function is defined to decouple proximity
and curvature terms, our modified function, which also
differs from that in [21], enables a closed-form solution
for tensor voting without resorting to precomputed
discrete voting fields.

Refer to Fig. 2. Consider two points xi 2 IRd and xj 2 IRd

(where d > 1 is the dimension) that are connected by some
smooth structure in the feature/solution space. Suppose
that the unit normal nj at xj is known. We want to generate
at xi a normal (vote) vi so that we can calculate Ki 2
IRd � IRd, where Ki is the structure-aware tensor at xi in
the presence of nj at xj. In tensor voting, a structure-aware
tensor is a second-order symmetric tensor, which can be
visualized as an ellipsoid.

While many possibilities exist, the unit direction vi can
be derived by fitting an arc of the osculating circle between
the two points. Such an arc keeps the curvature constant
along the hypothesized connection, thus encoding the
smoothness constraint. Ki is then given by viv

T
i multiplied

by �ðxi;xj;njÞ defined as

�ðxi;xj;njÞ ¼ cij
�
1�

�
rTijnj

�2�
; ð1Þ

where

cij ¼ exp �kxi � xjk2

�d

 !
ð2Þ

is an exponential function using euclidean distance for
attenuating the strength based on proximity. �d is the size of
local neighborhood (or the scale parameter, the only free
parameter in tensor voting).

In (1), rij 2 IRd is a unit vector at xj pointing to xi, and
1� ðrTijnjÞ

2 is a squared-sine function1 for attenuating the
contribution according to curvature. Similarly to the original
tensor voting framework, (1) favors nearby neighbors that
produce small-curvature connections, thus encoding the
smoothness constraint. A plot of the 2D version of (1) is
shown in Fig. 2b, where xj is located at the center of the image
and nj is aligned with the blue line. The higher the intensity,
the higher the value (1) produces at a given pixel location.

Next, consider the general case where the normal nj at xj
is unavailable. Here, let Kj at xj be any second-order
symmetric tensor, which is typically initialized as an
identity matrix if no normal information is available.

To compute Ki given Kj, we consider equivalently the
set of all possible unit normals fn�jg associated with
the corresponding length f��jg which make up Kj at xj,
where fn�jg and f��jg are, respectively, indexed by all
possible directions �. Each ��jn�j postulates a normal vote
v�ðxi;xjÞ at xi under the same smoothness constraint
prescribed by the corresponding arc of the osculating circle
as illustrated in Fig. 3.

Let Sij be the second-order symmetric tensor vote

obtained at xi due to this complete set of normals at xj
defined above. We have

Sij ¼
Z

N�j2�
v�ðxi;xjÞv�ðxi;xjÞT �ðxi;xj;n�jÞdN�j; ð3Þ

where

N�j ¼ n�jn
T
�j; ð4Þ

and � is the space containing all possible N�j. For example,
if � is 2D, the complete set of unit normals n� describes a
unit circle. If � is 3D, the complete set of unit normals n�
describes a unit sphere.2

In a typical tensor voting implementation, (3) is pre-
computed as discrete voting fields (e.g., plate and ball voting
fields in 3D tensor voting [19]): The integration is imple-
mented by rotating and summing the contributions using
matrix addition. Although precomputed once, such discrete
approximations involve uniform and dense sampling of
tensor votes n�n

T
� in higher dimensions where the number of

dimensions depends on the problem. In the following
section, we will prove a closed-form solution to (3), which
provides an efficient and exact solution to computing K
without resorting to discrete and dense sampling.

4 CLOSED-FORM SOLUTION

Theorem 1 (Closed-Form Solution to Tensor Voting). The
tensor vote at xi induced by Kj located at xj is given by the
following closed-form solution:

1484 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 8, AUGUST 2012

Fig. 2. (a) The normal vote vi received at xi using an arc of the osculating
circle between xi and xj, assuming the normal voter at xj is nj, where nj,
rij, and vi are unit vectors in this illustration. (b) Plot of (1) in 2D.

1. sin2 � ¼ 1� cos2 �, where cos2 � ¼ ðrTijnjÞ
2 and � is the angle between

rij and nj.

2. The domain of integration � represents the space of stick tensors

given by n�j. Note that d > 1; alternatively, it can be understood by

expressing N�j using polar coordinates and thus in N dimensions,

� ¼ ð�1; �2; . . . ; �n�1Þ. It follows naturally that we do not use � to define

the integration domain, because rather than simply writingR
N�j2� � � � dN�j, it would have been

R
�1

R
�2
� � �
R
�n�1
� � � d�n�1d�n�2 � � � d�1

making the derivation of the proof of Theorem 1 more complicated.

Fig. 3. Illustration of (5). Normal vote vi ¼ v�ðxi;xjÞ received at xi using
the arc of the osculating circle between xi and xj, considering one of the
normal voters at xj is n�j. Here, n�j and r are unit vectors.



Sij ¼ cijRijKjR
0
ij;

where Kj is a second-order symmetric tensor, Rij ¼ I �
2rijr

T
ij, R0ij ¼ ðI� 1

2 rijr
T
ijÞRij, I is an identity, rij is a unit

vector pointing from xj to xi, and cij ¼ expð� kxi�xjk2

�d
Þ with

�d as the scale parameter.

