
in Proceedings IEEE CVPR 2003 1

Image Repairing: Robust Image Synthesis by Adaptive ND Tensor Voting∗

Jiaya Jia and Chi-Keung Tang
Vision and Graphics Group, Computer Science Department

Hong Kong University of Science and Technology
{leojia,cktang}@cs.ust.hk

Abstract
We present a robust image synthesis method to automati-

cally infer missing information from a damaged 2D image by
tensor voting. Our method translates image color and texture
information into an adaptive ND tensor, followed by a vot-
ing process that infers non-iteratively the optimal color values
in the ND texture space for each defective pixel. ND tensor
voting can be applied to images consisting of roughly homo-
geneous and periodic textures (e.g. a brick wall), as well as
difficult images of natural scenes which contain complex color
and texture information. To effectively tackle the latter type
of difficult images, a two-step method is proposed. First, we
perform texture-based segmentation in the input image, and
extrapolate partitioning curves to generate a complete seg-
mentation for the image. Then, missing colors are synthesized
using ND tensor voting. Automatic tensor scale analysis is
used to adapt to different feature scales inherent in the input.
We demonstrate the effectiveness of our approach using a dif-
ficult set of real images.

1 Introduction
Today, powerful photo-editing softwares and large varieties

of retouching, painting, and drawing tools are available to as-
sist users to refine or redefine images manually. For instance,
we can easily outline and remove a large foreground object by
intelligent scissors [12] or other related techniques. However,
filling the background hole seamlessly from existing neighbor-
hood information of damaged images is still a difficult prob-
lem. A skilled art designer repairs them mostly through his
experience and knowledge. Alternatively, some other stereo
algorithms [9, 16] use a dense set of images to infer the color
of occluded pixels.

Given as few as one image and no additional knowledge,
is it possible to automatically repair it? The main issues to be
addressed are as follows:
• How much color and shape information in the existing

part is needed to seamlessly fill the hole?
• How good can we achieve in order to reduce possible

visual artifact when the information available is not suf-
ficient?

Inpainting [3, 1] is an automatic method to fill small holes by
exploiting color and gradient information in the neighborhood
of the holes. It successfully removes contaminant and restores

∗This work is supported by the Research Grant Council of Hong Kong
Special Administration Region, China: HKUST6193/02E.

images with little visual artifact. However, it does not take
texture information into account which may introduce blurring
in a textured region.

In this paper, we propose a unified approach to gather and
analyze statistical information so as to synthesize proper pixel
values in image holes. Instead of simply extending neigh-
boring color information, we use the robust, non-iterative
ND tensor voting [11] to globally infer the most suitable
pixel value in the neighborhood by using the Markov Random
Field (MRF) assumption. A texture-based segmentation [4]
is adopted to partition images into different region segments.
2D curve connections are voted for, in order to complete the
segmentation in image holes. Missing colors are synthesized
by ND tensor voting, which adapts to different feature and
texture scales.

The rest of this paper is organized as follows: we discuss
and compare related work in section 2. In section 3, we review
the tensor voting algorithm. Section 4 provides an overview of
our approach. In section 5, we describe our image segmenta-
tion and curve connection algorithms. Section 6 introduces
ND tensor voting and its application in image synthesis. Sec-
tion 7 presents our results. Finally, we conclude our paper in
section 8.

2 Previous work
The contribution of our work is the robust synthesis of

missing image or texture information despite insufficient sam-
ples. To extrapolate details, the Markov Random Fields
(MRF) have been used widely to describe textures [2, 6, 17],
including this work. Texture synthesis techniques can be
roughly categorized into three classes. The first class uses a
parametric model to describe statistical textures. Simoncelli
et al. [15] use joint wavelet coefficients to parameterize and
synthesize textures. Heeger et al. [7] makes use of Lapla-
cians, steerable pyramids, and histogram analysis of a texture
sample to synthesize textures. While impressive results are
obtained for highly stochastic textures, these methods are not
well suited to represent highly structured textures such as that
of a brick wall.

