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Abstract—We propose an automatic approach to soft color segmentation, which produces soft color segments with an appropriate

amount of overlapping and transparency essential to synthesizing natural images for a wide range of image-based applications. Although

many state-of-the-art and complex techniques are excellent at partitioning an input image to facilitate deriving a semanticdescription of the

scene, to achieve seamless image synthesis, we advocate a segmentation approach designed to maintain spatial and color coherence

among soft segments while preserving discontinuities by assigning to each pixel a set of soft labels corresponding to their respective color

distributions. We optimize a global objective function, which simultaneously exploits the reliability given by global color statistics and

flexibility of local image compositing, leading to an image model where the global color statistics of an image is represented by a Gaussian

Mixture Model (GMM), whereas the color of a pixel is explained by a local color mixture model where the weights are defined by the soft

labels to the elements of the converged GMM. Transparency is naturally introduced in our probabilistic framework, which infers an optimal

mixture of colors at an image pixel. To adequately consider global and local information in the same framework, an alternating optimization

scheme is proposed to iteratively solve for the global and local model parameters. Our method is fully automatic and is shown to converge

to a good optimal solution. We perform extensive evaluation and comparison and demonstrate that our method achieves good image

synthesis results for image-based applications such as image matting, color transfer, image deblurring, and image colorization.

Index Terms—Color image segmentation and image synthesis.

Ç

1 INTRODUCTION

THIS paper presents an algorithm to perform soft color
segmentation given a color image, producing overlap-

ping and transparent segments suitable for a wide range of
important image-based applications such as image matting
[2], [26], [5] (Figs. 20 and 21), color transfer between images
[24], [33] (Figs. 22, 23, and 24), image deblurring [16] (Fig. 25),
image denoising [11], [21] (Fig. 26), and image colorization
[38] (Fig. 27). Unlike traditional approaches, our segmenta-
tion approach is designed to address a large class of image-
based problems, which require soft segments with an
appropriate amount of overlapping and transparency. This
approach is translated into an alternating optimization (AO)
algorithm, which is more straightforward to implement than
many state-of-the-art and complex segmentation techniques
that are geared to produce a semantic segmentation of the
input image for tasks such as recognition and interpretation.

We present a probabilistic framework to address soft color
segmentation, where a global objective function is modeled
by global and local parameters. These parameters are
alternately optimized until convergence. Since our goal is to
maintain natural color and texture transition across soft
segments rather than assigning semantics to each segmented
region, it is sufficient to model the global color statistics of an

image by Gaussian Mixture Model (GMM). Each pixel’s color
can be explained by a local mixture of colors derived from the
optimized GMM weighted by the inferred soft labels. Our
algorithm is shown to converge to a good optimal solution.

Our segmentation goal is different but related to that of
traditional segmentation approaches. In this paper, we
evaluate and compare our automatic method with k-means
clustering [10], Mean Shift [6], Expectation-Maximization
(EM) [8], [1], Watershed [37], J-value Segmentation (JSeg)
[9], Data-Driven Markov Chain Monte Carlo (DDMCMC)
[35], Information Bottleneck [13], Multiscale graph-based
techniques [27], [12], statistical region merging [19], and
user-assisted image matting [2], [26], [5] to show that better
or comparable results are obtained in terms of region
transparency, color coherence, and spatial coherence. Our
method produces results comparable to the Bayesian
matting [5] in terms of extracting a foreground matte from
an image. In [5], a user-supplied trimap is required,
whereas our method is fully automatic. Our proposed
algorithm is applied to various image applications such as
transferring color between images, image deblurring, image
denoising, and colorizing gray-scale images.

The paper is organized as follows: Section 2 reviews the
related work on color and image segmentation. Section 3
describes in detail our AO algorithm, which estimates the
optimal global and local model parameters. We performed
experiments to show the good optimality and convergence of
our AO algorithm, whereas the theoretical aspects of these
issues are addressed in [3]. In Section 4, we evaluate and
analyze our AO algorithm using synthetic and real images.
Results and comparisons are presented in Section 5. In
Section 6, we apply our soft color segmentation to various
image synthesis applications and show that significantly
better results can be obtained by employing soft segments
produced by our algorithm. We conclude our paper in
Section 7.
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Some pertinent results in this paper have appeared in an
earlier version [33], where the focus is on the application of
soft color segmentation to color transfer applications. This
paper goes beyond [33] by contributing in a new problem
formulation, a new optimization algorithm for soft segmen-
tation, and extensive experimental comparison.

2 RELATED WORK

We review in this section previous work most relevant to
ours in image segmentation.

2.1 Hard Segmentation

The Watershed algorithm [37] is a region-based technique
where “watershed” lines are used to mark the boundaries of
regions. The morphological operations of closing (or open-
ing) are then introduced to smooth ridges (or fill in valleys) of
the topographical map produced. This method is sensitive to
intensity changes, so a large number of small regions are
usually produced. The Watershed algorithm is often used as a
preprocessing step to obtain an oversegmented image to
preserve as much detail as possible for further processing.

The EM algorithm, which is one form of AO, was employed
in [1] to address the problem of color and texture segmenta-
tion. The joint distribution of color and texture is modeled
using a mixture of Gaussians in a six-dimensional (6D) space
(three dimensions for color and three dimensions for texture).
Because the grouping is performed on a 6D space and no
spatial coordinates are considered, small and fragmented
regions are produced. A separate spatial grouping step is then
applied to obtain pixel-connected components.

JSeg [9] is an unsupervised algorithm for color and texture
segmentation. The first color quantization step creates a class
map of color labels. The second spatial segmentation step
uses the class map to create a J-image to identify color or
texture regions. The two steps are sequential, where the
second step is dependent upon the results produced by the
first one.

The Mean Shift segmentation [6] is a clustering algorithm
that performs color and texture segmentation. The algorithm
takes as input a feature bandwidth, a spatial bandwidth, and
a minimum region area (in pixels). Salient clusters are
successively extracted by applying a kernel in the feature
space, which shifts toward the significant cluster center.
Because the feature space is a high-dimensional one, in order
to reduce the number of shifts for achieving fast convergence,
a set of random locations in the feature space is usually
considered for selecting the initial location with the highest
density of feature vectors.

Graph-based approaches for image segmentation and
grouping have gained much attention. The Normalized
Cuts [28] is one such algorithm that uses a global criterion
on the total dissimilarity among (and similarity within)
different pixel groups, where discrete region labels output
after graph optimization.

The statistical region merging was proposed in [19],
which consists of a semisupervised statistical region
refinement algorithm for color image segmentation. Based
on certain principles on perceptual grouping and an image
generation model, a simple merging method was proposed
to produce visually coherent color segments.

2.2 Soft Segmentation

The concept of soft segmentation is not a new one. For
example, the traditional k-means clustering [10] can be
considered as one form of soft color segmentation. In essence,
each point in the feature space is associated with a label and
its confidence value is calculated using some function related
to the distance of each converged cluster. If spatial and color
coordinates are considered simultaneously for preserving
the coherence, the resulting feature space becomes sparse
and high dimensional, making the method vulnerable to
local optima.