Proof. For simplicity of notation, set r ¼ rij, n� ¼ n�j, and

N� ¼ N�j. Now, using the above-mentioned osculating

arc connection, v�ðxi;xjÞ can be expressed as

v�ðxi;xjÞ ¼
�
n� � 2r

�
rTn�

��
��: ð5Þ

Recall that n� is the unit normal at xj with direction �,

and that �� is the length associated with the normal. This

vector subtraction equation is shown in Fig. 3, where the

roles of v�, n�, r, and �� are illustrated.
Let

R ¼ ðI� 2rrT Þ; ð6Þ

where I is an identity, we can rewrite (3) into the

following form:

Sij ¼ cij
Z

N�2�
�2
�Rn�n

T
� RT

�
1�

�
nT� r

�2�
dN�: ð7Þ

Following the derivation:

Sij ¼ cij
Z

N�2�
�2
�Rn�

�
1�

�
nT� r

�2�
nT� RT dN�

¼ cijR
Z

N�2�
�2
�n�
�
1� nT� rrTn�

�
nT� dN�

� �
RT

¼ cijR
Z

N�2�
�2
�N� � �2

�N�rr
TN�dN�

� �
RT

¼ cijR Kj �
Z

N�2�
�2
�N�rr

TN�dN�

� �
RT :

ð8Þ

The integration can be solved by integration by parts.

Let fð�Þ ¼ �2
�N�, f

0ð�Þ ¼ �2
� I, gð�Þ ¼ 1

2 rrTN2
�, and g0ð�Þ ¼

rrTN�, and note that Nq
� ¼ N�

3 for all q 2 ZZþ, and Kj,

in the most general form, can be expressed as a generic

tensor
R

N�2� �
2
�N�dN�. So we haveZ

N�2�
�2
�N�rrTN�dN�

¼ fð�Þgð�Þ½ �N�2� �
Z

N�2�
f 0ð�Þgð�ÞdN�

¼ 1

2
�2
�N�rrTN2

�

� �
N�2�
� 1

2

Z
N�2�

�2
� rr

TN�dN�

¼ 1

2

Z
N�2�

�2
�

d

dN�
½N��rrTN2

� þ �2
�N�

d

dN�

�
rrTN2

�

	� �
dN�

� 1

2
rrTKj:

4

Finally, we apply the fact that Nq
� ¼ N� (for all q 2 ZZþ)

to convert d
dN�
½rrTN2

�� into d
dN�
½rrTN��. We obtain

1

2

Z
N�2�

�
�2
� rrTN2

� þ �2
�N�rrT

�
dN� �

1

2
rrTKj

¼ 1

2

�
rrTKj þKjrrT � rrTKj

�
¼ 1

2
KjrrT :

ð9Þ

By substituting (9) back to (8), we obtain the result as

follows:

Sij ¼ cijRKj I� 1

2
rrT

� �
RT : ð10Þ

Replace r by rij such that Rij ¼ I� 2rijr
T
ij and let R0ij ¼

ðI� 1
2 rijr

T
ijÞRij, we obtain

Sij ¼ cijRijKjR
0
ij: ð11Þ

tu

A structure-aware tensor Ki ¼
P

j Sij can thus be assigned
at each site xi. This tensor sum considers both geometric
proximity and smoothness constraints in the presence of
neighbors xj under the chosen scale of analysis. Note also
that (11) is an exact equivalent of (3), or (7), that is, the first
principle. Since the first principle produces a positive
semidefinite matrix, (11) still produces a positive semide-
finite matrix.

In tensor voting, eigen-decomposition is applied to a
structure-aware tensor. In three dimensions, the eigensys-
tem has eigenvalues 	1 � 	2 � 	3 � 0 with the correspond-
ing eigenvectors ê1, ê2, and ê3. 	1 � 	2 denotes surface
saliency with normal direction indicated by ê1; 	2 � 	3

denotes curve saliency with tangent direction indicated by
ê3; junction saliency is indicated by 	3.

While it may be difficult to observe any geometric
intuition directly from this closed-form solution, the
geometric meaning of the closed-form solution has been
described by (3) (or (7), the first principle) since (11) is
equivalent to (3). Note that our solution is different from,
for instance, [21], where the N-D formulation is approached
from a more geometric point of view.

As will be shown in the next section on EMTV, the
inverse of Kj is used. In case of a perfect stick tensor, which
can be equivalently represented as a rank-1 matrix, does not
have an inverse. Similar in spirit where a Gaussian function
can be interpreted as an impulse function associated with a
spread representing uncertainty, a similar statistical ap-
proach is adopted here in characterizing our tensor inverse.
Specifically, the uncertainty is incorporated using a ball
tensor, where 
I is added to Kj, 
 is a small positive
constant (0.001), and I an identity matrix. Fig. 1 shows a
tensor and its inverse for some selected cases. The following
corollary regarding the inverse of Sij is useful:

Corollary 1. Let R00ij ¼ RijðIþ rijr
T
ijÞ and also note that

R�1
ij ¼ Rij, the corresponding inverse of Sij is

S0ij ¼ c�1
ij R00ijK

�1
j Rij: ð12Þ
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3. The derivation is as follows: Nq
� ¼ n�n

T
� n�n

T
� � � �n�nT� ¼ n� � 1 �

1 � � � 1 � nT� ¼ n�n
T
� ¼ N�.

4. Here, we rewrite the first term by the product rule for derivative and
the fundamental theorem of calculus and then express part of the second
term by a generic tensor. We obtain:

1

2

Z
N�2�

d

dN�

�
�2
�N�rr

TN2
�

	
dN� �

1

2
rrTKj.



Proof. This corollary can simply be proved by applying

inverse to (11). tu

Note the initial Kj can be either derived when input

direction is available, or simply assigned as an identity

matrix otherwise.

4.1 Examples

Using (11), given any input Kj at site jwhich is a second-order

symmetric tensor, the output tensor Sij can be computed

directly. Note that Rij is a d� d matrix of the same

dimensionality d as Kj. To verify our closed-form solution,

we perform the following to compare with the voting fields

used by the original tensor voting framework (Fig. 4):

1. Set K to be an identity (ball tensor) in (11) and
compute all votes S in a neighborhood. This
procedure generates the ball voting field, Fig. 4a.

2. Set K to be a plate tensor

1 0 0
0 1 0
0 0 0

2
4

3
5

in (11) and compute all votes S in a neighborhood. This

procedure generates the plate voting field, Fig. 4b.
3. Set K to be a stick tensor

1 0 0
0 0 0
0 0 0

2
4

3
5

in (11) and compute all votes S in a neighborhood.

