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Inference of Segmented Color and Texture
Description by Tensor Voting

Jiaya Jia, Student Member, IEEE, and Chi-Keung Tang, Member, IEEE Computer Society

Abstract—A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged

2D image by ND tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing
data and noise. Our method translates texture information into an adaptive ND tensor, followed by a voting process that infers
noniteratively the optimal color values in the ND texture space. A two-step method is proposed. First, we perform segmentation based
on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor
voting to generate a complete segmentation for the input. Missing colors are synthesized using ND tensor voting in each segment.
Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs

demonstrate the effectiveness of our tensor voting approach.

Index Terms—Image restoration, segmentation, color, texture, tensor voting, applications.

1 INTRODUCTION

THE human visual system enables us to make robust
inference from insufficient data. We can perform an
amazing job of extrapolating shape and texture information
despite severe occlusion and noise. In this paper, we present a
computational framework to fill in missing geometry, color,
and texture information in large image holes, present
encouraging results in 2D and 3D, and propose useful
applications:

e 2D data—from only a single image with large holes,
our method synthesizes missing color and texture
information seamlessly.

e Range or 3D data—from a single depth map, stereo
data, or noisy 3D data, we recover missing data and
correct erroneous geometry, and repair colors and
textures on surfaces.

No a priori complex scene or texture model is assumed in
our tensor voting approach, which adopts an adaptive
continuity constraint in 2D, 3D, and ND. Because of this, our
method has certain limitations which are absent from our
powerful visualsystem where prior knowledgeareemployed.
They will be discussed in the conclusion section. In this paper,
we first approach the more difficult problem in 2D and then
generalize our synthesis method to range and 3D data, when
some insufficient depth or geometry information exists. By
adopting recent texture segmentation algorithms, we describe
how tensor voting provides a robust and effective methodol-
ogy to perform image segmentation and to synthesize missing
geometry as well as color and texture information.

2 MoOTIVATION

Let us first motivate our work by studying the 2D image
repairing problem [21]. Today, powerful photo-editing
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softwares and large varieties of retouching, painting,
and drawing tools are available to assist users to refine
or redefine images manually. For instance, we can easily
outline and remove a large foreground object by
intelligent scissors [30] or JetStream [32], leaving behind
a large background hole. However, filling the back-
ground hole seamlessly from existing neighborhood
information of damaged images is still a difficult
problem. A skilled art designer repairs them mostly
through his experience and knowledge. Alternatively,
some stereo algorithms [22], [37] use a dense set of
images to infer the color of occluded pixels.

Given as few as one image and no additional knowledge,
is it possible to automatically repair it? The main issues to
be addressed are as follows:

e How much color and shape information in the
existing part is needed to seamlessly fill the hole?

e How good can we achieve in order to reduce
possible visual artifacts when the information avail-
able is not sufficient?

Inpainting [8], [2] is an automatic method to fill small
holes by exploiting color and gradient information in the
neighborhood of the holes. It successfully restores images
with little visual artifact. However, when the method does
not take texture information into account, blurring in a
textured region will be introduced.

In this paper, we propose a unified approach to gather and
analyze statistical information so as to synthesize proper pixel
values in image holes. This is achieved by computing a tensor
to encode the underlying point and texture distribution
(smooth or discontinuous), in the geometry and texture space
respectively. Our method generalizes well to range and
3D data under certain conditions to be discussed. Instead of
simply extending neighboring color information, we use the
robust, noniterative ND tensor voting [29] to globally infer the
most suitable pixel value in the neighborhood under the
Markov Random Field (MRF) constraint. A texture-based
segmentation [13]is adopted to partition images into different
region segments. Depending on the data dimensionality, 2D
or 3D curve connections are voted for, in order to complete the
segmentation in image holes. Missing colors are synthesized
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by ND tensor voting, which adapts to different feature and
texture scales.

The rest of this paper is organized as follows: We discuss
and compare related work in Section 3. In Section 4, we review
the tensor voting algorithm. In Section 5, we describe our
2D method in detail, where the adaptive ND tensor voting for
color and texture synthesis is introduced. In Section 6, 3D/
range data repairing on geometry, color, and texture is
described, which is a generalization of 2D repairing. Detailed
time complexity analysis is given in Section 7. Our 2D and
3D results are presented and explained in Section 8. Finally,
we discuss the limitation of our approach, propose future
work and conclude our paper in Section 9.