The second class consists of non-parametric sampling and
synthesis techniques. Efros and Leung [6] synthesize textures
by copying pixels that are matched with the neighborhood of a
pixel being synthesized. It works well to reproduce structured
textures.

The third class is to synthesize textures by procedural
means. Solid textures, proposed independently by Perlin [14]

and Peachey [13], involve a function that returns a color value
at any given 3D point. Reaction-diffusion techniques [18]
build up spot and stripe patterns which can be used to syn-
thesize textures.

To accelerate the synthesis process and avoid pixel-wise
generation, Xu et al. [19] propose a block-wise synthesis al-
gorithm to seamlessly copy sample patches in an overlapping
manner to create a new image. Image quilting [5] extends this
algorithm by a minimum error boundary cut so that patches
naturally connect to each other. Wei et al. [17] describe an-
other hierarchical texture synthesis algorithm to speed up the
per-pixel generation process by matching the neighborhood
of lower resolution image pixels with the synthesized ones,
and applying TSVQ acceleration. Inpainting [3, 1] is an algo-
rithm to restore damaged 2D images. Instead of performing
matching and copying, the basic idea is to smoothly propa-
gate information from the surrounding areas in the isophotes
direction. This algorithm generates satisfactory result when
holes are small, and the gradient information in holes does not
change abruptly. However, it does not take texture information
into consideration, resulting loses in precision and obvious ar-
tifact in large holes.

3 Review of Tensor Voting
In our method, Tensor Voting [11] is used to infer miss-

ing curves and pixel values. It makes use of a tensor for to-
ken representation, and voting for communication among to-
kens. Tensor and voting are brought together by a voting field,
which is a dense tensor field for postulating smooth connec-
tions among tokens. In this section, we first give a concise
review of the stick tensor and the stick voting field, which are
used in the following sections.
3.1 Token representation and communication

We are interested in answering the following geometric
question in 2D, which can be generalized to higher dimen-
sion readily. Suppose there exists a smooth curve connecting
the origin O and a point P . Suppose also that the normal �N
to the curve at O is known. What is the most likely normal
direction at P ? Fig. 1a illustrates the situation. We claim that
the osculating circle connecting O and P is the most likely
connection, since it keeps the curvature constant along the hy-
pothesized circular arc. The most likely normal is given by the
normal to the circular arc at P (thick arrow in Fig. 1a). This
normal at P is oriented such that its inner product with �N is
non-negative. The length of this normal, which represents the
vote strength, is inversely proportional to the arc length OP ,
and also to the curvature of the underlying circular arc. The
decay of the field takes the following form:

DF (r, ϕ, σ) = e−(r2+cϕ2

σ2) (1)

where r is the arc length OP , ϕ is the curvature, c is a con-
stant which controls the decay with high curvature, and σ con-
trols smoothness, which also determines the effective neigh-
borhood size. If we consider all possible locations of P with
non-negative x coordinates in the 2D space, the resulting set
of normal directions thus produced constitutes the 2D stick
voting field, Fig. 1b.

N

P

most likely
continuation

y

O x

most likely normal

A

B Stick vote received at B

(a) (b)

Figure 1: (a) Design of the 2D stick voting field. (b) A casts a
stick vote to B, using the 2D stick voting field.

Given an input token A, how can it cast a stick vote to an-
other token B for inferring a smooth connection, assuming
that A’s normal is known? It is illustrated in Fig. 1b. First,
we fix σ to determine the size of the voting field. Then, we
align the voting field with A’s normal, simply by translation
and rotation. If B is within A’s voting field neighborhood, B
receives a stick vote [vx vy]T from the aligned field. Hence,
voting is similar to convolution, and the voting field is like a
convolution mask, except that the voting result is not a scalar.