This procedure generates the stick voting field, Fig. 4c.
4. Set K to be any generic second-order tensor in (11) to

compute a tensor vote S at a given site. We do not need
a voting field, or the somewhat complex procedure
described in [21]. In one single step using the closed-
form solution (11), we obtain S as shown in Fig. 4d.

Note that the stick voting field generation is the same as

the closed-form solution given by the arc of an osculating

circle. On the other hand, since the closed-form solution does

not remove votes lying beyond the 45-degree zone as done in

the original framework, it is useful to compare the ball voting

field generated using the CFTV and the original framework.

Fig. 5 shows the close ups of the ball voting fields generated

using the original framework and CFTV. As anticipated, the
tensor orientations are almost the same (with the maximum
angular deviation at 4.531 degrees), while the tensor strength
is different due to the use of different decay functions. The
new computation results in perfect vote orientations which
are radial, and the angular discrepancies are due to the
discrete approximations in the original solution.

While the above illustrates the usage of (11) in three
dimensions, the equation applies to any dimensions d. All
of the Ss returned by (11) are second-order symmetric
tensors and can be decomposed using eigen-decomposi-
tion. The implementation of (11) is a matter of a few lines of
C++ code.

Our “voting without voting fields” method is uniform to
any input tensors Kj that are second-order symmetric
tensor in its closed-form expressed by (11), where formal
mathematical operation can be applied on this compact
equation, which is otherwise difficult on the algorithmic
procedure described in previous tensor voting papers.
Notably, using the closed-form solution, we are now able
to prove mathematically the convergence of tensor voting in
the next section.

4.2 Time Complexity

Akin to the original tensor voting formalism, each site (input
or noninput) communicates with each other on a Markov
random field in a broad sense, where the number of edges
depends on the scale of analysis, parameterized by�d in (2). In
our implementation, we use an efficient data structure such as
ANN tree [1] to access a constant number of neighbors xj of
each xi. It should be noted that under a large scale of analysis
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Voter

Vote received

(a) (b) (c) (d)

Fig. 4. (a) 3D ball voting field. A slice generated using the closed-form solution (11), which has similar tensor orientations (but different tensor

strengths) as the ball voting field in [19]. (b) 3D plate voting field. Left: A cut of the voting field (direction of ê3 normal to the page). Right: A cut of the

same voting field, showing the ð	2 � 	3Þê3 component (i.e., component parallel to the tangent direction). The field is generated by using (11),

showing similar tensor orientations as the plate voting field in [19]. (c) 3D stick voting field. A slice after zeroing out votes lying in the 45-degree

zone as done in [19]. The stick tensor orientations shown in the figure are identical to those in the 3D stick voting field in [19]. (d) Vote computation

using the closed-form solution in one single step by (11).

Fig. 5. Close-ups of ball voting fields generated using the original tensor
voting framework (left) and CFTV (right).



where the number of neighbors is sufficiently large, a similar
number of neighbors are accessed in ours and the original
tensor voting implementation.

The speed of accessing nearest neighbors can be greatly
increased (polylogarithmic) by using ANN, thus making
the computation of a structure-aware tensor efficient. Note
that the running time for this implementation of the closed-
from solution is Oðd3Þ, while the running time for the
original tensor voting is Oðud�1Þ, where d is the dimension
of the space and u is the number of sampling directions for
a given dimension. Because of this, a typical TV imple-
mentation precomputes and stores the dense tensor fields.
For example, when d ¼ 3 and u ¼ 180 for high accuracy, our
method requires 27 operation units, while a typical TV
implementation requires 32,400 operation units. Given 1,980
points and the same number of neighbors, the time to
compute a structure-aware tensor using our method is
about 0.0001 second; it takes about 0.1 second for a typical
TV implementation to output the corresponding tensor. The
measurement was performed on a computer running on a
core duo 2 GHz CPU with 2 GB RAM.

Note that the asymptotic running time for the improved
TV in [21] is Oðd�2Þ since it applies the Gramm-Schmidt
process to perform component decomposition, where � is
the number of linearly independent set of the tensors. In
most of the cases, � ¼ d. So, the running time for our
method is comparable to [21]. However, their approach
does not have a precise mathematical solution.

5 MRFTV

We have proven CFTV for the special theory of tensor
voting, or the “first voting pass” for structure inference.
Conventionally, tensor voting was done in two passes,
where the second pass was used for structure propagation
in the preferred direction after disabling the ball compo-
nent in the structure-aware tensor. What happens if more
tensor voting passes are applied? This has never been
answered properly.

In this section, we provide a convergence proof for
tensor voting based on CFTV: The structure-aware tensor
obtained at each site achieves a stationary state upon
convergence. Our convergence proof makes use of Markov
random fields, thus termed as MRFTV.

It should be noted that the original tensor voting
formulation is also constructed on an MRF according to
the broad definition, since random variables (that is, the
tensors after voting) are defined on the nodes of an
undirected graph in which each node is connected to all
neighbors within a fixed distance. On the other hand,
without CFTV, it was previously difficult to write down an
objective function and to prove the convergence. One caveat
to note in the following is that we do not disable the ball
component in each iteration, which will be addressed in the
future in developing the general theory of tensor voting in
structure propagation. As we will demonstrate, MRFTV
does not smooth out important features (Fig. 6) and still
possesses high outlier rejection ability (Fig. 13).