The split-and-link algorithm [22] computes overlapping
segments in a pyramidal framework where the levels are
overlapped so that each pixel is a descendant of four others in
the pyramid. The linking is done based on similarity to
ameliorate some problems in initial splitting. In [13],
unsupervised image clustering was proposed to cluster
images, subject to minimizing the loss of mutual information
between the clusters and image features. The proposed
clustering can be regarded as a soft label classification, where
GMMs are used to model the feature space. A graph-based
approach was proposed in [27], which combines multiscale
measurements of intensity contrast, texture differences, and
boundary integrity. The method optimizes a global measure-
ment over a multiscale pyramidal structure of the image and
maintains a fuzzy relationship between nodes in successive
levels. A follow-up of the work [12] made use of multiscale
aggregation of filter responses to handle complex textures.

In [18], a clustering-based algorithm was proposed to
segment color textures, where multiscale smoothing and
initial clustering are first performed to determine a set of
core clusters to which a subset of pixels should belong. Soft
labels are then assigned and updated iteratively at all other
pixels at multiple scales.

A unifying framework for image segmentation known as
DDMCMC was proposed in [35], which exploits Markov
Chain dynamics to explore the complex solution space and
achieves a nearly global optimal solution regardless of initial
segmentations. Since features occur at multiple scales, the
method incorporates intrinsic ambiguities in image segmen-
tation and utilizes data-driven techniques (such as clustering
where soft assignment is made in the feature space) for
computing importance proposal probabilities.

Fuzzy connectedness [36] groups image elements (pixels)
by assigning a strength of connectedness to every possible
path between every possible pair of image elements. The
connectedness strength is related to the region where the
image element belongs. An image element can be associated
with more than one region with different connectedness
strength. The method has been extensively experimented in
segmenting delicate tissues from medical images.

In computer graphics, the class of image matting algo-
rithms can be considered as a special case of soft color
segmentation. Smith and Blinn [29] were the first to present
the blue screen matting systematically. Knockout [2] is one
method that gathers color samples by estimating the fore-
ground and background with weighted averages of the pixel
colors within a neighborhood. Ruzon and Tomasi [26]
sampled colors by a mixture of unoriented Gaussians and
proposed to use the color with the maximum probability. In
Bayesian matting [5], Chuang et al. formulated the matting
problem using Bayesian optimization, where the maximum a
posteriori (MAP) estimation is performed to estimate the
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optimal alpha matte for foreground extraction. This method

performs pixelwise optimization without exploiting ade-
quate spatial coherence information. Grabcut [25] and

Poisson matting [30] consider matte continuity among pixels.

Note that all the above matting techniques are not automatic,

requiring some forms of user interaction, usually in the form

of a user-supplied trimap, which specifies the “definite

foreground,” “definite background,” and “uncertain” re-

gions, in order to produce satisfactory matting results.

2.3 Comparison with Our Work

The approaches described in the previous subsection have

made significant contributions in image segmentation.

However, they are not suitable to be used in image-based

application, which requires soft color segments with
appropriate amount of overlapping and transparency due

to one or more of the following reasons:

. Although the previous methods produce excellent
image segmentation results for natural images, they
are designed to solve the general segmentation
problem, which may not be ideal for image-based
applications. For instance, to obtain a good image
interpretation, general image segmentation aims to
cluster similar patterns or textures. However, as
shown in the result section, the details inside each
pattern should be preserved so that distinct colors will
not get mixed up in the synthesized image. Further-
more, the resulting segments reported in the above
literature are mostly hard segments, which do not
preserve smooth color transition among segments.

. To maintain spatial and color coherence, many
algorithms concatenate spatial and feature vectors
resulting in a sparse and high-dimensional feature
space. A careful initialization is therefore needed to
ensure fast convergence to a reasonable solution.

. On the other hand, spatial grouping and color
clustering are considered by certain approaches as
independent rather than interdependent processes,
so errors produced in one step are propagated to the
following steps.

. All matting methods are interactive requiring some-
what careful initialization (for example, a user-
supplied trimap).

In this paper, we propose an automatic color segmentation
approach to address the above issues. To maintain spatial and
color coherence, instead of using a high-dimensional feature
space, an AO framework is adopted: Our method optimizes a
global objective function that combines the advantages given
by global color statistics and local image compositing. Using a
global objective function, global and local information is
properly integrated by using a Markov network that
optimizes for the soft labels at each image pixel, subject to
spatial and color coherence while preserving underlying
discontinuities. The global color statistics of an image is
specified by the inferred 3D GMM. A local mixture model is
introduced to account for the observed color at each pixel,
where soft labels are introduced to naturally encode
transparent and overlapping regions in our probabilistic
framework. We propose an AO algorithm to estimate an
optimal set of model parameters. Readers may refer to [3] for
AO’s convergence to global optimal solution. Our method
also proves the convergence empirically by extensive experi-
ments on a variety of natural and complex images. We
demonstrate the efficacy of our approach in a wide variety of
image-based applications and show that less human interac-
tion or better results can be obtained using our soft color
segmentation method.

3 SOFT COLOR SEGMENTATION

Our approach in soft color segmentation takes into considera-
tion both global and local color information within the same
framework. Global color statistics models the overall colors of
the input image. Local color compositing models the mixture of
colors contributing to the observed color at a pixel, where the
colors are derived from the optimized global statistics.

In our framework, the global and local models cooperate
with each other subject to the spatial and color coherency
constraints in each pixel’s neighborhood, where the
similarity within the same region and dissimilarity across
regions are preserved. An AO scheme [7], [3] is adopted to
iteratively optimize the global and local parameters. The
notations are summarized in Table 1.

3.1 Problem Modeling and Formulation

Global color statistics. By observing a large number of natural
images (Fig. 1), we find that the global color statistics can be
represented by a set of overlapping regions and modeled by a
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TABLE 1
Notations Used in This Paper

For local parameters, the coordinates ðx; yÞ may be skipped when we refer to the entire set of parameters across the whole image. Note that �i,
Iðx; yÞ, and ciðx; yÞ are red, green, blue (RGB) tuples. N is the number of Gaussians.



mixtureofGaussians. Inotherwords, thecolorofapixelcanbe
predicted by a GMM, where each Gaussian is 3D for encoding
the RGB channels and is parameterized by the corresponding
mean and covariance matrix. Let us denote the GMM by
G ¼ fGði;�i;�iÞg, where 1 � i � N and N is the number of
Gaussians, �i is the mean, and �i is the covariance matrix.

Note that global color statistics alone such as GMM are not
sufficient for semantic segmentation or image understanding,
explaining many approaches that use GMM (for example, [1],
[13]) introduce additional constraints to address the semantic
segmentation problem. On the other hand, given that the
global color statistics of a natural image can be well modeled
by a GMM and that our goal is to infer overlapping color
segments that may not separate well in the color space,
without any a priori information, it is a natural choice to use
GMM to represent global statistics in the color space. On the
other hand, our method does not purely rely on GMM. As we
shall describe shortly, a local mixture model is used where
Markov Random Fields (MRFs) are incorporated so that
spatial and color coherences are optimized at each pixel’s
neighborhood during the AO process.

Local color compositing. By generalizing the image
compositing equation in [23], we propose the followingmodel
for local color compositing at each pixel ðx; yÞ, which uses a
mixture of colors to encode overlapping and transparency:

Iðx; yÞ ¼
XN
i¼1

‘iðx; yÞciðx; yÞ; ð1Þ

where Lðx; yÞ ¼ f‘iðx; yÞji ¼ 1; 2; � � �Ng is the set of soft
labels corresponding to the N color segments (or Gaussians)
in G and Cðx; yÞ ¼ fciðx; yÞji ¼ 1; 2; � � �Ng is the set of
compositing colors.

