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Abstract

This paper presents a new method to detect and ac-
curately extract the moving object from a video sequence
taken by a hand-held camera. In order to extract the
high quality moving foreground, previous approaches usu-
ally assume that the background is static or through only
planar-perspective transformation. In our method, based
on the robust motion estimation, we are capable of handling
challenging videos where the background contains complex
depth and the camera undergoes unknown motions. We pro-
pose the appearance and structure consistency constraint
in 3D warping to robustly model the background, which
greatly improves the foreground separation even on the ob-
ject boundary. The estimated dense motion field and the bi-
layer segmentation result are iteratively refined where con-
tinuous and discrete optimizations are alternatively used.
Experimental results of high quality moving object extrac-
tion from challenging videos demonstrate the effectiveness
of our method.

1. Introduction

Accurate moving foreground extraction from a video is
an active research in computer vision. For an applicable
high-quality video editing tool, it is usually required that
the moving foreground object can be robustly detected, sep-
arated, and edited. However, this is an inherently ill-posed
problem due to the large number of unknowns and the pos-
sible geometric and motion ambiguities in the computation.

In order to separate the foreground object with visu-
ally plausible boundary, several bi-layer separation meth-
ods [5, 10, 15, 4] are proposed assuming that the camera is
mostly stationary and the background is known or can be
modeled. In [7], using the stereo video sequences and as-
suming the mostly static background, the object color, gra-
dient, and displacement information are integrated to infer
the foreground layer in real time. Later on, two approaches

∗Corresponding Author: Hujun Bao {bao@cad.zju.edu.cn}

are proposed respectively in [15, 4] to separate the fore-
ground from a single stationary web camera using different
spatial and temporal priors. Most recently, an approach is
proposed in [20] to infer bilayer segmentation monocularly
even in the presence of distracting background motion. For
all these methods, if the camera undergoes arbitrary transla-
tional and rotational motions and the background has com-
plex geometry structures, the foreground object cannot be
accurately extracted due to the following two main factors.

Motion estimation. In videos, the motion estimation
errors are inevitable even using state-of-art algorithms [2,
18, 8]. The estimation inaccuracy may cause large problem
in correctly constructing the background information and in
modeling the background prior in segmentation.

Foreground definition. The moving camera also brings
the difficulties in defining and identifying the foreground
object. If the background is known, it is certain that the
foreground can be detected and extracted using color con-
stancy constraint or other more sophisticated tracking or
Bayesian detection methods [19, 13]. However, if the back-
ground is unknown in the beginning, the foreground defi-
nition can be ambiguous. We shall show in this paper that
labeling the pixels geometrically close to the camera or the
pixels with large motions as foreground is NOT correct in
many cases.

Besides bilayer separation, motion segmentation [1, 17,
6, 8] has been extensively studied during the past decades.
The purpose of these methods is to group pixels that be-
long to similar motion, and eventually to cluster the motion
to multiple layers. These methods do not aim to achieve
the high quality foreground extraction and usually produce
segmentation without accurate object boundaries especially
when occlusion or disocclusion happen.

In this paper, we propose an automatic method to ac-
curately detect and extract the moving object from a video
sequence taken by a hand-held camera. Our method ad-
vances in several ways to improve the accuracy of the bi-
layer segmentation especially on the object boundary. Our
method iterates between motion estimation and bilayer seg-
mentation. In the motion estimation process, in order to
minimize the errors caused by optical flow formulation, on



one hand, we introduce the occlusion parameter and pro-
pose the continuous-discrete optimization to avoid the local
optimum. On the other hand, we apply the structure from
motion technique to reliably recover the camera motion and
sparse 3D points. These points map to different frames as
reliable anchors to constrain the motion optimization.

In the bilayer segmentation, using the camera parame-
ters, the multi-view geometry constraint is incorporated into
our layer separation model. A novel appearance and struc-
ture consistency constraint in 3D warping is introduced in
our approach to model the essential difference between the
moving object and the background in the video. The final
foreground is extracted by solving an optimization prob-
lem combining all these constraints and considering the
temporal-spatial smoothness in video.