Recall in MRF, a Markov network is a graph consisting of
two types of nodes—a set of hidden variables E and a set of
observed variables O, where the edges of the graph are

described by the following posterior probability PðEjOÞ
with standard Bayesian framework:

PðEjOÞ / PðOjEÞPðEÞ: ð13Þ

By letting E ¼ fKiji ¼ 1; 2; . . . ; Ng and O ¼ f ~Kiji ¼ 1;
2; . . . ; Ng, where N is total number of points and ~Ki is the
known tensor at xi and supposing that inliers follow
Gaussian distribution, we obtain the likelihood PðOjEÞ and
the prior PðEÞ as follows:

PðOjEÞ /
Y
i

pð ~KijKiÞ ¼
Y
i

e
�
kKi� ~Kik2F

�h ; ð14Þ

PðEÞ /
Y
i

Y
j2NðiÞ

pðSijjKiÞ ð15Þ

¼
Y
i

Y
j2NðiÞ

e�
kKi�Sijk2F

�s ; ð16Þ

where k � kF is the Frobenius norm, ~Ki is the known tensor
at xi, NðiÞ is the set of neighbor corresponds to xi, and �h
and �s are two constants respectively.

Note that we use the Frobenius norm to encode tensor
orientation consistency as well as to reflect the necessary
vote saliency information including distance and continuity
attenuation. For example, suppose we have a unit stick
tensor at xi and a stick vote (received at xi) which is parallel
to it but with magnitude equal to 0.8. In another scenario, xi
receives from a voter farther away a stick vote with the
same orientation but magnitude being equal to 0.2. The
Frobenius norm reflects the difference in saliency despite
the perfect orientation consistency in both cases. Notwith-
standing, it is arguable that the Frobenius norm may not be
the perfect solution to encode orientation consistency
constraint in the pertinent equations, while this current
form works acceptably well in our experiments in practice.

By taking the logarithm of (13), we obtain the following
energy function:

EðEÞ ¼
X
i

kKi � ~Kik2
F þ g

X
i

X
j2NðiÞ

kKi � Sijk2
F ; ð17Þ

where g ¼ �h
�s

. Theoretically, this quadratic energy function
can be directly solved by Singular Value Decomposition
(SVD). Since N can be large, thus making direct SVD
impractical, we adopt an iterative approach: By taking the
partial derivative of (17) (w.r.t. to Ki), the following update
rule is obtained:
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Fig. 6. Convergence of MRF-TV. From left to right: Input points, result
after two passes, result after convergence (10 iterations). Visually, this
simple example distinguishes tensor voting from smoothing as the sharp
orientation discontinuity is preserved upon convergence.



K�i ¼ ~Ki þ 2g
X
j2NðiÞ

Sij

0
@

1
A Iþ g

X
j2NðiÞ

�
Iþ c2

ijR
0
ij

2�0
@

1
A�1

;

ð18Þ

which is a Gauss-Seidel solution. When successive over-

relaxation (SOR) is employed, the update rule becomes

K
ðmþ1Þ
i ¼ ð1� qÞKðmÞi þ qK�i ; ð19Þ

where 1 < q < 2 is the SOR weight and m is the iteration

number. After each iteration, we normalize Ki such that the

eigenvalues of the corresponding eigensystem are within

the range ð0; 1�.
The above proof on convergence of MRF-TV shows that

structure-aware tensors achieve stationary states after a

finite number Gauss-Seidel iterations in the above formula-

tion. It also dispels a common pitfall that tensor voting is

similar in effect to smoothing. Using the same scale of

analysis (that is, in (2)) and the same �h, �s in each iteration,

tensor saliency and orientation will both converge. We

observe that the converged tensor orientation is, in fact,

similar to that obtained after two voting passes using the

original framework, where the orientations at curve junc-

tions are not smoothed out. See Fig. 6 for an example where

sharp orientation discontinuity is not smoothed out when

tensor voting converges. Here, 	1 of each structure-aware

tensor is not normalized to 1 for visualizing its structure

saliency after convergence. Table 1 summarizes the quanti-

tative comparison with the ground-truth orientation.

6 EMTV

Previously, while tensor voting was capable of rejecting

outliers, it fell short of producing accurate parameter

estimation, explaining the use of RANSAC in the final

parameter estimation step after outlier rejection [27].
This section describes the EMTV algorithm for optimiz-

ing 1) the structure-aware tensor K at each input site, and

2) the parameters of a single plane h of any dimensionality

containing the inliers. This algorithm will be applied to

stereo matching.
We first formulate the three constraints to be used in

EMTV. These constraints are not mutually exclusive, where

knowing the values satisfying one constraint will help

computing the values of the others. However, in our case,

they are all unknowns, so EM is particularly suitable for

their optimization since the expectation calculation and

parameter estimation are solved alternately.

6.1 Constraints

Data constraint. Suppose we have a set of clean data. One
necessary objective is to minimize the following for all xi 2
IRd with d > 1: 

xTi h



; ð20Þ

where h 2 IRd is a unit vector representing the plane (or
the model) to be estimated.5 This is a typical data term
that measures the faithfulness of the input data to the
fitting plane.

Orientation consistency. The plane being estimated is
defined by the vector h. Since the tensor Ki 2 IRd � IRd

encodes structure awareness, if xi is an inlier, the orienta-
tion information encoded by Ki and h has to be consistent.
That is, the variance hTK�1

i h produced by h should be
minimal. Otherwise, xi might be generated by other models
even if it minimizes (20). Mathematically, we minimize

hTK�1

i h


: ð21Þ

Neighborhood consistency. While the estimated Ki

helps to indicate inlier/outlier information, Ki has to be
consistent with the local structure imposed by its neighbors
(when they are known). If Ki is consistent with h but not
the local neighborhood, either h or Ki is wrong. In practice,
we minimize the following Frobenius norm as in (14)-(16):

K�1

i � S0ij



F
: ð22Þ

In the spirit of MRF, S0ij encodes the tensor information
within xi’s neighborhood, thus a natural choice for defining
the term for measuring neighborhood orientation consis-
tency. This is also useful, as we will see, to the M-step of
EMTV which makes the MRF assumption.

The above three constraints will interact with each other
in the proposed EM algorithm.