Problem formulation. In summary, our color model
consists of a global term representing the color model for
the whole image described by G and a local term for each
pixel described by L and C. The set of unknowns consists of

fciðx; yÞ; ‘iðx; yÞ; �i;�iji ¼ 1; 2; . . . ; N and ðx; yÞ 2 Ig:

We formulate the problem of soft color segmentation as
follows: Given an image I and the number of Gaussians
(segments) N , we seek to optimize for the global and local
model parameters G, L, and C subject to the necessary spatial
and color coherency and discontinuity inherent in the image.
Using the Minimum Description Length principle [15], [14]

(also used in the EM algorithms in [1], [13]), which avoids
model overfitting, the number of Gaussians N can be
inferred. In practice, we fix the value of N , where N < 10 in
all cases we tested. The weights of insignificant Gaussians
will be converged to zero. We describe in the following our
AO algorithm to solve for the optimal L, C, and G iteratively.

3.2 The Global Optimization Function

Given a color image I, we maximize the a posteriori
probability to infer all unknowns. In a Bayesian framework,
we formulate the problem as follows:

arg max
G;L;C

PðG;L; CjIÞ / arg max
G;L;C

PðIjG;L; CÞPðCjG;LÞPðL;GÞ

/ arg max
G;L;C

PðIjL; CÞPðCjG;LÞPðLÞ;

ð2Þ

where PðIjL; CÞ ¼ PðIjG;L; CÞ since Iðx; yÞ is not directly
related to G by (1), PðL;GÞ ¼ PðLÞPðGÞ since in our model
PðLÞ and PðGÞ are independent. Finally, PðGÞ, the global
color statistics, is assumed to be a uniform distribution
without any prior knowledge. So, PðGÞ is omitted in (2).

3.2.1 Matching Likelihood PðIjL; CÞ
We assume the observation noise follows an independent
identical distribution (i.i.d.), so we define the likelihood
PðIjL; CÞ as a product of likelihoods at each pixel:

PðIjL; CÞ/
Y
ðx;yÞ

PðIðx; yÞjLðx; yÞ; Cðx; yÞÞ

¼
Y
ðx;yÞ

1ffiffiffiffiffiffiffiffiffiffi
2��c
p exp �ðIðx; yÞ�

PN
i¼1 ‘iðx; yÞciðx; yÞÞ

2

2�2
c

 !
;

ð3Þ

which models the fidelity how Iðx; yÞ conforms to the local
model

PN
i¼1 ‘iðx; yÞciðx; yÞ with standard deviation �c. We

set �c ¼ 0:1 in all our experiments.

3.2.2 Matching Likelihood PðCjG;LÞ
We define the matching likelihood PðCjG;LÞ in the same
way, using a product of likelihoods at each pixel

PðCjG;LÞ /
Y
ðx;yÞ

PðCðx; yÞjG;Lðx; yÞÞ: ð4Þ
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Fig. 1. The global color statistics of a natural image can be modeled by a mixture of Gaussians. Top: Typical images. Bottom: For illustration, the
three rows shown are the histograms of the RGB color channels, whereas 3D Gaussians are used in our computation.



Based on the information theory [14], the relative entropy
(Kullback-Leibler divergence) of Lðx; yÞ and PðCðx; yÞjGÞ is
defined as

XN
i¼1

‘iðx; yÞ log
‘iðx; yÞ

Pðciðx; yÞjGiÞ
; ð5Þ

where ‘iðx; yÞ measures the confidence that the value ci is
generated by Gaussian element i. The relative entropy can
be minimized as we maximize its negation

arg min
C

XN
i¼1

‘iðx; yÞ log
‘iðx; yÞ

Pðciðx; yÞjGiÞ

/ arg max
C

XN
i¼1

log Pðciðx; yÞjGiÞ‘iðx;yÞ�log ‘iðx; yÞ‘iðx;yÞ
� �

/ arg max
C

XN
i¼1

log Pðciðx; yÞjGiÞ‘iðx;yÞ�
XN
i¼1

log ‘iðx; yÞ‘iðx;yÞ:

ð6Þ

In the representation of the above likelihood, L is the
observation. Omitting

PN
i¼1 log ‘iðx; yÞ‘iðx;yÞ will not influ-

ence the estimation result. Thus, (6) can be simplified as
follows when we take the exponent:

arg max
C

XN
i¼1

log Pðciðx; yÞjGiÞ‘iðx;yÞ

/ arg max
C

YN
i¼1

Pðciðx; yÞjGiÞ‘iðx;yÞ: ð7Þ

Given Giði;�i;�iÞ, the likelihood Pðciðx; yÞjGiÞ is modeled
by the deviation of ciðx; yÞ from the Gaussian Gi

Pðciðx; yÞjGiÞ

/ 1

ð2�Þ
3
2j�j

1
2

exp �ðciðx; yÞ � �iÞ
T��1

i ðciðx; yÞ � �iÞ
2

 !
:
ð8Þ

Substituting (8) into (7), we obtain the function to be
maximized:

YN
i¼1

1

ð2�Þ
3
2j�j

1
2

� �‘iðx;yÞ
exp �‘iðx; yÞ

ðciðx; yÞ � �iÞT��1
i ðciðx; yÞ � �iÞ

2

 !
:

ð9Þ

3.2.3 Prior PðLÞ
Effective modeling of the prior is very important in producing
good results in a Bayesian formulation. To maintain spatial
and color coherence while introducing transparency among
overlapping segments, we apply the MRFs, which assert that
the conditional probability of a site in the field depends only
on the information of its neighboring sites.

MRFs are effective in avoiding noise or highly fragmented
segments while maintaining color smoothness across and
within the segmented regions. In our soft color segmentation,
although the resulting segments may sometimes not corre-
spond to those produced by manual or semantic segmenta-
tion, as will be shown in the experimental section, they are
adequate for image-based applications, which require soft
segments for synthesizing seamless images.

In all unknowns, the prior PðLÞ encodes the probability
that one pixel falls in different segments. We apply the
following pairwise constraint:

PðLÞ /
Y
ðx;yÞ

Y
ðx0;y0Þ2N ðx;yÞ

exp � ðLðx; yÞ;Lðx0; y0ÞÞð Þ; ð10Þ

where ðLðx; yÞ;Lðx0; y0ÞÞ is the joint clique potential function
of sites ðx; yÞ and its first-order neighborhood sites ðx0; y0Þ.

We adopt the Lorentzian estimator (Fig. 2), a robust
function [4] that preserves discontinuity implicitly by
penalizing any occurrence of color discontinuity between
sites ðx; yÞ and ðx0; y0Þ. The joint potential function is defined
as follows:

 ðLðx; yÞ;Lðx0; y0ÞÞ ¼ log 1þ 1

2

kLðx; yÞ � Lðx0; y0Þk
�p

� �2
 !

;

ð11Þ

where �p is set to 0.1 in all our experiments. The use of a
robust discontinuity-preserving function is typical, for
instance, in MRF stereo [17], [31] and MRF photometric
stereo [34], [40].

3.3 The Alternating Optimization

Combining the likelihoods of (3) and (9) and the prior in
(11), we solve the following global optimization problem by
maximizing the posterior function:

arg max
G;L;C

Y
ðx;yÞ

1ffiffiffiffiffiffiffiffiffiffi
2��c
p exp �ðIðx; yÞ �

PN
i¼1 ‘iðx; yÞciðx; yÞÞ

2

2�2
c

 !