The paper is organized as follows. In Section 2, we give
an overview of our method. In Section 3, the robust optical
flow and dense depth estimation are described. The moving
foreground detection and extraction are described in Section
4. Experimental results are shown in Section 5. We discuss
and conclude our paper in Section 6.

2. Our Approach

Given a video sequence taken by a freely moving cam-
era with n frames, our objective is to achieve a high quality
foreground extraction without initially knowing the object
motions. We denote f t(i) the pixel i in frame t. Then our
goal in this paper is to estimate αti, which is the label of seg-
mentation for each pixel i in frame t. α has binary values.
αti = 1 when the pixel belongs to the foreground moving
object, αti = 0 when it is on the background. We set α = 0
for all pixels initially.

In order to automatically compute a visually satisfying
and perceptually correct foreground extraction result, our
method iterates between two steps, i.e., the dense depth es-
timation and foreground labeling, until a stable bilayer seg-
mentation is obtained. Table 1 gives an overview of our
algorithm.

3. Dense Depth Estimation

We use the structure from motion (SFM) method pro-
posed in [21] to recover the camera motion parameters from
the given video sequence. For completeness we briefly sum-
marize the algorithm as follows.

We first detect and track feature points over the whole
video sequence. Then, we select the superior tracks and
key frames, and initialize the projective reconstruction from
the reference triple frames. The projective reconstruction is
upgraded to a metric framework at an appropriate moment
through self-calibration. For each newly added frame, the
new camera parameters and 3D points are initialized, and

1 Structure from Motion:
1.1 Recover the camera motion parameters C and

sparse 3D points D.
2 Dense Motion and Depth Estimation:

2.1 Estimate dense motion d and occlusion o for each
two consecutive frames.

2.2 Estimate depth map zt and residual error map γt

for each frame t.
3 Bilayer Segmentation:

3.1 Compute the appearance and structure consistency
maps.

3.2 Solve α by minimizing (11).
4 Repeat steps 2 and 3 for k iterations.
5 Finally, α is refined by border matting [12].

Table 1. Overview of our framework.

existing structure and motion are refined. Finally, the whole
structure and motion are refined through bundle adjustment.

The output of the SFM estimation includes the recovered
camera parameter set C and a sparse 3D point set D map-
ping to the feature points in the video frames. We denote
the camera parameter as C

t = {Kt,Rt,Tt} for frame t,
where K

t is the intrinsic matrix, R
t is the rotation matrix,

and T
t is the translation vector.

3.1. Motion Estimation

The motion of each pixel is computed on consecu-
tive frames in the video. We use a displacement vector
d
t,t+1(i) = (dt,t+1

x (i), dt,t+1
y (i)) to model the motion of

pixel i between neighboring two frames t and t + 1. In or-
der to handle occlusions, for each frame pair f t and f t+1,
we define the occlusion label {ot,t+1

i |ot,t+1
i ∈ {0, 1}} for

each pixel i. If one pixel is occluded when mapping from
frame t to frame t+ 1, ot,t+1 is set to 1.

We define the following objective function to solve the
dense displacement map:

arg min
d,o

n−1
∑

t=1

(Et,t+1(d, o) + Et+1,t(d, o)), (1)

where Et,t+1(d, o) and Et+1,t(d, o) are the bidirectional
energy terms representing the mapping from frame t to
frame t + 1 and mapping from frame t + 1 to frame t re-
spectively. Since they are similarly defined, we only give
the definition of Et,t+1(d, o) as follows,

Et,t+1(d, o) =
∑

i∈ft

[mt,t+1(i) +
∑

j∈N(i)

st,t+1(i, j)]

+Dt,t+1(D),
(2)

where N(·) denotes the set of neighborhood. The energy
function has three components: (i) the data matching term
m(i), (ii) the smoothness term s(i, j) which consists of the
spatial smoothness of motion and the visibility consistency,
and (iii) a prior from the recovered 3D points.