6.2 Objective Function

Define O ¼ foi ¼ xiji ¼ 1; . . . ; Ng to be the set of observa-
tions. Our goal is to optimize h and K�1

i given O.
Mathematically, we solve the objective function:

�� ¼ arg max
�

P ðO;Rj�Þ; ð23Þ

where P ðO;Rj�Þ is the complete-data likelihood to be
maximized, R ¼ frig is a set of hidden states indicating if
observation oi is an outlier (ri ¼ 0) or inlier (ri ¼ 1), and
� ¼ ffK�1

i g;h; �; �; �1; �2g is a set of parameters to be
estimated. �, �, �1, and �2 are parameters imposed by some
distributions, which will be explained shortly by using an
equation to be introduced.6 Our EM algorithm estimates an
optimal �� by finding the value of the complete-data log
likelihood with respect to R given O and the current
estimated parameters �0:

Qð�;�0Þ ¼
X
R2 

logP ðO;Rj�ÞP ðRjO;�0Þ; ð24Þ
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TABLE 1
Comparison with Ground Truth for the Example in Fig. 6

5. Note that, in some cases, the underlying model is represented in this
form xTi h� zi, where we can rearrange it into the form given by (20). For
example, expand xTi h� zi into axi þ byi þ 1zi ¼ 0, which can written in the
form of (20).

6. See the M-step in (30).



where  is a space containing all possible configurations of
R of size N . Although EM does not guarantee a global
optimal solution theoretically, because CFTV provides good
initialization we will demonstrate empirically that reason-
able results can be obtained.

6.3 Expectation (E-Step)

In this section, the marginal distribution pðrijoi;�0Þ will be
defined so that we can maximize the parameters in the next
step (M-Step) given the current parameters.

If ri ¼ 1, the observation oi is an inlier and therefore
minimizes the first two conditions ((20) and (21)) in
Section 6.1, that is, the data and orientation constraints.
In both cases, we assume that inliers follow a Gaussian
distribution which explains the use of K�1

i instead of Ki.
7

We model pðoijri;�0Þ as

/
exp �kx

T
i hk2

2�2

� �
exp �kh

TK�1
i hk

2�2
1

� �
; if ri ¼ 1;

1

C
; if ri ¼ 0:

8><
>: ð25Þ

We assume that outliers follow uniform distribution,
where C is a constant that models the distribution. Let Cm
be the maximum dimension of the bounding box of the
input. In practice, Cm � C � 2Cm produces similar results.

Since we have no prior information on a point being an
inlier or outlier, we may assume that the mixture prob-
ability of the observations pðri ¼ 1Þ ¼ pðri ¼ 0Þ equals a
constant � ¼ 0:5 such that we have no bias to either
category (inlier/outlier). For generality in the following,
we will include � in the derivation.

Define wi ¼ pðrijoi;�0Þ to be the probability of oi being an
inlier. Then,

wi ¼ pðri ¼ 1joi;�0Þ ¼
pðoi; ri ¼ 1j�0Þ

pðoij�0Þ

¼
� exp � kx

T
i hk2

2�2

� �
exp �kh

TK�1
i hk

2�2
1

� �
� exp �kx

T
i hk2

2�2

� �
exp �kh

TK�1
i hk

2�2
1

� �
þ 1��

C

;

ð26Þ

where  ¼ 1
2��1�

is the normalization term.

6.4 Maximization (M-Step)

In the M-Step, we maximize (24) using wi obtained from the
E-Step. Since neighborhood information is considered, we
model P ðO;Rj�Þ as an MRF:

P ðO;Rj�Þ ¼
Y
i

Y
j2GðiÞ

pðrijrj;�Þpðoijri;�Þ; ð27Þ

where GðiÞ is the set of neighbors of i. In theory, GðiÞ
contains all the input points except i since cij in (2) is always
nonzero (because of the long tail of the Gaussian distribu-
tion). In practice, we can prune away the points in GðiÞ
where the values of cij are negligible. This can greatly
reduce the size of the neighborhood. Again, using ANN tree
[1], the speed of searching for nearest neighbors can be
greatly increased.

Let us examine the two terms in (27). pðoijri;�Þ has been
defined in (25). We define pðrijrj;�Þ here. Using the third
condition mentioned in (22), we have

pðrijrj;�Þ ¼ exp �


K�1

i � S0ij


2

F

2�2
2

 !
: ð28Þ

We are now ready to expand (24). Since ri can only assume
two values (0 or 1), we can rewrite Qð�;�0Þ in (24) into the
following form:

X
t2f0;1g

log
Y
i

Y
j2GðiÞ

pðri ¼ tjrj;�Þpðoijri ¼ t;�Þ

0
@

1
AP ðRjO;�0Þ:

After expansion,

Qð�;�0Þ ¼
X
i

log �
1

�
ffiffiffiffiffiffi
2�
p exp �kx

T
i hk2

2�2

 ! !
wi

þ
X
i

log
1

�1

ffiffiffiffiffiffi
2�
p exp �kh

TK�1
i hk

2�2
1

� �� �
wi

þ
X
i

log exp �
kK�1

i � S0ijk
2
F

2�2
2

 ! !
wiwj

þ
X
i

log
1� �
C

� �
ð1� wiÞ:

ð29Þ

To maximize (29), we set the first derivative of Q with
respect to K�1

i , h, �, �, �1, and �2 to zero, respectively, to
obtain the following set of update rules:

� ¼ 1

N

X
i

wi;

K�1
i ¼

1P
j2GðiÞ wj

X
j2GðiÞ

S0ijwj �
�2

2

2�2
1

hhTwi

0
@

1
A;

minkMhk subject to khk ¼ 1

�2 ¼
P

i



xTi h


2
wiP

i wi
;

�2
1 ¼

P
i



hTK�1
i h



wiP
i wi

;

�2
2 ¼

P
i

P
j2GðiÞ



K�1
i � S0ij



2

F
wiwjP

i wi
;

ð30Þ

where M ¼
P

i xix
T
i wi þ �2

�2
1

P
i K
�1
i wi and GðiÞ is a set of

neighbors of i. Equation (30) constitutes the set of update

rules for the M-step.
In each iteration, after the update rules have been

executed, we normalize K�1
i onto the feasible solution space

by normalization, that is, the eigenvalues of the correspond-
ing eigensystem are within the range ð0; 1�. Also, S0ij will be
updated with the newly estimated K�1

i .