Y
ðx;yÞ

Y
ðx0;y0Þ2N ðx;yÞ

1

1þ 1
2
kLðx;yÞ�Lðx0;y0Þk

�p

� �2

0
B@

1
CA

Y
ðx;yÞ

YN

i¼1

1

ð2�Þ
3
2j�j

1
2

� �‘iðx;yÞ
exp �‘iðx; yÞ

ðciðx; yÞ � �iÞT��1
i ðciðx; yÞ � �iÞ

2

 !
:

ð12Þ

Obviously, this optimization problem cannot be directly
solved due to the large number of unknowns. To solve (12),
we propose an AO algorithm [7]: By fixing the values of a
subset of parameters in each iteration of the optimization
process, the global objective function is maximized by
optimizing each subproblem alternately.
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Fig. 2. The robust function for encoding the discontinuity-preserving
function: plotting the Lorentzian estimator logð1þ 1

2 ðx�Þ
2Þ versus x with

(a) � ¼ 0:1 and (b) � ¼ 0:0005. In all cases, the curves are bounded
when x! �1, which is more robust than the usual norm-squared
function (that is, the unbounded x2) in terms of encoding the error term.



3.3.1 Fix G; C, and Optimize L
In the first subproblem, we use the optimized values of G and

C from the previous iterations to optimize L. In the literature

of probabilistic graph models, a Markov network is an

undirected graph where the nodes fxsg are used to encode

hidden variables and the nodes fysg are used to encode

observed variables. Taking X ¼ fxsg and Y ¼ fysg, the

posterior PðXjY Þ can be factorized as

PðXjY Þ ¼
Y
s

 sðxs; ysÞ
Y
s

Y
t2NðsÞ

 stðxs; xtÞ; ð13Þ

where  stðxs; xtÞ is the compatibility matrix between

nodes xs and xt, encoding the cost between two

neighboring pixels, and  sðxs; ysÞ is the local evidence

for node xs, representing the observation probability from

the hidden variables pðysjxsÞ.
In this subproblem, it can be observed that our posterior

functions (2) and (13) are the same if we define

 stðxs; xtÞ ¼ expð� ðLðx; yÞ;Lðx0; y0ÞÞÞ; ð14Þ

 sðxs; ysÞ ¼ PðIðx; yÞjLðx; yÞ; Cðx; yÞÞPðCðx; yÞjG;Lðx; yÞÞ:
ð15Þ

Thus, finding the MAP solution of (12) is equal to solving the

Markov network where each hidden node encodesLðx; yÞ. In

belief propagation terms, N is the number of labels, and L is

passed as one-dimensional (1D) messages among the hidden

nodes. Thus, the MAP estimation can be solved (approxi-

mately) by loopy belief propagation via a message passing

procedure [20]. Because ‘iðx; yÞ 2 ½0; 1� is fractional andPN
i¼1 ‘iðx; yÞ ¼ 1, transparency is naturally encoded at ðx; yÞ

by the soft labels. The memory and computational complexity

of our belief propagation algorithm is OðZNÞ and OðTZNÞ,
respectively, where Z is the total number of pixels, N is the

number of Gaussians, and T is the number of iterations.

3.3.2 Fix G;L, and Optimize C
In the second subproblem, we use the optimized values of G
and L obtained from the previous iterations to optimize C.
Since L is fixed, PðLÞ is a constant. Equation (12) in this

subproblem is simplified to

arg max
C

Y
ðx;yÞ

1ffiffiffiffiffiffiffiffiffiffi
2��c
p exp �ðIðx; yÞ �

PN
i¼1 ‘iðx; yÞciðx; yÞÞ

2

2�2
c

 !
Y
ðx;yÞ

YN

i¼1

1

ð2�Þ
3
2j�j

1
2

� �‘iðx;yÞ
exp �‘iðx; yÞ

ðciðx; yÞ � �iÞT��1
i ðciðx; yÞ � �iÞ

2

 !
:

ð16Þ

By taking the logarithm of (16), we obtain a polynomial in

several variables with constant coefficients. We perform

pixelwise optimization by taking the partial derivative at

each pixel and setting the equations equal to zero to compute

the stationary points. In the following, the constant terms are

ignored if they disappear after taking the partial derivative:

@

@ci

 
ðIðx; yÞ �

PN
i¼1 ‘iðx; yÞciðx; yÞÞ

2

2�2
c

þ
XN
i¼1

‘iðx; yÞ
ðciðx; yÞ � �iÞT��1

i ðciðx; yÞ � �iÞ
2

!
¼ 0:

ð17Þ

Hence, we obtained the following 3N � 3N linear equation

system:

‘1ðx;yÞ��1
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c
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c1ðx;yÞ
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¼

‘1ðx;yÞ��1
1 �1þIðx;yÞ‘1ðx;yÞ=�2

c

..

.

‘N ðx;yÞ��1
N �NþIðx;yÞ‘N ðx;yÞ=�2

c

2
64

3
75;
ð18Þ

where I is the identical matrix and �c ¼ 0:1. Note that when

‘iðx; yÞ equals to 0, we do not need to estimate ciðx; yÞ since

the equation is already balanced, and ciðx; yÞ has no effect to

the objective function. Therefore, we can reduce the

dimension of the linear system by removing the entries

with ‘iðx; yÞ ¼ 0. In implementation, we only estimate the

color of the pixels with j‘iðx; yÞt � ‘iðx; yÞt�1j > ", where t is

the iteration number, and " is a small threshold set to be

0.01 in all our experiments. The above linear system is

solved by using singular value decomposition (SVD).

3.3.3 Fix L; C, and Optimize G
In the last subproblem, we use the optimized values ofC andL
obtained from the previous iterations to optimize the

unknown G. Since L and C are fixed, PðIjL; CÞ and PðLÞ are

constant in this subproblem. Taking the negative logarithm of

our global objective function (12), we obtain

arg max
G

Y
ðx;yÞ

YN
i¼1

1

ð2�Þ
3
2j�ij

1
2

� �‘iðx;yÞ
exp �‘iðx; yÞ

ðciðx; yÞ � �iÞT��1
i ðciðx; yÞ � �iÞ

2

 !

¼ arg min
G

X
ðx;yÞ

XN
i¼1

‘iðx; yÞ

3 logð2�Þ þ logðj�ijÞ þ ðciðx; yÞ � �iÞT��1
i ðciðx; yÞ � �iÞ

2

 !
:

ð19Þ

Taking the derivative with respect to �i and setting it to

zero, we get X
ðx;yÞ

��1
i ðciðx; yÞ � �iÞ‘iðx; yÞ ¼ 0; ð20Þ

which is reduced to

�i ¼
P
ðx;yÞ ‘iðx; yÞciðx; yÞP

ðx;yÞ ‘iðx; yÞ
: ð21Þ

To find �i, we can write (19) as (constant terms are ignored

here since they disappear after taking derivative)
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1
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Taking derivative with respect to ��1
i , we get

1

2

X
ðx;yÞ

XN
i¼1

‘iðx; yÞ 2M� diagðMÞð Þ ¼ 2S � diagðSÞ; ð23Þ

where M ¼ ðciðx; yÞ � �iÞðciðx; yÞ � �iÞT � �i and S ¼ 1
2P

ðx;yÞ
PN

i¼1 ‘iðx; yÞM. Setting the derivative equal to 0,
that is, 2S � diagðSÞ ¼ 0, implies that S ¼ 0, which gives

1

2

X
ðx;yÞ

XN
i¼1

‘iðx; yÞ ciðx; yÞ � �iÞðciðx; yÞ � �iÞT
� �

� �i

� �
¼ 0:

ð24Þ

Rearranging the equation, we obtain

�i ¼
P
ðx;yÞ ‘iðx; yÞðciðx; yÞ � �iÞðciðx; yÞ � �iÞ

TP
ðx;yÞ ‘iðx; yÞ

: ð25Þ

Thus, (21) and (25) together give the optimal G.