3.2. The Energy Function

Data matching termm(i) is defined on the color constancy
constraint between the matched pixels and is given by

mt,t+1(i) =







ρ
t,t+1
d (i), o

t,t+1
i = 0, αti = αt+1

i′

min{ρt,t+1
d (i), ηo}, o

t,t+1
i = 0, αti 6= αt+1

i′

ηo, o
t,t+1
i = 1

where i′ in f t+1 is the matched pixel of i in frame t. ηo is
a penalty, preventing all pixels from being labeled as occlu-
sion, which is defined similarly as the one in [14]. ρt,t+1

d (i)
is a differentiable robust function:

ρ
t,t+1
d (i) =

||f t(i)− f t+1(i′)||2

ηd + ||f t(i)− f t+1(i′)||2
.

If ot,t+1
i = 0 and αti 6= αt+1

i′ , there should ideally exist
occlusion. However, in our optimization process, due to
the use of discrete image space and the possible estimation
errors, the bilayer separation is not always accurate. The
matching cost is thereby defined as min{ρt,t+1

d (i), ηo} to
constrain the cost. Using optical flow, the color difference
between f t(i) and f t+1(i′) can be further written as

||f t(i)−f t+1(i′)||2 ≈ ||f t
x(i)·dt,t+1

x (i)+f
t
y(i)·dt,t+1

y (i)+f
t
t (i)||2,

where f tx, f ty and f tt are image gradients in x, y and t direc-
tions respectively. The continuity of the above function is
important in computing the first order derivative

∂(f t(i)− f t+1(i′))

∂d
≈ (f tx(i), f

t
y(i))

>,

which makes it possible to apply a nonlinear continuous op-
timization, e.g., the steepest descent method, to estimate d.

Smoothness term s(i, j) encourages the smoothness of the
motion and occlusion, and is defined as

st,t+1(i, j) = βsρ
t,t+1
s (i, j) + βo|o

t,t+1
i − o

t,t+1
j |

+βw|o
t,t+1
i −W

t,t+1
i |,

(3)

where ρs and |ot,t+1
i − o

t,t+1
j | are the spatial smooth-

ness constraints for the displacement and occlusion in each
frame. ρs is a robust function, given by

ρ
t,t+1
s (i, j)=

{

min{||dt,t+1(i)− d
t,t+1(j)||2, ηs}, α

t
i = αt+1

j

0, αt
i 6= αt+1

j

which implies if two neighboring pixels belong to differ-
ent layers after segmentation, the spatial smoothness does
not need to be preserved. ηs controls the upper bound of
the cost. W t,t+1(i) ∈ {0, 1} is a binary value, indicating
whether or not there exists one or more pixels i in f t that
can be matched from f t+1 according to the displacement
value d

t+1,t [14]. The value of W t,t+1(i) is set to 1 if there
is no corresponding pixel in f t+1 for f t(i).

Prior D imposes constraints with the recovered sparse 3D
points D from our SFM estimation. For the 3D point X ∈
D, its projections in f t and f t+1 are denoted as u

t
X and

u
t+1
X respectively where u

t
X can be computed by

u
t
X = K

t(RtX + T
t),

with the estimated camera parameters K
t, Rt, and T

t from
the SFM step. These pixels should be matched and be taken
as anchor points in the optical flow estimation

Dt,t+1 = βD
∑

X∈D

∑

ft,ft+1∈ϕ(X)

||dt,t+1(ut
X)− (ut+1

X − u
t
X)||2,

(4)
where ϕ(X) is the frame set in which X has corresponding
image feature points. The weight βD is set to a large value.

3.3. Solving the Energy Function

Combining the definition of different energy terms, we
solve for a dense displacement map with the consideration
of the occlusion bi-directionally.