Other input tokens cast votes to B as well. Second order
tensor sums of all votes received at B are collected into a

covariance matrix S =
[∑

v2
x

∑
vxvy∑

vyvx

∑
v2

y

]
. The corre-

sponding eigensystem consists of two eigenvalues λ1 ≥ λ2 ≥
0, and two corresponding eigenvectors ê1 and ê2. Therefore,
S can be rewritten as S = (λ1 −λ2)ê1ê

T
1 +λ2(ê1ê

T
1 + ê2ê

T
2).

ê1ê
T
1 is a stick tensor, with ê1 indicating curve normal direc-

tion. ê1ê
T
1 + ê2ê

T
2 is a ball tensor.

3.2 Feature extraction
When we have obtained normal directions at each input

site, we can infer a smooth structure that connects the tokens
with high feature saliencies (in 2D, curve saliency is repre-
sented by (λ1 − λ2)[11]). Feature extraction can be achieved
by casting votes to all sites (input and non-input sites), using
the same voting fields and voting algorithm. Given this dense
information, in 2D, we extract true curve points and connect
them.

4 Algorithm Framework

Input Damaged
Image

Complete Segmentation

Texture-based
Segmentation

Statistical Region
Merging

Curve Connection

Adaptive Scale N
Selection ND Tensor Voting

Image Synthesis

Output Repaired
Image

Figure 2: Overview of our image synthesis algorithm.

In this section, we provide a brief outline of our algorithm.
Figure 2 gives the overview of the whole process, which uses

2

a single damaged image as input. To robustly generate pixel
colors, a two-phase process is performed (highlighted in the
figure). We call the two phases complete segmentation and
color synthesis, respectively.

Complete segmentation Usually, images reveal a cluttered
scene with indistinct edge features, leading to a complex
image structure. In order not to mix up different infor-
mation, we perform texture-based segmentation in the
damaged image, followed by extrapolating the resulting
partitioning curves into an image hole. To this end, 2D
tensor voting is used to infer the most likely connection
between two curve endpoints. A complete segmentation
for the damaged image is achieved.

Color synthesis Let us call a pixel in an image hole (includ-
ing the one lying on the hole boundary) a defective pixel.
When an image hole has been segmented, we synthesize
the color value of a defective pixel using only existing
pixels belonging to the same group as shown in Fig. 3. In
other words, we qualify the MRF constraint by complete
segmentation. Adaptive scale adjustment further elimi-
nates visual artifact.

Figure 3: Color synthesis constrained by complete segmenta-
tion.

5 Complete segmentation
We adopt the unsupervised segmentation algorithm de-

scribed in [4] to perform the pattern segmentation. Initially,
we assign defective pixels in an image hole to the same seg-
ment P0. Then, an image is constructed to perform seed grow-
ing and region merging. In the process, we can assign merge
threshold for small regions so as to generate partitions with
finer details.
5.1 Region merging

In real images, complex occlusion and object discontinu-
ities are typical. For instance, the building in the flower gar-
den is occluded and partitioned into several parts by the fore-
ground tree as in Fig. 12a. In Fig. 11, the silhouette of the
tree is not a smooth blob, but contains many curve orientation
discontinuities. We perform region merging to group similar
objects together. The grouping is performed in color and gra-
dient space.

To measure color and pattern feature of different regions,
the statistics of zero and first order image intensity derivatives
are considered. We construct a (M + 1)D intensity vector
V M+1

i for each region Pi (i �= 0) where M is the maximum
color depth in the whole image. The first M components in the
intensity vector, i.e., Vi(1) to Vi(M), represent the histogram
of region i. The last component is defined as

Vi(M + 1) =
α

Ni

∑
j∈Pi

‖ ∇j ‖ (2)

where Ni is the number of points in region Pi, ‖ ∇j ‖ is the
intensity gradient magnitude of point j. α can be thought as
a controlling weight to adjust the significance of the gradient
information for measuring intensity similarity. The larger α
is, the more important intensity gradient becomes. In our ex-
periments, α is set to normalize Vi(M + 1) so that the largest
gradient magnitude equals to the color depth, and the smallest
equals to zero.