3.4 Summary

In summary, our AO algorithm is described as follows:
Initialize the unknowns (G,L, andC), and iterate the following
steps until convergence or reaching a fixed number of
iterations:

. Compute L by loopy belief propagation with (13),
(14), and (15).

. Compute C with (18).

. Compute G with (21) and (25).

To initialize the optimization, we use the results produced
by k-means clustering, where the mean and covariance for
each Gaussian component of GMM G is initialized as the
mean and covariance of the corresponding cluster. At each
pixel, L is initialized as the soft labels obtained via k-means
clustering. Cðx; yÞ is set to Iðx; yÞ for all pixels ðx; yÞ.

3.5 Convergence

Although AO guarantees convergence to one type of global
optimal solution [3], in this section, we experiment the
convergence of our AO algorithm for soft color segmenta-
tion. In each respective step of estimating L, G, or C, we use
the values obtained for the two unknowns in the previous
step to compute the maximum of the third unknown, which
makes the estimated value of PðG;L; CjIÞ increase mono-
tonically. Hence, the convergence of our method is
guaranteed, and the maximum of PðG;L; CjIÞ can be
reached upon convergence. In implementation, we termi-
nate our iterations in either one of the following situations:

.
P

0�i<Nð�ti � �t�1
i Þ

2 < �, where � is a predefined
threshold and t is current iteration, or

. t ¼ 40.

To demonstrate the optimization efficiency, we run our
AO algorithm for a total of 100 iterations for each case.

Fig. 3 shows the graphs plotting the negative logarithm of
the global objective function against the number of
iterations. Note that maximizing the objective function (2)
is equivalent to minimizing its negative logarithm. Typi-
cally, our method converges within 30 to 40 iterations. Fig. 4
shows some intermediate results during the AO iterations.
We use different colors to represent each Gaussian
components in G and label Iðx; yÞ as color i if ‘iðx; yÞ is
largest in f‘1ðx; yÞ; ‘2ðx; yÞ; � � � ; g. The output shown in the
figure is hard color segmentation to facilitate visual
evaluation. As the number of iterations increases, the
spatial connectivity and color homogeneity are progres-
sively refined until final convergence. In Section 5, we shall
show that our converged soft segmentation allows smooth
and natural color transition for a wide range of image
synthesis applications and produces satisfactory results.

4 EVALUATION AND ANALYSIS

This section presents examples to evaluate our AO algorithm
to perform soft color segmentation. Evaluation on synthetic
and real data are first presented, followed by the study of the
effects of C and G on the soft labels L estimation.

4.1 Synthetic Image

Fig. 5a shows a synthetic image used in our evaluation. This
example presents a challenge because a single pixel’s color
can be explained by as many as six colors. The result shows
that our automatic method is capable of segmenting the
image into six coherent regions. Fig. 5b shows a resynthe-
sized image

P6
i¼1 ‘iðx; yÞciðx; yÞ generated by compositing

the estimated L and C at each pixel. The image difference
between the input image and the synthesized image
jIðx; yÞ �

P6
i¼1 ‘iðx; yÞciðx; yÞj is shown in Fig. 5c. We

achieve an average pixel error of 0.0147, given byP
ðx;yÞ jIðx; yÞ �

PN
i¼1 ‘iðx; yÞciðx; yÞj
Z

;

whereZ is the total number of pixels. We plot the soft labelsL
at sample pixels in Fig. 5d to show the transparent
boundaries of the resulting soft regions. Fig. 5e shows the
segmentation results of each converged color region,
displayed as Iiðx; yÞ ¼ ‘iðx; yÞciðx; yÞ, 1 � i � 6.

4.2 Real Image

In this section, we use real images to evaluate our method in
the presence of rich textures and colors. We first use Poisson
matting [30] to extract the graffiti c� and the alpha matte ‘�

from the original image. They are composited onto a set of
new background images rich in textures and colors (shown
in Fig. 6a). Finally, we segment the graffiti from the
composited images using our soft color segmentation
method. The segmented graffiti, which is shown in Fig. 6b
as ‘ðx; yÞcðx; yÞ, is compared with ‘�ðx; yÞc�ðx; yÞ at each pixel
ðx; yÞ, and the image differences are shown in Fig. 6c. Note
the small residual achieved by our method. Fig. 6d shows the
‘ image for the graffiti segment, and Fig. 6e shows the
difference j‘ðx; yÞ � ‘�ðx; yÞj. The segmentation accuracy,
which is defined as

1�
P
ðx;yÞ j‘ðx; yÞ � ‘�ðx; yÞjP

ðx;yÞ ‘
�ðx; yÞ ;
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Fig. 4. We show the intermediate results of the AO algorithm. Since each pixel may belong to more than one Gaussian, we show at each pixel the

Gaussian component i with the maximum ‘i. Initially, no spatial connectivity is considered by k-means clustering, which performs clustering in the

RGB space. Spatial and color coherences are progressively preserved as the number of iterations increases.

Fig. 3. We plot the negative logarithm of the global objective function (2) against the number of iterations. (a) Synthetic image (Fig. 5), 28 seconds.
(b) Graffiti (Fig. 6), 114 seconds. (c) Lighthouse (Fig. 8), 75 seconds. (d) Camellia (Fig. 9), 39 seconds. (e) River 1 (Fig. 12), 94 seconds.
(f) Blobworld (Fig. 11), 16 seconds. (g) Motion blur, 106 seconds. (h) Hurricane (Fig. 18), 183 seconds. (i) Nebula (Fig. 19), 178 seconds. (j) River 2
(Fig. 23), 86 seconds. (k) Castle (Fig. 24), 46 seconds. (l) Gray-level image (Fig. 27), 34 seconds. Our goal is to maximize (2), which is equal to
minimizing the negative logarithm of (2). The values shown on the vertical axis are normalized by the number of pixels and the number of clusters in
the converged G. Empirically, our approach converges to a good minima within 30 to 40 iterations. Our AO approach typically runs in 180 seconds for
images with resolution 256� 256 on a notebook computer with a 1.40 GHz Intel Pentium M processor and 1 Gbyte RAM.



is over 70 percent in all the cases, whereas the segmented soft

regions are visually indistinguishable from the ground truth.

4.3 Effect of Color Reestimation

Next, we show the necessity of reestimating C in our AO

algorithm. The color estimation step corresponds to the

second subproblem in our AO approach, which improves

the results at the overlapping regions. Fig. 7b shows one

example where we do not perform color reestimation, and

we simply set all components of C to I. Compared to Fig. 7a,

which was obtained using our proposed method, the

segmented Gaussian components in Fig. 7b are less

separable. A real example is shown in Figs. 8a and 8b.

4.4 Effect of GMM Reestimation

Finally, we show the necessity of reestimating G in our AO

algorithm. G encodes the global color statistics for soft color

segmentation. It is initialized by k-means clustering. With-

out G reestimation, our approach is reduced to one that runs

the belief propagation on the result produced by k-means

clustering, followed by the color estimation step.