The conference version of this paper first appeared in
[21], which mainly focuses on 2D image repairing. In this
coverage, we provide full details, expand our approach to
range and 3D data, and present many new results.

3 PREVIOUS WORK

One contribution of our work is the robust synthesis of
missing image or texture information in large holes. To
extrapolate details, the Markov Random Fields (MRF) have
been widely used to describe textures [5], [15], [43],
including this work. Texture synthesis techniques can be
roughly categorized into three classes. The first class uses a
parametric model to describe statistical textures. Portilla and
Simoncelli [35] used joint wavelet coefficients to parameter-
ize and synthesize textures. Heeger and Bergen [18] made
use of Laplacians, steerable pyramids, and histogram
analysis of a texture sample to synthesize textures. While
impressive results are obtained for highly stochastic
textures, these methods are not well-suited to represent
highly structured textures such as that of a brick wall.

The second class consists of nonparametric sampling and
synthesis techniques. Efros and Leung [15] synthesized
textures by copying pixels that are matched with the
neighborhood of a pixel being synthesized. It works very well
toreproduce structured textures as well as stochastic textures.

The third class is to synthesize textures by procedural
means. Solid textures, proposed independently by Perlin [33]
and Peachey [31], involve a function that returns a color value
at any given 3D point. Reaction-diffusion techniques [44]
build up spot and stripe patterns which can be used to
synthesize textures.

To accelerate the synthesis process and avoid the problems
inherent in pixel-wise generation, Xu et al. [45] proposed a
block-wise synthesis algorithm to seamlessly copy sample
patches in an overlapping manner to create a new image.
Image quilting [16] extends this algorithm by a minimum
error boundary cut so that synthesized patches naturally
connect to each other. Wei et al. [43] described another
hierarchical texture synthesis algorithm to speed up the per-
pixel generation process by matching the neighborhood of
lower resolution image pixels with the synthesized ones, and
applying tree-structured vector quantization to accelerate the
process.

Masnou and Morel [28] presented a variational formula-
tion to fill in, or inpaint regions to be disoccluded by joining
points of the isophotes. Inpainting [8], [2] is an algorithm to
restore damaged 2D images. Instead of performing matching
and copying, the basic idea of image inpainting is to smoothly
propagate information from the surrounding areas in the
isophotes direction. This algorithm generates satisfactory
results when holes are small and the gradient information in

holes does not change abruptly. In more recent development,
textures as well as structures are taken into consideration [3].
However, in a situation where large holes and complex scene
components (e.g., singleimageinputas shownin Fig. 19) exist,
we argue that segmentation information (such as disconti-
nuity curves to partition distinct geometry and textures)
should be considered. Moreover, in the texture synthesis
processin [3], it requires either manual parameter adjustment
fordifferent texture patterns, or simple constant texture / color
assumption. Although there are some preset parameters in
our method, our adaptive high dimensional tensor can
automatically measure different feature scales in the input
image. Our goalis similar toimage completion [14], which also
recovers a large portion of disoccluded missing background.
One major difference is that explicit segmentation is con-
sidered and robustly inferred in this work, in order not to blur
important edges. In [46], images are restored by combining
texture synthesis and image inpainting in multiresolution.
Critical edge regions are still blurred. Criminisi et al. [10]
combined texture synthesis and image inpainting. Levin et al.
[24] inpaint images by taking global image statistics into
consideration. A training image is used.

The secondary contribution is the robust inference of
geometric features, such as curves inside image holes and
missing data in range and 3D images, to assist texture and
color synthesis. In [29], a survey and comparison of tensor
voting with representative computer vision approaches in
surface inference from a 3D cloud of points, e.g., deformable
models [23] and computational geometry [19], are given.