6.5 Implementation and Initialization

In summary, (12), (26), and (30) are all the equations needed
to implement EMTV and therefore the implementation is
straightforward.

Noting that initialization is important to an EM algo-
rithm, to initialize EMTV we set �1 to be a very large value,
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7. Although a linear structure is being optimized here, the inliers
together may describe a structure that does not necessarily follow any
particular model. Each inlier may not exactly lie on this structure where the
misalignment follows the Gaussian distribution.



Ki ¼ I and wi ¼ 1 for all i. S0ij is initialized to be the inverse

of Sij, computed using the closed-form solution presented

in the previous section. These initialization values mean

that at the beginning we have no preference for the surface

orientation. So, all the input points are initially considered

as inliers. With such initialization, we execute the first and

the second rules in (30) in sequence. Note that when the first

rule is being executed, the term involving h is ignored

because of the large �1; thus we can obtain K�1
i for the

second rule. After that, we can start executing the algorithm

from the E-step. This initialization procedure is used in all

the experiments in the following sections. Fig. 7 shows the

result after the first EMTV iteration on an example; note in

particular that even though the initialization is at times not

close to the solution, our EMTV algorithm can still converge

to the desired ground-truth solution.

7 EXPERIMENTAL RESULTS

First, quantitative comparison will be studied to evaluate

EMTV with well-known algorithms: RANSAC [7], ASSC

[28], and TV [19]. In addition, we also provide the result

using the least squares method as a baseline comparison.

Second, we apply our method to real data with synthetic

outliers and/or noise where the ground truth is available,

and perform comparison. Third, more experiments on

multiview stereo matching on real images are performed.
As we will show, EMTV performed the best in highly

corrupted data because it is designed to seek one linear

structure of known type (as opposed to multiple, potentially

nonlinear structures of unknown type). The use of orienta-

tion constraints, in addition to position constraints, makes

EMTV superior to the random sampling methods as well.
Outlier/inlier (OI) ratio. We will use the outlier/inlier

ratio to characterize the outlier level, which is related to the

outlier percentage Z 2 ½0; 1�:

Z ¼ R

Rþ 1
; ð31Þ

where R is the OI ratio. Fig. 7 shows a plot of Z ¼ R
Rþ1 ,

indicating that it is much more difficult for a given method
to handle the same percentage increase in outliers as the
value of Z increases. Note the rapid increase in the number
of outliers as Z increases from 50 to 99 percent. That is, it is
more difficult for a given method to tolerate an addition of,
say, 20 percent outliers when Z is increased from 70 to
90 percent than from 50 to 70 percent. Thus, the OI ratio
gives more insight in studying an algorithm’s performance
on severely corrupted data.

7.1 Robustness

We generate a set of 2D synthetic data to evaluate the
performance on line fitting, by randomly sampling 44 points
from a line within the range ½�1;�1� � ½1; 1� where the
locations of the points are contaminated by Gaussian noise
of 0.1 standard deviation. Random outliers were added to
the data with different OI ratios.

The data set is then partitioned into two:

. SET 1: OI ratio 2 ½0:1; 1� with step size 0.1,

. SET 2: OI ratio 2 ½1; 100� with step size 1.

In other words, the partition is done at 50 percent outliers.
Note from the plot in Fig. 7 that the number of outliers
increases rapidly after 50 percent outliers. Sample data sets
with different OI ratios are shown at the top of Fig. 7.
Outliers were added within a bounding circle of radius 2. In
particular, the bottom of Fig. 7 shows the result of the first
EMTV iteration upon initialization using CFTV.

The input scale which is used in RANSAC, TV and
EMTV was estimated automatically by TSSE proposed in
[28]. Note, in principle these scales are not the same because
TSSE estimates the scales of residuals in the normal space.
Therefore, the scales estimated by TSSE used in TV and
EMTV are only approximations. As we will demonstrate
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Fig. 7. The top-left subfigure shows the plot of R
Rþ1 . The four 2D data sets shown here have OI ratios ½1; 20; 45; 80�, respectively, which correspond to

outlier percentages [50, 95, 98, 99 percent]. Our EMTV can tolerate OI ratios � 51 in this example. The original input, the estimated line after the first
EMTV iteration using CFTV to initialize the algorithm, and the line parameters after the first EMTV iteration and final EMTV convergence were
shown. The ground-truth parameter is ½�0:71; 0:71�.



below, even with such rough approximations, EMTV still
performs very well, showing that it is not sensitive to scale
inaccuracy, a nice property of tensor voting which will be
shown in an experiment to be detailed shortly. Note that
ASSC [28] does not require any input scale.

SET 1—Refer to the left of Fig. 8, which shows the error
produced by various methods tested on SET 1. The error is
measured by the angle between the estimated line and the
ground truth. Except for the least squares method, we
observe that all the tested methods (RANSAC, ASSC, TV,
and EMTV) performed very well with OI ratios � 1. For
RANSAC and ASSC, all the detected inliers were finally
used in parameter estimation. Note that the errors
measured for RANSAC and ASSC were the average errors
in 100 executions.8 Fig. 8 also shows the maximum and
minimum errors of the two methods after running 100
trials. EMTV does not have such maximum and minimum
error plots because it is deterministic.

Observe that the errors produced by our method are
almost zero in SET 1. EMTV is deterministic and converges
quickly, capable of correcting Gaussian noise inherent in
the inliers and rejecting spurious outliers, and resulting in
the almost-zero error curve. RANSAC and ASSC have error
< 0:6 degree , which is still very acceptable.