The occlusion o is initially set to all zeros. With the re-
covered 3D point set D, we are able to determine the dis-
placement of the sparse anchor points which correspond to
the 3D points in D. The motions of other pixels are initial-
ized using our motion interpolation. Specifically, in each
frame, we produce a 2-D triangulation of the sparse anchor
points. Then the motion vectors for pixels inside each tri-
angle are initialized using triangular interpolation. Our mo-
tion optimization algorithm alternates between the follow-
ing two steps:

1. Fix o, and estimate d by minimizing (1).

2. Fix d, and estimate o by minimizing (1). Since the
occlusion o has binary values, we use graph cut [3] to
compute it.

In step 1, nonlinear continuous optimization methods,
e.g., the steepest descent algorithm, can be used to estimate
d. However, it requires a good start point and is easily stuck
in a local minimum. To overcome this problem, we propose
a continuous-discrete optimization process.

We first apply the steepest descent algorithm to estimate
a displacement map for each frame pair. In this step, the
result may be only in a local minimum point given the high
dimension of the solution space. In order to pull the result
out of a local minimum point, we apply scalar quantization
on the displacement d in x and y directions in the range of
[dx − η, dx + η] and [dy − η, dy + η] respectively, where η
is a constant value and is set to 5 in our experiments. Then,
in the discrete space, loopy belief propagation [16] is ap-
plied to compute a better solution d

′. The continuous and
discrete optimizations alternate and rapidly converge in our
experiments.



3.4. Depth Estimation and Geometric Constraint

Once the dense motion vectors are computed, we link
each pixel forward and backward in the neighboring frames
according to the pixel displacement. This process eventu-
ally form dense motion tracks. Assuming that the estimated
optical flow is not always accurate and the errors may be
accumulated in constructing the tracks, we break a link be-
tween the connected pixels f t(i) and f t+1(i′) in a track
if one of the following happens: 1) i′ or i is labeled “oc-
cluded”. 2) The optical flow consistency error

e
t,t+1
flow (i) = ||dt,t+1(i) + d

t+1,t(i′)|| (5)

is larger than a threshold (2 pixels in our experiments). Af-
ter the above process, the lengths of all tracks are limited to
no more than N frames (30 in our experiments).

For a track p expanding the frames from f l to fr, ac-
cording to the definition of motion vectors, the pixels along
track p in different frames should correspond to a same 3D
point Xp in the scene. Denoting the pixel in track p in frame
t as x

t
p, ideally, we should have

x
t
p = K

t(RtXp + T
t),

where K, R, and T are the estimated camera parame-
ters. In real examples, the above equation does not hold
and there always exist residual errors if we compute ||xtp −
K
t(RtXp +T

t)||. Therefore, we estimate Xp by minimiz-
ing the root mean squared error (RMSE)

arg min
Xp

√

√

√

√

1

r − l + 1

r
∑

t=l

||xtp −Kt(RtXp + Tt)||2. (6)

In our approach, the method of solving Equation (6) is sim-
ilar to those in [11]. After obtaining a set of X’s, a depth
map zt for each frame t, can be computed by storing the
depth value ztp in [xtp, y

t
p, z

t
p] = R

tXp + T
t. In the mean-

time, we record the RMSE for all pixels in frame t using a
residual error map γt.

If one pixel maps to a 3D point in the background, its
residual error should be small to satisfy the multiple-view
geometry. Therefore, if the residual error for one pixel is
large, it is quite possible that this pixel maps to the fore-
ground since it does not satisfy the geometric constraint.

4. Moving Object Extraction
Although the residual error map γt and the depth map zt

contain important information to detect the moving object,
they are still insufficient to correctly identify the foreground
pixels due to the following reasons.

First, the residual error and depth rely greatly on the ac-
curacy of motion estimation. Their values are not reliable
on the moving object boundary, as shown in Figure 1 (a).

(a)

(b)

one image recovered depth map residual error map

Figure 1. The problems of geometric constraint. (a) The residual
errors near object boundary are noisy. (b) The residual errors of
moving object are small, and the estimated depth values of moving
object are very large, which contradict the ground truth.