Fig. 8c shows the result without G reestimation, which is

susceptible to errors given by the initial clustering, therefore

resulting in the suboptimal estimation of L and C, as

depicted in the figure.
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Fig. 5. Evaluation using a synthetic image. (a) Here, the observed color of a pixel may be explained by a mixture of as many as six colors. (b) The
resynthesized image generated by compositing L and C obtained upon the convergence of our AO algorithm. (c) Image difference between (a) and
(b). (d) The soft labels L of sample pixels. (e) The soft segments, which are displayed as Iiðx; yÞ ¼ ‘iðx; yÞciðx; yÞ, 1 � i � 6, depict transparent and
overlapping boundaries.

Fig. 6. Evaluation using real image. (a) Original image and image composites. (b) The segmented graffiti. (c) Image difference between the ground
truth segment ‘�ðx; yÞc�ðx; yÞ and the graffiti segmented from the new image composite. (d) The ‘ðx; yÞ image for the segmented graffiti. (e) Image
difference between the ground truth ‘� and the converged ‘.

Fig. 7. The three estimated Gaussians overlaid onto the histogram of the
graffiti image. Only the R channel is shown here. (a) With color
estimation. (b) Without color estimation. (c) The Gaussians estimated
using the original EM algorithm. The estimated Gaussian components
are better separated using our AO algorithm.



5 RESULTS AND COMPARISON

We have evaluated our method on real and synthetic images
and studied the effects of C and G on L in the AO algorithm.
In this section, we present the results and comparisons with
state-of-the-art segmentation techniques, focusing on shad-
ing and shadows, highly textured scenes, and multiscale
processing.

5.1 Shading and Soft Shadows

Because our approach is designed to produce soft color
segments, soft shading and shadows can be handled
uniformly. We compare our method by using the following
alternatives:

. standard deviation in modeling G and

. k-means clustering with belief propagation and color
estimation.

Fig. 9 shows that our AO method produces significantly
better results. This can be explained by the use of �, which

encodes an oriented Gaussian and captures nonuniform
color distribution due to shadow and shading.

5.2 Highly Textured Scenes

We first compare our AO algorithm with EM algorithm,
which is one specific form of AO. Then, comparisons are
made with other representative segmentation methods.

The original EM algorithm segments an image in the color
domain. Fractional boundaries can be obtained if we do not
use the maximum-vote filter such as the one proposed in [1].
Fig. 10 shows the results. Since no spatial information is
considered, spatially different patterns such as the water and
the leaves cannot be well separated.

The revised EM algorithm described in [1] performs
GMM estimation in the 6D feature space in which color/
texture segmentation is performed. Fig. 11 shows our results
compared with [1]. Because no spatial information is
considered during their EM iteration, the maximum-vote
filter and the connected component algorithm are used to
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Fig. 8. The images of soft label ‘ for a lighthouse image. The subimage on the lower right side shows the compositing result using the estimated ‘

and c on a green background. (a) Segmentation result by our AO approach. (b) Segmentation result without C reestimation. Comparing the result in

(a), better transparent regions are obtained with color reestimation. (c) Segmentation result without G reestimation. The input image is shown in

Fig. 20.

Fig. 9. (a) Input image. Soft shading and shadows are present between the petals. The segmentation result using (b) covariance matrix (oriented

Gaussians), (c) standard derivation (unoriented Gaussians), and (d) k-means clustering with belief propagation and color estimation. Shading and

soft shadows are better captured by an oriented Gaussian.

Fig. 10. Segmentation result by the original EM algorithm. Without spatial consideration, spatially dissimilar patterns are mixed up. (a) Input image.
(b), (c), and (d) are the three segments output by the EM algorithm.



enforce spatial connectivity. As shown in Fig. 11, although
their approach can group relevant region centers, the
undecided region boundaries are output as unsegmented
regions. Our automatic approach produces fractional
boundaries to faithfully maintain the smooth color transition
among segments.

For the complex scene shown in Fig. 12, Mean Shift [6]
cannot segment the river well. The complex region
boundaries cannot be preserved, as shown in Fig. 12a.
Because Mean Shift performs segmentation by first con-
catenating color and spatial coordinates, the resulting sparse
and high-dimensional feature space makes the segmenta-
tion more challenging.
K-means segmentation [10] segments the image by

clustering in the RGB space (k ¼ 3 in our example). The
result is good from the global statistical point of view, but
since spatial information is not considered, isolated point
clusters are resulted (Fig. 12b).

The image segmentation problem is formulated into

Normalized Cuts in [28], where a graph partitioning

problem is solved. For this example, the complex region

boundaries are not well preserved (Fig. 12c).

The Watershed algorithm [37] segments the image into

many small partitions (Fig. 12d), which are suitable for

applications requiring an oversegmentation of the scene.

JSeg [9] is an image-based segmentation technique,

which consists of regions splitting, growing, and merging.

The segmentation results are subject to a user-defined color

quantization threshold and a region-merging threshold,

whereas our automatic alternating maximization algorithm

does not have critical threshold to set. The segmentation

results produced by JSeg are not satisfactory for this

complex scene as shown in Fig. 12e.

The implicit assumption used in the statistical region

merging [19] is that the observed color variations inside the

same region should be smaller than those across different

regions. The use of local statistics and a single scale are not

adequate in handling a complex image with multiscale

features. Overmerging and undermerging are therefore

possible, as shown in Fig. 12f.

In our AO, the global color statistics, as well as the local

spatial coherence, are considered. In Figs. 12g, 12h, and 12i,

the three basic colors of the image are separated. Specifi-

cally, Fig. 12g shows the dark gray transparent segment,

which provides a smooth color transition between the

leaves and the river. The interweaving green and yellow

leaves are reasonably segmented from the complex scene.

Although our soft color segmentation does not necessa-

rily generate a semantic segmentation of the scene, it does

produce good synthesis results, which are often used to

evaluate the segmentation quality. For instance, in the

DDMCMC method [35], the input is resynthesized using

pðIjWÞ, where W is the segmentation result. In our case, we

resynthesize the input using pðIjL; CÞ. Some results are

shown in Fig. 13. Notice that, however, the goal of

DDMCMC method is to produce coherent segmentation

for image understanding, whereas our method optimizes
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Fig. 11. (a) Input image [1]. (b) Segmentation result from [1]. (c), (d), and (e) Our soft color segmentation results ‘ici.

Fig. 12. Input image shown on the left. Results produced by (a) Mean Shift segmentation, (b) k-means clustering with k ¼ 3, (c) Normalized Cuts,

(d) Watershed algorithm, (e) JSeg method, (f) statistical region merging, (g), (h), and (i) our AO algorithm. The three segmented regions correspond

to the three basic color components underlying the image.



for overlapping and transparent segments to preserve

natural and smooth color transition.

5.3 Multiscale Processing

Our soft color segmentation can be used to process images
at multiple scales. Since we use a GMM to represent colors
and a Gaussian kernel to perform prefiltering before
subsampling, the scale-space theory [39] asserts that no
new edge features will be produced while processing the
subsampled data after Gaussian prefiltering.

We propose to use the Gaussian pyramid to reduce

dissimilarity of ‘i among pixels in a single textured region.

The result obtained in a higher level is incorporated as a soft

constraint while optimizing for the result in the immedi-

ately lower level. By enforcing the same N (obtained in the

lowest level) to all levels, we introduce the following prior

term to replace (10) as follows:

PðLÞ /
Y
ðx;yÞ

exp � Lðx; yÞ � Lmsðx; yÞ
�ms

� �2
 !