SET 2—Refer to the right of Fig. 8, which shows the result
for SET 2, from which we can distinguish the performance of
the methods. TV breaks down at OI ratios � 20. After that,
the performance of TV is unpredictable. EMTV breaks down
at OI ratios � 51, showing greater robustness than TV in this
experiment due to the EM parameter fitting procedure.

The performances of RANSAC and ASSC were quite
stable where the average errors are within 4 and 7 degrees
over the whole spectrum of OI ratios considered. The
maximum and minimum errors are shown in the bottom of

Fig. 8, which shows that they can be very large at times.

EMTV produces almost zero errors with OI ratio � 51, but

then breaks down with unpredictable performance. From

the experiments on SET 1 and SET 2 we conclude that EMTV

is robust up to an OI ratio of 51 (’ 98:1% outliers).
Insensitivity to choice of scale. We studied the errors

produced by EMTV with different scales �d ((2)), given OI

ratio of 10 (’ 91% outliers). Even in the presence of many

outliers, EMTV broke down only when �d ’ 0:7 (the ground

truth �d is 0.1), which indicates that our method is not

sensitive to large deviations of scale. Note that the scale

parameter can sometimes be automatically estimated (e.g.,

by modifying the original TSSE to handle tangent space) as

was done in the previous experiment.
Large measurement errors. In this experiment, we

increased the measurement error by increasing the stan-

dard deviation (s.d.) from 0.01 to 0.29, while keeping the

OI ratio equal to 10 and the location of the outliers fixed.

Some of the input data sets are depicted in Fig. 9, showing

that the inliers are less salient as the standard deviation

(s.d.) increases. A similar experiment was also performed

in [20]. Again, we compared our method with RANSAC,

ASSC, and TV.
According to the error plot at the top of Fig. 10, TV is very

sensitive to the change of s.d.: When the s.d. is greater than

0.03, the performance is unpredictable. With increasing s.d.,

the performances of RANSAC and ASSC degrade grace-

fully, while ASSC always outperforms RANSAC. The

bottom of Fig. 10 shows the corresponding maximum and

minimum error in 100 executions.
On the other hand, we observe the performance of EMTV

(with �d ¼ 0:05) is extremely steady and accurate when

s:d: < 0:15. After that, although its error plot exhibits some

perturbation, the errors produced are still small and the

performance is quite stable compared with other methods.
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Fig. 8. Error plots for SET 1 (OI ratio ¼ ½0:1; 1�, up to 50 percent outliers) and SET 2 (OI ratio ¼ ½1; 100�, � 50% outliers). Left: For SET 1, all the tested
methods except for the least-squares demonstrated reliable results. EMTV is deterministic and converges quickly, capable of correcting Gaussian
noise inherent in the inliers and rejecting spurious outliers, and resulting in the almost-zero error curve. Right: For SET 2, EMTV still has an almost-
zero error curve up to an OI ratio of 51 (’ 98:1% outliers). We ran 100 trials in RANSAC and ASSC and averaged the results. The maximum and
minimum errors of RANSAC and ASSC are shown below each error plot.

8. We executed the algorithm 100 times. In each execution, iterative
random sampling was done where the desired probability of choosing at
least one sample free from outliers was set to 0.99 (default value).



7.2 Fundamental Matrix Estimation

Given an image pair with p � 8 correspondences P ¼
fðui;u0iÞj8 � i � pg, the goal is to estimate the 3� 3 funda-
mental matrix F ¼ ½f�a;b, where a; b 2 f1; 2; 3g, such that

u0
T
i Fui ¼ 0; ð32Þ

for all i. F is of rank 2. Letting u ¼ ðu; v; 1ÞT and
u0 ¼ ðu0; v0; 1Þ, (32) can be rewritten into

UT
i h ¼ 0; ð33Þ

where

U ¼ ðuu0; uv0; u; vu0; vv0v; u0; v0; 1ÞT ;
v ¼ ðf11; f21; f31; f12; f22; f32; f13; f23; f33ÞT :

Noting that (33) is a simple plane equation, if we can
detect and handle noise and outliers in the feature space,
(33) should enable us to produce a good estimation.
Finally, we apply [12] to obtain a rank-2 fundamental
matrix. Data normalization is done similarly as in [12]
before the optimization.

We evaluate the results by estimating the fundamental
matrix of the data set Corridor, which is available at
www.robots.ox.ac.uk/~vgg/data.html. The matches of fea-
ture points (Harris corners) are available. Random outliers
were added in the feature space.

Fig. 11 shows the plot of RMS error, which is computed

by summing up and averaging
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
p

P
i kUT

i ĥk2
q

over all

pairs, where Ui is the set of clean data and ĥ is the 9D

vector produced from the rank-2 fundamental matrices

estimated by various methods. Note that all the images

available in the Corridor data set are used, that is, all C11
2

pairs were tested. It can be observed that RANSAC breaks

down at an OI ratio ’ 20, or 95.23 percent outliers. ASSC is

very stable with RMS error < 0:15. TV breaks down at an OI

ratio ’ 10. EMTV has negligible RMS error before it starts to

break down at an OI ratio ’ 40. This finding echoes that of

Hartley [12] that linear solution is sufficient when outliers

are properly handled.

7.3 Matching

In the uncalibrated scenario, EMTV estimates parameter
accurately by employing CFTV, and effectively discards
epipolar geometries induced by wrong matches. Typically,
a camera calibration is performed using nonlinear least-
squares minimization and bundle adjustment [16] which
requires good matches as input. In this experiment,
candidate matches are generated by comparing the result-
ing 128D SIFT feature vectors [17], so many matched
keypoints are not corresponding.