Therefore, we merge two similar regions Pi and Pk as P ,
or P = Pi ∪ Pk, if

si,k =‖ Vi − Vk ‖≤ Threshold (3)

where si,k is the similarity score for the region pair, Vi and
Vk are intensity vectors for Pi and Pk respectively. Hence,
we match not only the color information but also some nearest
neighborhood statistics, i.e., pattern information, to obtain a
more reliable measurement.
5.2 Curve connection

After merging regions in the damaged image, we want to
extrapolate the partitioning curves into the holes to complete
our segmentation, by inferring the most likely connection be-
tween curve endpoints. Normally, we do not have any addi-
tional knowledge of the missing data. The only available con-
straint for extrapolating boundary curves is to maintain exist-
ing geometrical features, e.g., curvature and curve shape. In
order not to over-smooth the synthesized curves, and to pre-
serve the shape of the segmented region, the robust tensor vot-
ing algorithm is used. Tensor voting votes for the missing
curve elements in image holes, by gathering tensorial support
in the neighborhood.

5.2.1 Tensor voting

Fig. 4 shows a simplified hole filling example. First, we place
imaginary points (the green or lightly shaded dots in Fig. 4)
evenly distributed in the hole (the rectangle in Fig. 4). Denote
the sampling density by S. Our goal is to identify true curve
points from the set of imaginary points in the hole. First, we
infer normal directions on the existing curve points by tensor
voting [11] (blue or black arrow on the curve, in Fig. 4). These
points with normal directions are then encoded into 2D stick
tensors, which cast votes to each imaginary point.

After receiving and accumulating the collected votes (sec-
tion 3.1), each imaginary point obtains a curve saliency value,
λ1 − λ2 (section 3.2). Assuming that the curve has no inter-
section, and that it is monotonic along the x-direction (oth-
erwise, the hole can be split to enforce this monotonicity re-
quirement), only one point Pxi,zj

is selected as the curve point
for each anchor xi (Fig. 4). The larger the curve saliency the
point receives, the more likely the point is actually lying on
the curve. For each anchor xi, the curve saliencies among all

3

imaginary points are compared. The point Pxi,zj
having the

highest curve saliency is selected as the optimal curve point
Pxi

at anchor xi. The process can be formulated as follows:

Pxi
= max{Pxi,zj

(λ1 − λ2)} 1 ≤ j ≤ S (4)

where xi is an anchor and S is the sampling density (in pixels).
Note that curve normals at Pxi

’s have been computed at the
same time after tensor voting is run.

Once the discrete curve points are synthesized, we connect
them together using a B-spline. In case of a large hole, we
perform curve connection at different scales, by warping and
upsampling the curve points obtained at successive scales.

Curve samples

Z

Hole

minZ

maxZ

Imaginary
points

X

Anchor
X1, X2

Hole box

Figure 4: Hole filling by hypothesizing depth values.

Since the voting algorithm is dominated by the design of
the voting field, we give a qualitative analysis of the correct-
ness of the above method. Consider a simple situation that
two tokens are on a straight line, with three imaginary points:
above, on, and below the line respectively (Fig. 5b). Since
|P1N1| > |P2N1| and |P1N2| > |P2N2|, the received vote
strength of P2 is stronger than that of P1. Hence, P2 has the
largest curve saliency and the line segment is extended natu-
rally. If N1 and N2 are on a curve, the analysis is similar (Fig.
5b), and P3 receives the largest saliency, due to the sign of the
curvature along the existing curve.

2 N

1
P

2
P

3
P

1 N

1 P

2 P

3 P

(a) (b)

3P

2
P

1P

Figure 5: An analysis of 1D hole filling

There are two advantages to apply discrete tensor voting to
synthesize optimal curve point. One is that the σ parameter of
the voting field can be used to control the smoothness of the
resulting curve. Fig. 6 shows one curve connection example.
The larger the scale is, the smoother the curve ab is. Thus we
can easily set the appropriate σ to avoid over-smoothing.