Y
ðx;yÞ

Y
ðx0;y0Þ2N ðx;yÞ

expð� ðLðx; yÞ;Lðx0; y0ÞÞÞ;
ð26Þ

whereLmsðx; yÞ is the result obtained in the immediate higher
level in the pyramid, and �ms controls the similarity between
Lðx; yÞ and Lmsðx; yÞ. Equation (26) indicates that a small

value of �ms gives more penalty, which, in turn, favors that

Lðx; yÞ and Lmsðx; yÞ be similar in distribution. Fig. 14 shows

the effect of �ms. Note that, in image-based applications,

partitioning one texture pattern into exactly one segmented

region may not be always desired, so the choice of (10) or (26)

in modeling the prior PðLÞ depends on applications.

When (26) is used, we set �ms ¼ 0:5. Fig. 15 shows the

comparison. The top row compares the result on one

example with that presented by Galun et al. [12]. Our result

can successfully segment the two patterns on the wall. In

the bottom row of Fig. 15, we compare our result with

DDMCMC [35] in texture segmentation.
Using color transfer [24], we can recolor the segments at

different scales. In Fig. 16b, we show ‘1ðx; yÞ images produced

by using (26). The top row of Fig. 16 compares the result on

one example with that presented by Galun et al. [12], where

the camouflage patterns are progressively segmented. In the

bottom row, we compare our result using an input image

from Sharon et al. [27]. Our method produces good results

where the water is separated from the tiger while the stripped

textures are maintained. We recolor the resulting segments

using different colors (using small scale of analysis) or recolor

them using the same colors (using large scale of analysis).

In Fig. 17, we show one instance that our multiple scale

segments produced are consistent among each other,
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Fig. 13. Evaluation by resynthesis. (a) Input images. (b), (c), and (d) Our segmentation results displayed as ‘iðx; yÞciðx; yÞ, 1 � i � 3. (e) Resynthesized
results of our approach using pðIjL; CÞ.

Fig. 14. (a) Image of ‘1ðx; yÞ estimated using (10) without Gaussian pyramid construction. (b), (c), (d), and (e) The results using a five-level Gaussian
pyramid. (b) ‘1ðx; yÞ estimated in the highest level. Taking the segmentation result obtained in the immediately higher level as a soft constraint and
applying (26), ‘1ðx; yÞ is estimated in the original input scale with (c) �ms ¼ 1, (d) �ms ¼ 0:5, and (e) �ms ¼ 0:01. By using smaller �ms, the output soft
labels are more uniform in the textured region.



allowing a user to specify and focus on regions of interest.

For example, using the multiscale soft segments, we can

recolor all the dining facilities along the waterfront using a

single color (Fig. 17b) or recolor the individual tables and

chairs (Fig. 17c) while the faraway mountain and windmills

are recolored using a small scale in both cases.

6 APPLICATIONS

In this section, we present the results and applications of

soft color segmentation. Our approach provides a general

framework for the following applications, which were

traditionally addressed by separate algorithms. Without
any human interaction, the results produced by our method
are more reasonable or comparable to previous methods,
where user assistance may be required in the latter case.

6.1 Soft Color Segmentation

Hurricane images. Soft color segmentation can be applied to
process satellite images on hurricane, where the specification
of a trimap for image matting is difficult in complex images
such as the input shown in Fig. 18a. Hurricane segmentation
from satellite images is helpful in identifying, analyzing, and
predicting the formation of hurricanes that are nonsolid and
partially transparent. Figs. 18b, 18c, and 18d show the results
produced by our soft color segmentation. Note that the
inferred ‘ values for the hurricane are proportional to the
cloud density. Fig. 18e shows an unsatisfactory segmentation
result produced by hard segmentation.

Nebulas. In nebula analysis, different colors of a nebula
represent different components and temperatures of the
nebula. Fig. 19a shows a nebula image Messier Object M20
captured by the Hubble Space Telescope. The red emission
nebula with its young stars clustered near its center is
surrounded by a blue reflection nebula, where different
components and temperatures exist across the nebula.
Similar to hurricanes, the nebula is not a solid object and
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Fig. 15. We compare our multiscale results with those by Galun et al. [12] (top) and DDMCMC [35] (bottom). Using the multiscale prior to (26), our

method automatically converges to two soft segments, that is, ‘1 and ‘2. (a) Input images. (b) ‘1 images. (c) ‘2 images. Our multiscale method deals

with textures and produces soft segments with appropriate boundary transparency and spatial coherence. The results in [12] and [35] are shown in

(d). Note that our method works in RGB and does not work better in intensity images with one gray-scale channel.

Fig. 16. To show that our approach is capable of producing scene segmentation at multiple scales, we process (by recoloring) the selected segment

at different scale. These two examples are respectively presented by Galun et al. [12] (top) and Sharon et al. [27] (bottom). The selected segments

are the leg of the leopard and the torso of the tiger, respectively. (a) Input image. (b) ‘1ðx; yÞ estimated with scale prior to (26). Recolored results

using (c) large scale and (d) small scale. The segmentation results in [12] and [27] are shown in (e).

Fig. 17. Consistency of multiple scale segments. (a) Input gray-scale
image. To show that our approach is capable of producing soft
segmentation at multiple scales, we recolor the image using (b) large
scale and (c) small scale at the chosen regions or scales of interest (the
dining facilities along the waterfront). The result in [35] is shown in (d).



the transition boundary between the red and blue nebulas

should be soft and smooth. Results obtained by hard

segmentation cannot faithfully reflect this phenomenon.

Figs. 19b, 19c, and 19d show our soft color segmentation

results in which a smooth and natural transition across the

nebulas is achieved.
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Fig. 18. Segmentation of a satellite image of a hurricane. (a) Input image. (b), (c), and (d) Our segmentation results displayed as ‘iðx; yÞciðx; yÞ,
1 � i � 3. (e) Hard segmentation result. (f), (g), and (h) The corresponding ‘i images for (b), (c), and (d). Our approach segments the land from the
hurricane. The ‘ image in (h) indicates the cloud density of the hurricane.

Fig. 19. Segmentation of a nebula image. (a) Input image, Messier Object M20. (e), (f), and (g) The soft labels ‘iðx; yÞ corresponding to (b), (c), and
(d). Our algorithm segments the red and blue nebulas with fractional boundaries. Note that the bright stars are not smoothed out due to the
discontinuity-preserving property of our MRF formulation.

Fig. 20. Comparison with image matting. Although approaches in natural image matting use a user-specified trimap or other user-supplied hints, our
method is fully automatic.



6.2 Image Matting

Image matting, in particular, Bayesian matting [5], can be
regarded as a user-assisted form of soft color segmentation
for the specific caseN ¼ 2, ifL ¼ f�; 1� �g, where 0 � � � 1,
then C ¼ fF;Bg, where F and B are the respective optimal
foreground and background colors, when G is restricted in a
local neighborhood governed by a user-supplied trimap.

Fig. 20 shows a result on natural image matting. Our
result is comparable to the results obtained by Bayesian
matting [5], although our automatic approach does not use
any trimap. As depicted in our result, the fences of the
lighthouse are not smoothed out. Fig. 21 shows an example
in which long hairs are present. Our segmentation result is
satisfactory for the example except for the long hairs
because no trimap is used.