Second, it is possible that the residual error on mov-
ing object is very small, which satisfies the geometric con-
straint. For instance, if in a video capturing, the camera un-
dergoes the same motion as the foreground object in order
to keep it in center of all frames, the computed residual er-
rors of the pixels on moving object may be very small. This
makes these pixels to be identified as the static background.
It is interesting to note here that using the depth value also
does not help to correct the errors in this situation. Accord-
ing to the multiple-view geometry, the recovered depth val-
ues of the moving object pixels are much larger than those
of the true background pixels, as shown in Figure 1 (b). So
even using the depth information, the pixels in the moving
object will still be labeled as background!

According to the fact that the near objects occludes the
far ones, we propose a method based on appearance and
structure consistency constraint in 3D warping, which can
appropriately address all these problems.

4.1. Appearance and Structure Consistency

Since the depth map is computed, 3D warping tech-
niques [9] can be used to render new views by projecting the
pixels in one frame to their 3D locations and re-projecting
3D points onto other frames. In our method, for frame t, we
select its neighboring 2l frames, i.e. {f t−l, ..., f t+l}. Then
we warp these frames to f t using depth information. The
pixels whose residual error is larger than a threshold (3.0
pixels in our experiments) are quite likely on the moving
object. So we exclude them in the warping. The image
warped from f t

′

to f t is denoted as f̂ t,t
′

. One illustration
is shown in Figure 2. The red pixels are those receiving no
projection during the warping.

Due to the accumulation error, the warped point may de-
viate from its correct position. We thus apply the following
algorithm to locally search the best match using windows.
The appearance error of pixel i with respect to f t and f̂ t,t

′
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Figure 2. 3D warping. The neighboring frames of f t are warped
to f t. The red pixels are those receiving no projection during the
warping due to the large residual error or occlusion.

is given by

At,t′(i) =
1

|W |
min
j

∑

k∈W

||f t(i+ k)− f̂ t,t
′

(i+ j + k)||2,

(7)
where W is a window, and j = (dx, dy) is the searching
index. It is illustrated in Figure 3. In our experiments, the
size of W is set to 7× 7, and the values of dx and dy are in
[−7, 7].

We also construct the warped depth maps ẑt,t
′

similar to
the warped frames. A structure error measurement is pro-
posed to search local best match defined on the depth map.
The structure error of pixel i with respect to f t and f̂ t,t

′

is
defined by

St,t
′

(i) =
1

|W |
min
j

∑

k∈W

||
1

zt(i+ k)
−

1

ẑt,t
′(i+ j + k)

||2,

(8)
where zt is the recovered depth map in frame f t.

After computing (7) and (8), each pixel i in frame t has
several appearance and structure error measurements. They
can be used to basically represent the probability that one
pixel is in foreground or background. For instance, if the
residual error At,t′(i) is large, pixel i has high chance to
be in the moving foreground. For each pixel, we apply the
median filter to all At,t′(i) and St,t

′

(i) where t′ ∈ {t −
l, ..., t+ l}, and compute the median values

A
t
(i) = median{At,t−l(i), ...,At,t+l(i)},

S
t
(i) = median{St,t−l(i), ...,St,t+l(i)}.

The appearance consistency term is defined as

CtA(i) = e
−

A
t(i)

2δ2
A ,

i i

i'W

tf t't,f

searching region

^

Figure 3. Locally searching the best match using windows. For
pixel i in f t, its best matching point in f̂ t,t′ is i′, which deviates
from the true position. The red solid rectangle is the matching win-
dows W , and the blue dash window shows the searching region.

where δA is the standard deviation. Since S
t

and γt are
defined on depth, we combine them in defining the structure
consistency term

CtS(i) =

√

e
−

S
t(i)

2δ2
S e

−
(γt(i))2

2δ2γ ,

where δS and δγ are two standard deviations. In most
of our experiments, δA = 12, δγ = 1.5, and δS =
0.05(z−1

min − z−1
max). Here, [zmin, zmax] is the depth range

of the scene, which can be estimated using the recovered
sparse 3D points D.