The other advantage is related to the fact that different
shapes of image holes constrain different sets of the imaginary

(a)

(b)

(c)

(d)

a
b

a

a

a

b

b

b

Figure 6: Hole filling examples. (a) The broken curve. (b)
Curve connection result with a large σ. (c) Result obtained by
using a smaller σ. (d) Curve result, constrained by the shape
of the hole.

points. Through the same voting process, we can synthesize
various optimal curves accordingly. One example is shown in
Fig. 6d. The shaded region represents an image hole. The op-
timal curve ab synthesized is different from that in Fig. 6b and
c without the hole constraint, but it is still a natural connection
with respect to the shape of the hole.

5.2.2 Connection sequence

Region 1
Region 2

Region 3

Region 4

Region 5 Region 6

Hole

a
b

c d

Figure 7: A hole connection example.

We facilitate the discussion in the previous section by using
an unambiguous case where only two salient curve endpoints
are present. In practice, we have the configuration similar to
Fig. 7. To complete the segmentation, we connect all similar
but disjoint regions surrounding the hole by inferring the most
likely smooth connection curves.

To reduce the instabilities and avoid ambiguities, we pro-
pose the following connection scheme, implemented as a
greedy algorithm:

1. Find all disjoint region pairs around an image hole which
belong to the same merged segment (section 5.1). Sort
these pairs by similarity scores in descending order, and
put them into a queue. For instance, the three elements
in the queue from head to tail in Fig. 7 are Regions 1 and
5, 2 and 4, 3 and 6. It means that Regions 1 and 5 are the
most similar.

2. If the queue is not empty, fetch the region pair at the
queue head:

4

• If the two regions are already connected, skip them
and back to step 2 (Regions 1 and 5 in Fig. 7).

• If there exists a possible boundary connection
which does not intersect any existing curves, in-
fer the connection curve (e.g., Regions 2 and 4 in
Fig. 7). Else, skip this region pair and go back to
step 2 (e.g. the candidate connection of Regions 3
and 6 in Fig. 7 have to intersect the existing curves
ab and cd).

3. If there exists a single region unclosed, infer new curves
to close it (by constraining the shape of the hole).

6 Image synthesis
Once the image is completely segmented, we synthesize

missing data with existing color and texture information.
Since color is a local property at a pixel, and by MRF, texture
is defined by a neighborhood, we propose to use ND tensor
voting to infer color and texture information, where N indi-
cates neighborhood scale.
6.1 ND tensor representation

x1 x2 x3 x4 x5

x6

a

x25

5

5

x1 x2 x3 x4 x5 a x25

max_intensity

26

Figure 8: Encoding a sub-image centered at a by a ND vector
(N=26 here).

Given a neighborhood window of size n × n centered at
a pixel A, we can translate the sub-image into a stick tensor
(section 3.1), by producing a feature vector of dimension N =
n × n + 1 (Fig. 8) in a lexicographical ordering. Converted
grey levels are used if the input is a color image. Thus, a
feature vector is represented by homogeneous coordinates, so
that zero intensity can be dealt with uniformly (max intensity
= M , the maximum color depth).

Suppose we have two pixels A = (xa, ya) and B =
(xb, yb) with their respective ND feature vectors �TA and �TB ,
which are encoded as described in Fig. 8. Suppose also that we
want to synthesize color at B. Therefore, some components in
�TB may not have color information. We zero out correspond-
ing components in both vectors before performing matching.
We denote the modified vectors by �TA and �TB respectively,
and name A as sample seed. To avoid too many zero com-
ponents in vectors, the sample seeds must satisfy the criterion
that the number of zero components is less than n

2 .

The matching between �TA and �TB is translated into tensor
voting for a straight line in the ND space1. First, we need to
perform the following ND encoding for A and B into AN and
BN respectively:

1. Convert A into ND coordinates, denoted by AN . With-
out losing generality, we can choose AN = (0, · · · , 0︸ ︷︷ ︸

N

).