6.3 Color Transfer between Images

A single Gaussian is used in [24] to model the global color
statistics of the source and target images. If diversified colors

are present in any of them, image patches must be manually
specified to divide the colors into separate clusters. However,
for complex images, it is difficult for a user to specify the right
patches, and a small number of patches are inadequate to
discern different color statistics. Here, we propose to perform
soft color segmentation on both the source and target images
before applying color transfer so that the transfer process is
fully automatic. Recall that our soft color segmentation
models the global color distribution by a GMM, that is, each
color region (not necessarily connected) corresponds to a
component of the converged GMM. We therefore define the
final transferred color for a pixel gðIT ðx; yÞÞ by

gðItðx; yÞÞ ¼
X
j

‘Tjðx; yÞ
�Si
�Tj
ðItðx; yÞ � �TjÞ þ �Si

� �
; ð27Þ

where ‘Tjðx; yÞ is the soft label corresponding to the Tjth
Gaussian component of the GMM of the target image,
obtained by our AO algorithm for soft color segmentation.
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Fig. 21. Boundary smoothness and transparency for an object with long hairs. (a) Input image. (b) One automatically segmented region. (c) ‘ image

of the region (or alpha matte). (d), (e), (f), and (g) Zoom-in views of the results obtained using our method. Because no trimap is used, long and thin

hairs are missed, whereas short hairs are still preserved.

Fig. 22. (a) The graffiti image. (b) Hard segmentation manually produced, where the region boundaries are indicated by the solid green curves.

(c) Soft segmentation produced by our AO algorithm. The three converged color regions are shown. (d) Color transfer result using the hard

segmentation shown in (b). (e) Color transfer result using the soft segmentation shown in (c). Zoom-in views of the result for (f) hard segmentation

and (g) soft segmentation. The color transfer result in (g) is smoother and more natural. The color transfer equation in [24] is used to generate

(d), (e), (f), and (g).



The following examples show that our GMM model is more
suitable than a single Gaussian used in [24] in guiding the
color transfer process. Our natural color transfer with soft
color segmentation achieves smoother and more natural color
transition, especially for regions rich in colors and textures.

Fig. 22 first demonstrates color transfer on a complex
scene based on soft color segmentation, which is more
preferable in comparison to the one based on hard/binary
segmentation. The transferred result using soft color
regions (Fig. 22g) looks smoother and more natural, as
opposed to that given by hard segmentation where
unnatural and abrupt changes in color are observed among
adjacent color patches (Fig. 22f).

Figs. 23 and 24 compare the color transfer results using a
GMM model obtained by our AO algorithm as opposed to
using a single Gaussian model [24] for guiding the color
transfer process. In Fig. 23, the source image and its soft
segments were already shown in Figs. 12g, 12h, and 12i. The
soft segments for the target segments are shown in Figs. 23b,
23c, and 23d. Our transfer result is shown in Fig. 23e. Using
the GMM model and soft color segments to guide the color
transfer process, the color of the rivulet (Fig. 12) is faithfully
transferred to the river (Fig. 23). In comparison with that in
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Fig. 23. Comparison of color transfer using our approach and that in [24]. (a) The target image (the source image is shown in Fig. 12). (b), (c), and (d)
Soft color segmentation results. (e) The color-transfer result using our approach in which soft color segmentation is performed before transferring the
colors. (f) The color-transfer result without soft color segmentation [24]. (g) The color-transfer result by histogram equalization. The results in (f) and
(g) show undesirable mixture of colors of the leaves and the river.

Fig. 24. Comparison of color transfer on a natural scene using our approach and that in [24]. (a) An old photograph of a downtown scene captured on
an overcast day. (b) The target image captured on a sunny day. (c) Our transfer result. (d) Transfer result generated in [24] where an unacceptable
mixture of colors is present. (e) Transfer result generated by histogram equalization in which undesirable saturation is observed.

Fig. 25. Image deblurring using color transfer with/without soft color segmentation. (a) Source image. (b) Target image. (c) Result using our
approach. (d) Result using a single Gaussian model. Note that the colors in result (d) are not preserved.

Fig. 26. Comparison on image denoising. (a) Nonflashed source and
flashed target images. Results and zoom-in views obtained by (b) our
approach, (c) by that in [21], and (d) by that in [11]. Our method makes
use of the strong spatial relationship between the source and target
images given by the soft color segmentation. Therefore, the red shade
of the sofa, the bottles, and the stones are not mixed up. Such an
undesirable mixture is observed in the result in (d). The result using joint
bidirectional filter [21] in (c) is still very noisy.



[24], using a single Gaussian that does not adequately model
the global color distribution of the image, as depicted in
Figs. 23f and 23g, the transfer results are unsatisfactory as
undesirable mixture of colors of the leaves and the river is
easily observed.

Figs. 24a and 24b show another source/image pair. Fig. 24c
is the transfer result generated using our approach. Compar-
ing with the respective results generated by Reinhard et al.
[24] in Fig. 24d and histogram equalization in Fig. 24e, our
result is more natural and suffers less saturation.

6.4 Image Correction Using Image Pairs

We have extended the idea of color transfer using image
pairs to correct image intensities.

Image deblurring using a normal/low exposure pair.
Given two images of the same scene taken almost simulta-
neously and without a tripod 1) one is acquired under normal
exposure and, so, motion and shape blur may be present and
2) the other is taken with a short shuttle speed and, so, the
image is crisp but underexposed, we want to transfer the color
from image 1 to image 2 so as to generate a bright and crisp
image. Since the source and the target images have strong
spatial similarity, after segmenting the respective images
using our AO approach, we can use, as the criterion, the
largest overlapping area of the segmented regions for
matching the Gaussians, so as to perform the associated color
transfer from the source to target to deblur the image. Fig. 25
shows our result of image deblurring.

Image denoising using flash/no flash pair. Similarly, we
can perform image denoising using two images: one is taken
with camera flash (flashed image) and the other is captured
using a high ISO configuration without flashing (nonflashed
image) to preserve the original scene color and ambiance.
Images captured with a high ISO setting contain a consider-
able amount of noise. In [21], the flashed image is used to
denoise the nonflashed image. In our method, we first use a
median filter to reduce the amount of noise. Then, both the
source and target images are segmented using our
AO algorithm. Finally, we map the colors from the nonflashed
image to the flashed image to construct our denoised and
sharp image, which faithfully preserves the original scene
ambiance. Fig. 26 shows and compares the denoised result.
Our current result does not transfer shadows though, which,
on the other hand, can be performed as described in [11].

6.5 Colorization

For applications in image colorization, we only have the
luminance channel in an input gray-scale image. To constrain
the color transfer, we assume that two pixels in the same
region have similar colors if they have similar luminance
value. Similar to the above transfer applications, we perform

soft color segmentation in both the source and target images.
Here, the only modification of our method is that we perform
AO only on the luminance ‘ channel and assign the same
distribution to the absent ab channels. Fig. 27 shows one
result. Note in our result the smooth and natural transition
between blue sky and green trees. The whole process is fully
automatic.

7 CONCLUSION

We have described an algorithm based on AO to address the
problem of soft color segmentation. We have demonstrated
that our method produces reasonable segmentation in the
form of overlapping and transparent color regions, despite
the presence of rich colors, textures, shading, soft shadows,
and image noises. Our soft color segmentation can be applied
at multiple scales. This general approach has found useful
applications such as image matting, color transfer, image
correction, and image colorization. Our method combines the
advantages of global color statistics and local image
compositing while preserving the necessary spatial and color
coherence. In the future, we shall investigate the role of soft
color segmentation in fundamental computer vision:

. stereo, where traditional techniques assume opacity
(except in [32]), and

. motion, where motion blur is problematic to many
algorithms.
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