Combining both the appearance and structure consis-
tency terms, the data likelihood term is given by

Lt(i) =

{

1− Ct(i) αti = 0
Ct(i) αti = 1

(9)

where Ct is the appearance and structure consistency term,
a combination of CtA and CtS , given by

Ct(i) = wt
AC

t
A(i) + (1− wt

A)CtS(i), (10)

where wA is a factor balancing the two terms.
With the definition of our likelihood, we give an analysis

that the proposed model can address the problems described
in Section 4. First, our model is not that sensitive to both the
accumulation error and boundary artifacts using 3D warp-
ing, as demonstrated in Figure 4. Second, our model can
faithfully represent the occlusion. For instance, if a moving
object has the same motion with the camera, according to
multiple-view geometry, its recovered depth value will be
very large. We use frame t′ close to the reference frame t,
to produce f̂ t,t

′

by 3D warping. Since the moving object
pixels have larger “depth” values than the background, the
warped moving pixels in f̂ t,t

′

will be occluded by the back-
ground. Therefore, the moving pixels, no matter what their
depth values are in frame t, will have large appearance and
structure consistency error, and the likelihood term (9) can
be used to correctly model the moving object.

4.2. The Model for Bilayer Segmentation

Only using the likelihood term (9) in segmentation does
not necessarily preserve boundary smoothness. We intro-



duce the following foreground/background separation en-
ergy function

EB =

n
∑

t=1

∑

i∈ft

(Lt(i) + λT G
t
T (i) + λS

∑

j∈N(i)

GtS(i, j)).

(11)
There are two components: the data term Lt(i), and
the smoothness term which consists of spatial smoothness
GtS(i, j) and temporal consistency GtT (i). λS and λT are the
relative weights. We use λS = λT = 1 in our experiments.

In our experiments, we found that in map Ct computed
on all pixels in frame t, there is large contrast around the
moving object boundary. So the spatial smoothness term
should encourage the foreground boundary to lie on pixels
with large contrast in map Ct as well as in image f t. We
compute the contrast on map Ct by

gtAS(i, j) = Gσ ⊗ ||C
t(i)− Ct(j)||,

where ⊗ is the operation of convolution and Gσ is a Gaus-
sian smoothing filter with a characteristic width of σ.

We also attenuate the background contrast to encourage
smoothness in the background. In computing the appear-
ance consistency error for each pixel i in frame t, suppose
A
t
(i) is found in f̂ t,t

′

(i.e. A
t
(i) = At,t′(i)), and its corre-

sponding best matching point is i′, we consider f̂ t,t
′

(i′) as
the background color for pixel i. Thus we estimate a back-
ground image for f t, and employ the method proposed in
[15] to attenuate the background contrast. The attenuated
color contrast is denoted as gtc(i, j).

Finally, we combine gtc(i, j) and gtAS(i, j) to define the
spatial smoothness term

GS(i, j) =

{

exp(−
gt
AS

(i,j)·gtc(i,j)
2σs

) if αti 6= αtj
0 if αti = αtj

(12)
where σs = 0.04 · 15 in our experiments.

The temporal consistency term is bidirectional, given by

GtT (i) = Gt,t+1
T (i) + Gt,t−1

T (i).

Let i′ in f t+1 be the corresponding point to pixel i in f t

using motion estimation, the Gt,t+1
T (i) is defined as

Gt,t+1
T (i) =

{

w
t,t+1
flow (i) if αti 6= αtj

0 if αti = αtj

where wt,t+1
flow (i) measures the optical flow consistency error

defined in (5) and color difference in motion estimation. It
is given by

w
t,t+1
flow (i) = exp(−

(et,t+1
flow (i))2

2δ2
flow

) ·

exp(−
||f t(i)− f t+1(i′)||2

2δ2
color

), (13)

ηd ηo ηs βs βo βw βD δA δγ
400 0.5 4 0.1 0.21 0.6 100 12 1.5

δS wA λT λS σs δflow δcolor
0.05(z−1

min − z−1
max) 0.5 1 1 0.6 1.0 10

Table 2. Parameter configuration in our experiments.

where δflow = 1.0 and δcolor = 10 in our experiments.
Gt+1,t
T (i) is symmetrically defined.