1This line defines a family of hyperplanes which are voted for by ND
tensor voting.

2. Choose any �D such that || �D|| �= 0 and �TA · �D = 0, that is,
�TA and �D are perpendicular to each other. Then, convert
B into ND coordinates, by

BN = AN +
√

(xa − xb)2 + (ya − yb)2
�D

|| �D||
(5)

AN

BN

AN

BN

TB TB
vote cast by TA

D D

TA

(a) (b) (c)

α

Figure 9: Vote for colors. (a) The ND vectors at AN and BN

are consistent, indicating that they are lying on the same ND
straight line. (b) and (c) Inconsistent normals are indicated by
vote inconsistency.

Figure 10: Result on synthesizing structured textures. Left:
input texture sample. Right: synthesized texture image.

Therefore, �TA is the normal to the ND straight line con-
necting AN and BN . Now, AN casts a stick vote to BN in
exactly the same way as described in section 3, except that
now a ND stick voting field2 is used: in ND, an osculating
circle becomes an osculating hypersphere. We can define a
ND stick voting field by uniform sampling of normal direc-
tions in the ND space. The construction is exactly the same
as the 2D stick voting field, but now in ND.

When BN receives a stick vote from AN , the vote will be
matched with �TB. Vote consistency is indicated by sα, where
s = λ1 − λ2 is the vote saliency given by the ND stick voting
field, and α is the cosine of the angle between �TB and the
received stick vote.

The total number of sample seeds which cast votes to BN

depends on the complete segmentation result: the region size
of the segment to which BN belongs. Among all sample
seeds, let A be the 2D pixel corresponding to the AN whose
vote to BN gives the maximum sα at BN . To synthesize the
color at B, we replace the zero components in �TB by corre-
sponding non-zero entries in �TA. In practice, not all zero com-
ponents are replaced. Typically, only zero entries in a small
window centered at B are replaced.

The scale N , as depicted in Fig. 8, is the crucial parameter
in our method. Its value depends on how complex the neigh-
borhood structure is. If the scale is too large, the synthesis
process is slow, which also invalidates the MRF assumption.
If the scale is too small, it is inadequate to capture the neces-
sary data. Hence, we propose an automatic and adaptive scale
selection method to determine the value of N .

2In implementation, we need not use an ND array to store the ND stick
voting field due to its symmetry.

5

6.2 Adaptive scaling
Normally, texture inhomogeneity in images gives difficulty

to assign only one global scale N . In other words, all sam-
ple seeds have their own smallest sizes that best capture their
neighborhood information. The scale Ni for different region i
should vary across the whole image in voting process, as de-
scribed in section 6.1.

We observe that human eyes are more sensitive to edge dis-
continuity than to pure color distinctness when synthesis ar-
tifact exists. Accordingly, to select an appropriate scale for
a sample seed, we compute its edge complexity by accumu-
lating gradients ∇I within its neighborhood window. Simply
summing them up will cancel opposite ones. Hence the sec-
ond order moment matrix for the vectors (tensor) within the
window are used [8, 10]:

Mσ(x, y) = Gσ(x, y)((∇I)(∇I)T) (6)

where Gσ denotes an Gaussian smoothing kernel with vari-
ance σ2 centered at a pixel (x, y). Since the tensor encoding
process (section 6.1) treats the window center and the bound-
ary points equally, we set σ = 0 to make the Gaussian decay
an average function to simplify the notation and computation:

MN = AV GN{((∇I)(∇I)T)} (7)