The epipolar constraint is enforced in the matching
process using EMTV, which returns the fundamental matrix
and the probability wi (see (26)) of a keypoint pair i being an
inlier. In the experiment, we assume keypoint pair i is an
inlier if wi > 0:8. Fig. 12 shows our running example teapot,
which contains repetitive patterns across the whole object.
Wrong matches can be easily produced by similar patterns
on different parts of the teapot. This data set contains
30 images captured using a Nikon D70 camera. Automatic
configuration was set during the image capture. Visually,
the result produced using emtv_match is much denser
than the results produced with KeyMatchFull [25],
linear_match, assc_match [28], and ransac_match.
Note in particular that only emtv_match recovers the
overall geometry of the teapot, whereas the other methods
can only recover one side of the teapot.
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Fig. 9. Inputs containing various measurement errors, with OI ratio ¼ 10 and fixed outliers location. The estimated models (depicted by the red lines)
obtained using EMTV are overlayed on the inputs. Notice the line cluster becomes less salient when s:d: ¼ 0:25.

Fig. 10. Measurement error: Standard deviation varies from 0.01 to 0.29
with OI ratio at 10. Fig. 11. Corridor. RMS error plot of various methods.



This example is challenging because the teapot’s shape is
quite symmetric and the patchy patterns look identical
everywhere. As was done in [25], each photo was paired,
respectively, with a number of photos with camera poses
satisfying certain basic criteria conducive to matching or
making the numerical process stable (e.g., wide-baseline
stereo). We can regard this pair-up process as one of
computing connected components. If the fundamental
matrix between any successive images is incorrectly
estimated, the corresponding components will no longer
be connected, resulting in the situation where only one side
or part of the object can be recovered.

Since KeyMatchFull and linear_match use simple
distance measure for finding matches, the coverage of the
corresponding connected components tends to be small. It
is interesting to note that the worst result is produced by
using ransac_match. This can be attributed to three
reasons: 1) The fundamental matrix is of rank 2, which
implies that h spans a subspace � 8D rather than a 9D
hyperplane; 2) the input matches contain too many outliers
for some image pairs; 3) it is not feasible to fine-tune the
scale parameter for every possible image pair and so we
used a single value for all of the images. A slight
improvement could be found from ASSC. However, it still
suffers from problems (1) and (2) and so the result is not
very good even compared with KeyMatchFull and
linear_match.

On the other hand, emtv_match utilizes the epipolar
geometry constraint by computing the fundamental matrix
in a data driven manner. Since the outliers are effectively
filtered out, the estimated fundamental matrices are
sufficiently accurate to pair up all of the images into a
single connected component. Thus, the overall 3D geometry
can be recovered from all the available views.

7.4 Multiview Stereo Reconstruction

This section outlines how CFTV and EMTV are applied to
improve the match-propagate-filter pipeline in multiview
stereo. Match-propagate-filter is a competitive approach to
multiview stereo reconstruction for computing a (quasi)
dense representation. Starting from a sparse set of initial
matches with high confidence, matches are propagated
using photoconsistency to produce a (quasi) dense recon-
struction of the target shape. Visibility consistency can be
applied to remove outliers. Among the existing works using

the match-propagate-filter approach, patch-based multi-

view stereo (or PMVS) proposed in [10] has produced some

of the best results to date.
We observe that PMVS had not fully utilized the 3D

information inherent in the sparse and dense geometry

before, during, and after propagation, as patches do not

adequately communicate among each other. As noted in

[10], data communication should not be done by smooth-

ing, but the lack of communication will cause perturbed

surface normals and patch outliers during the propagation

stage. In [29], we proposed tensor-based multiview stereo

(TMVS) and used 3D structure-aware tensors which

communicate among each other via CFTV. We found that

such tensor communication not only improves propaga-

tion in MVS without undesirable smoothing but also

benefits the entire match-propagate-filter pipeline within a

unified framework.
We captured 179 photos around a building which were

first calibrated as described in Section 7.3. All images were

taken on the ground level, not higher than the building, so

we have very few samples of the rooftop. The building

facades are curved and the windows on the building look

identical to each other. The patterns on the front and back

facade look nearly identical. These ambiguities cause

significant challenges in the matching stage especially for

wide-baseline stereo. TMVS was run to obtain the quasi-

dense reconstruction, where MRFTV was used to filter

outliers as shown in Fig. 13. Fig. 14 shows the 3D

reconstruction, which is faithful to the real building.

Readers are referred to [29] for more detail and experi-

mental evaluation of TMVS.
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Fig. 12. Teapot: (a) Four images (one in enlarged view) from the input image set consisting of 30 images captured around the object in a casual
manner. (b)-(f) show two views of the sparse reconstruction generated by using KeyMatchFull (398 points), linear_match (493 points),
ransac_match (37 points), assc_match (208 points), and emtv_match (2,152 points). The candidate matches returned by SIFT are extremely
noisy due to the ambiguous patchy patterns. On average, 17,404 trials were run in ransac_match. It is time consuming to run more trials on this
noisy and large input where an image pair can have as many as 5,000 similar matches and similarly for assc_match, where additional running time
is needed to estimate the scale parameter in each iteration. On the other hand, emtv_match does not require any random sampling.

Fig. 13. Results before and after filtering of Hall 3 (images shown in
Fig. 14). All salient 3D structures are retained in the filtered result,
including the bushes near the left facade and planters near the right
facade in this top view of the building.



8 CONCLUSIONS

A closed-form solution is proven for the special theory of
tensor voting (CFTV) for computing an exact structure-
aware tensor in any dimensions. For structure propagation,
we derive a quadratic energy for MRFTV, thus providing a
convergence proof for tensor voting which is impossible to
prove using the original tensor voting procedure. Then, we
derive EMTV for optimizing both the tensor and model
parameters for robust parameter estimation. We performed
quantitative and qualitative evaluation using challenging
synthetic and real data sets. In the future, we will develop a
closed-form solution for the general theory of tensor voting,
and extend EMTV to extract multiple and nonlinear
structures. We have provided C++ source code, but it is
straightforward to implement (11), (12), (26), (30), (18), and
(19). We demonstrated promising results in multiview
stereo, and will apply our closed-form solution to address
important computer vision problems.
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ieur from the �Ecole Nationale Supérieure des
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