4.3. Iterative Optimization

To reduce the complexity in computing the appearance
and structure consistency map for each frame t, we only
select 20-30 frames from its neighboring frames to perform
3D warping. After the appearance and structure consistency
maps are computed, we apply graph cut method to compute
α by minimizing EB(α). If we take all frames in comput-
ing EB , the process can be very time-consuming. It is also
unnecessary since the temporal smoothness may not hold if
two frames are not close in the video. In our method, we
simultaneously solve 10 frames each time from the head to
the tail in the video.

After estimating α, we further refine the motion parame-
ters {d, o} described in Section 3 and use them to optimize
α again. Two iterations in alternating the two steps are suf-
ficient in our method. Finally, the binary foreground maps
are refined using border matting [12]. Table 2 lists the pa-
rameter values used in our experiments.

5. Results
We validate our algorithm using several challenging

video sequences taken by a hand-held camera. Table 3 lists
some statistical information of the video sequences we use.
Strong vibration can be observed in all the video sequences.
Also, due to the deinterlacing process, there is color mixing
around object boundary. These factors bring difficulties to
perform accurate foreground separation.

Figure 4 shows that our method can successfully extract
the moving object. The foreground can not be extracted
only using depth maps and residual error maps due to the
ambiguity in the geometric constraint. Figure 4 (b) and
(c) show that the residual errors of moving object are very
small and the recovered depth has large value in foreground,
which contradicts the ground truth. Figure 4 (d) shows the
appearance and structure consistency map defined in (10).
The contrast map of appearance and structure consistency
and the attenuated color contrast map are shown in Fig-
ure 4(e) and (f) respectively, using which we generate the
spatial smooth term map shown in Figure 4(g). Figure 4(h)
shows our binary segmentation result, and (i) shows our
foreground extraction result refined by matting method.



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Figure 4. (a) One frame of Tree Sequence. (b) Residual error map. (c) Recovered depth map. (d) Appearance and structure consistency map
defined in (10). (e) Contrast map of appearance and structure consistency. (f) Attenuated color contrast map. (g) The spatial smoothness
term map defined in (12). (h) Foreground segmentation result. (i) Foreground extraction result after matting. (j) Magnified region of (h).
(k) Magnified region of (i).

sequence Tree (Fig. 4) Stair (Fig 6(a)) Path (Fig 6(b))
frames 150 200 110

frames/sec 25 25 25

Table 3. Video lengths of the three tested sequences.

(a) (b) (c)

Figure 5. Optical flow. (a) One frame. (b) Optical flow map. (c)
Occlusion map.

Figure 5 shows an estimated forward optical flow map
with occlusion for the “Tree” sequence. In (b), the displace-
ment for each pixel i is computed as ||d(i)||. Our recovered
occlusion map in Figure 5(c) is close to the ground truth.

Figure 6 shows more results to demonstrate our moving
object extraction system. Please refer to the supplementary
video for the complete frames.

In our implementation, the total computation time is
about 6 minutes for each frame averagely. The computation
cost is mostly on the dense motion estimation in step 2.1
and the calculation of appearance and structure consistency
maps in step 3.1.

6. Discussion and Conclusions
In this paper, we have proposed a complete bilayer sep-

aration system to accurately detect and extract the mov-
ing foreground object from a video sequence taken by a

hand-held camera. Our method alternates between two ma-
jor steps. In the first step, we estimate the camera motion
parameters and the object motion fields which directly en-
code the occlusion information. We introduce the anchor
points in prior to constrain the optical flow. The continuous-
discrete optimization performs well in producing a globally
optimal result. In the second step, we take the depth and
motion information into the layer separation. It has been
shown that the depth map and the geometric constraint has
ambiguity in identifying the foreground object. So we intro-
duce the appearance and structure consistency constraint to
reliably detect the moving objects. Our final result is com-
puted by optimization which combines a set of terms from
motion, depth, and colors.