=
(

q11 q12

q21 q22

)
(8)

where MN is a function of scale N . trace(MN) = q11 + q22

measures the average strength of the square of the gradient
magnitude in the window of size N [10]. By observation, in-
homogeneity usually results in abrupt change in gradient mag-
nitude. Therefore, we select the scale for each sample seed to
be proportional to the local maxima threshold of MN , as the
value of N increases. It gives good estimation in our exam-
ples. The detailed scheme is as follows: for each sample seed
i, increase its scale Ni from the lower bound (usually set to
3) to the upper bound (depending on the image resolution).
For each scale Ni, compute trace(MNi

). If trace(MNi
) <

trace(MNi−1) − α where α is a threshold to avoid small per-
turbation or noise interference, set Ni − 1 → Ni and return
(i.e., local maxima threshold is reached). Otherwise, we con-
tinue the loop by incrementing Ni until a maxima is found, or
the upper bound has been reached.

7 Results and limitations
We first show one texture synthesis result on regular texture

patterns (Fig. 10 on the previous page). The emphasis of this
paper is repairing damaged images of real scenes. We have
experimented a variety of such natural images, most of them
contain large and complex holes with difficult neighborhood
topologies. Fig. 11 on the next page shows two examples.
From a single damaged image (middle) with a large amount of
missing complex information, we are capable of synthesizing
new pixels. By adaptively propagating neighborhood informa-
tion, our method smoothly generates texture patterns without
blurring important feature curves (right). The left images are

original ones with the occluding objects. There exists many
methods to erase these objects, which are out of the scope of
this paper. The original images are provided for comparison.

From a single image of flower garden with the occluding
tree removed, we synthesize the result in Fig. 12f. The de-
tailed process is: we first segment the damaged image. It
is followed by a merging process described in section 5.1
(Fig. 12d). Then, we complete our segmentation by curve con-
nection using tensor voting described in section 5.2 (Fig. 12e).
Fig. 13 shows another result, obtained using the same process.
Some intermediate results are also shown.

Fig. 14 compares our method with image inpainting [1],
on a relatively large hole. Since our method considers pattern
information, it retains texture structure and does not introduce
blurring. Another direct comparison is shown in Fig. 12c,
which shows that texture synthesis technique such as [6] is
not suitable in our task of repairing natural images. Without
a proper segmentation, pixels belonging to distinct statistical
distributions are mixed together.

(a) (b)

Figure 15: Limitations of our method. Pixels inside the yellow
or shaded rectangle cannot be well synthesized by our method.
(a) Handrail and stairs. (b) Bird beak.

The running time of our method depends on the image
texture and hole complexity. In the experiments, given a
400 × 300 pixels image and 10, 000 pixels hole area, the
method generates output of repaired images in less than 15
minutes on a Pentium III 1GHz PC.

Fig. 15 shows some of the limitations of our method if crit-
ical information is missing or insufficient. One example con-
sists of various shapes in Fig. 15a, in which the missing por-
tion of the handrail and stairs cannot be well synthesized due
to a complex background and their irregular shapes. The other
example is that of an entirely missing bird beak in Fig. 15b. In
both cases, additional knowledge on the scene is needed.

8 Conclusion
We have proposed a new method to automatically repair

damaged images, which is capable of dealing with large holes,
where missing details can be complex and inhomogeneous,
and cannot be described by a handful set of statistical param-
eters. Pure texture synthesis technique will fail on those in-
put images. Real images of natural scenes are typical exam-
ples. We address this difficult problem by complete segmen-
tation, robust curve connection, and the use of adaptive scales.
ND tensor voting provides a unified basis to implement many
of these tasks. We have demonstrated very encouraging re-
sults on natural images using our method, and performed some
comparison. Our future work focuses on generalizing this im-
age repairing technique to 21

2D and 3D data.

6

Figure 11: Beach and Moor. Left: original images. Middle: damaged images by erasing some objects. Right: our image
synthesis results. Note that we can repair the full rainbow as well as the upper and very faint and rainbow “arc,” which is
largely occluded by the “HOWE” sign post.