Our current system still has some limitations. First, if
the background scenes do not have sufficient features and
most regions are extremely textureless, the camera motion
parameters and optical flow estimation will contain large er-
rors, and the bilayer separation may not work well. This
problem can be alleviated by incorporating segmentation
into our motion estimation. Second, when foreground ob-
ject contains very thin structures or small holes with respect
to image size, incorrect separation may happen around these
regions.
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Figure 6. More examples. (a) “Stair” example. (b) “Path” exam-
ple. In each example, the upper row shows three frames selected
from videos, the middle row shows our foreground extraction re-
sults, and the lower row shows the magnified views of extraction
results.

ality, Visualization and Imaging Research Center at the Chi-
nese University of Hong Kong.

References

[1] S. Ayer and H. S. Sawhney. Layered representation of motion
video using robust maximum-likelihood estimation of mix-
ture models and mdl encoding. In ICCV, pages 777–784,
1995. 1

[2] M. J. Black and P. Anandan. The robust estimation of mul-
tiple motions: Parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding, 63(1):75–104,
1996. 1

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Trans. Pattern Anal.
Mach. Intell., 23(11):1222–1239, 2001. 3

[4] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bi-
layer segmentation of live video. In CVPR (1), pages 53–60,
2006. 1

[5] A. M. Elgammal, D. Harwood, and L. S. Davis. Non-
parametric model for background subtraction. In ECCV (2),
pages 751–767, 2000. 1

[6] S. Khan and M. Shah. Object based segmentation of video
using color, motion and spatial information. In CVPR (2),
pages 746–751, 2001. 1

[7] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother. Bi-layer segmentation of binocular stereo video.
In CVPR - Volume 2, pages 407–414, 2005. 1

[8] M. P. Kumar, P. H. S. Torr, and A. Zisserman. Learning
layered motion segmentation of video. In ICCV, pages 33–
40, 2005. 1

[9] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d
warping. In SI3D, pages 7–16, 180, 1997. 4

[10] A. Monnet, A. Mittal, N. Paragios, and V. Ramesh. Back-
ground modeling and subtraction of dynamic scenes. In
ICCV, pages 1305–1312, 2003. 1

[11] M. Pollefeys, L. J. V. Gool, M. Vergauwen, F. Verbiest,
K. Cornelis, J. Tops, and R. Koch. Visual modeling with
a hand-held camera. International Journal of Computer Vi-
sion, 59(3):207–232, 2004. 4

[12] C. Rother, V. Kolmogorov, and A. Blake. ”grabcut”: inter-
active foreground extraction using iterated graph cuts. ACM
Trans. Graph., 23(3):309–314, 2004. 2, 6

[13] Y. Sheikh and M. Shah. Bayesian object detection in dy-
namic scenes. In CVPR (1), pages 74–79, 2005. 1

[14] J. Sun, Y. Li, and S. B. Kang. Symmetric stereo matching
for occlusion handling. In CVPR (2), pages 399–406, 2005.
3

[15] J. Sun, W. Zhang, X. Tang, and H.-Y. Shum. Background
cut. In ECCV (2), pages 628–641, 2006. 1, 6

[16] Y. Weiss. Belief propagation and revision in networks with
loops. Technical report, Cambridge, MA, USA, 1997. 3

[17] Y. Weiss and E. H. Adelson. A unified mixture framework
for motion segmentation: Incorporating spatial coherence
and estimating the number of models. In CVPR, pages 321–
326, 1996. 1

[18] J. Wills, S. Agarwal, and S. Belongie. What went where. In
CVPR (1), pages 37–44, 2003. 1

[19] C. R. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE Trans.
Pattern Anal. Mach. Intell., 19(7):780–785, 1997. 1

[20] P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based classi-
fiers for bilayer video segmentation. In CVPR, 2007. 1

[21] G. Zhang, X. Qin, W. Hua, T.-T. Wong, P.-A. Heng, and
H. Bao. Robust metric reconstruction from challenging video
sequences. In CVPR, 2007. 2