(a)

(f)(e)(d)

(b) (c)

Figure 12: Flower garden example. (a) Only a single image is used. (b) Damaged image by erasing the tree. (c) Result obtained
by texture synthesis algorithm [6]. (d) Image segmentation. (e) Curve connection. (f) Our image synthesis result.

7

(a) (b)

(d)

(c)

(e) (f)
Figure 13: Chair example. (a) Original image. (b) Image segmentation before curve connection, after removing the green chair.
(c) Complete segmentation after curve connection. (d) The repaired image. (e) Complete segmentation after removing the red
chair. (f) Our result with two chairs left.

Figure 14: Comparison with image inpainting. Left: original image. Middle: image inpainting result by removing the micro-
phone. Right: our result.

References
[1] M. Bertalmio, G. Sapiro, C. Ballester and V. Caselles, “Image inpaint-

ing.”, ACM Siggraph 2000, pp. 417–424 (2000).

[2] J.S.De Bonet, “Multiresolution sampling procedure for analysis and syn-
thesis of texture images.”, ACM Siggraph ’97, pp. 361–368 (1997).

[3] T. Chan, J. Shen, ”Non-texture inpaintings by curvature-driven diffu-
sions”, Technical Report 00-35, Department of Mathematics, UCLA, Los
Angeles, (2000).

[4] Yining Deng and B. S. Manjunath, “Unsupervised Segmentation of
Color-Texture Regions in Images and Video.”, IEEE TPAMI, 8(23), pp.
800–810 (2001).

[5] Alexei A. Efros and Willian T. Freeman, “Image Quilting for Texture
Synthesis and Transfer.”, ACM Siggraph ’2001, (2001).

[6] A. Efros and T.K. Leung, “Texture synthesis by non-parametric sam-
pling.”, Proceedings of the Seventh ICCV , pp. 1033–1038 (1999).

[7] David J. Heeger and James R. Bergen, “Pyramid-based texture analy-
sis/synthesis”. ACM Siggraph ’2001, pp. 229–238 (1995).

[8] J. Bigün, “Local symmetry features in image processing.” PhD thesis,
Linkoping University, (1988).

[9] Sing Bing Kang, Richard Szeliski and Jinxiang Chai, “Handling Occlu-
sion in Dense Multi-View Stereo”, IEEE CVPR’2001, (2001).

[10] Jonas Gårding and Tony Lindeberg, “Direct computation of shape cues
using scale-adapted spatial derivative operators”, IJCV , vol. 17(2), pp.
163–191, (1996).

[11] G. Medioni, M.-S. Lee, and C.-K. Tang, A Computational Framework
for Feature Extraction and Segmentation. Elsevier (2000).

[12] E. N. Mortensen, W. A. Barrett , “Intelligent Scissors for Image Com-
position.”, ACM Siggraph’95, pp. 191–198, (1995).

[13] Darwyn R. Peachey, “Solid texturing of complex surfaces.”, ACM Sig-
gragh’85 pp. 279–286, (1985).

[14] Ken Perlin, “An image synthesizer.”, ACM Siggraph’85 pp. 287–296,
(1985)

[15] Javier Portilla and Eero P. Simoncelli, “A parametric texture model
based on joint statistics of complex wavelet coefficients.”, IJCV 40(1),
pp. 49–71 (2000).

[16] H.-Y. Shum and L.-W.He, “Rendering with concentric mosaics.”, ACM
Siggraph’99, pp. 299-306 (1999).

[17] Li-Yi Wei and Marc Levoy, “Fast Texture Synthesis Using Tree-
Structured Vector Quantization.”, ACM Siggraph’2000, pp. 479–488
(2000).

[18] Andrew Witkin and Michael Kass, “Reaction-diffusion textures.”, ACM
Siggraph’91, pp. 299–308 (1991).

[19] Y. Q. Xu, S. C. Zhu, B. N. Guo, and H. Y. Shum, “Asymptotically Ad-
missible Texture Synthesis”, Proc. of 2nd Int’l Workshop on Statistical
and Computational Theories of Vision, (2001).

8