For range and 3D data, unorganized sampled data are
common input. To infer missing geometry or depth informa-
tion, many algorithms have been proposed to regularize and
reorganize the points [38], [20], [6], [17]. Turk and O’Brien [40]
used variational implicit surfaces. Hoppe et al. [20] adopted a
combinational energy function which takes connectivity and
distance factors into consideration to refine the original
meshes. Curless and Levoy [11] set some additional unseen
and empty states, and fill holes by a space carving step.
Therefore, after isosurface extraction, aliasing artifacts in the
holes are observed. In order to smooth these areas, postfilter-
ingis performed to blur the hole-filled surface for generatinga
smooth connection. In their examples, holes are relatively
small so that they can be filled by simple smooth surface
elements. In the postrendering 3D warping algorithm [27], to
fill an uncovered portion in image without obvious artifact,
splat and mesh reconstructions are implemented. For each
gap area with high-connectedness, a set of quadrilateral
meshes are stretched to cover the hole, and the vertex colors of
the reconstructed triangles are linearly interpolated. For low-
connectedness, a heuristic is used to flat-shade the triangle
using vertex color, if it is far away from the reference frame
viewpoint. Chang et al. [9] extended the layered depth image
(LDI) tree algorithm to fill the gaps by two-pass pixel filtering.
Instead of meshing the foreground and background, their
algorithm fills the gap by splatting the filtered samples from
surrounding surface patches in the output. Therefore, a better
resultcan be obtained. However this splatting may notrespect
surface orientation discontinuities (e.g., corners).

In [1], a variational approach for filling in missing data in
2D and 3D digital images is proposed, which is based on a
joint interpolation of the image gre-levels and gradient/
isophotes direction. In [41], inpainting surface holes is
achieved by extending the image inpainting algorithm. Hole
filling algorithm in [42] deals with locally smooth structures,
while our hole filling can deal with discontinuities. A locally
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smooth surface is also a requirement in [7], which uses radial
basis function for interpolating missing information from
depth maps resulting from medical data. Pfeifle and Seidel
[34] used B-splines for hole filling.

4 REeVIEW OF TENSOR VOTING

In our method, Tensor Voting [29] is used to infer missing
curves and pixel values. It makes use of a tensor for token
representation, and voting for communication among tokens.
Tensor and voting are brought together by a voting field,
which is a dense tensor field for postulating smooth
connections among tokens. In this section, we first give a
concise review of the stick tensor and the stick voting field,
which are used in the following sections. The key idea is the
propagation of an adaptive continuity or smoothness
constraint in a finite neighborhood.

4.1 Token Representation and Communication

We are interested in answering the following geometric
question in 2D, which can be generalized to higher dimension
readily. Suppose there exists a smooth curve connecting the
origin O and a point P. Suppose also that the normal NV to the
curve at O is known. What is the most likely normal direction
at P? Fig. la illustrates the situation. We claim that the
osculating circle connecting O and P is the most likely
connection since it keeps the curvature constant along the
hypothesized circular arc. The most likely normal is given by
the normal to the circular arc at P (thick arrow in Fig. 1a). This
normal at P is oriented such that its inner product with NNV is
nonnegative. The length of this normal, which represents the
vote strength, is inversely proportional to the arc length OP
and also to the curvature of the underlying circular arc. The
decay of the field takes the following form:

2 +v¢'3)

W(T‘, 2 J) = ei( <7 (1)

where r is the arc length OP, ¢ is the curvature, and c is a
constant which controls the decay with high curvature. o
controls smoothness, which also determines the effective
neighborhood size. If we consider all possible locations of P
with nonnegative z coordinates in the 2D space, the
resulting set of normal directions thus produced constitutes
the 2D stick voting field, Fig. 1b.

Given an input token A, how can it cast a stick vote to
another token B for inferring a smooth connection, assuming
that A’s normal is known? It is illustrated in Fig. 1b. First, we
fix o to determine the size of the voting field. Then, we align
the voting field with A’s normal, simply by translation and
rotation. If B is within A’s voting field neighborhood, B
receives a stick vote [v, v,]" from the aligned field. Hence,
voting is similar to convolution, and the voting field is like a
convolution mask, except that the voting result is not a scalar.

Other input tokens cast votes to B as well. Second order
tensor sums of all votes received at B are collected into a
covariance matrix

S vy
> UyVy > Ug

The corresponding eigensystem consists of two eigenva-
lues Ay > Ay > 0 and two corresponding eigenvectors é; and
és. Therefore, S can be rewritten as S = (A — )\g)élélT +
Aa(é1e] + é2él). é1el is a 2D stick tensor with é; indicating
curve normal direction. éé] + é,é} is a 2D ball tensor.
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Fig. 1. (a) Design of the 2D stick voting field. (b) A casts a stick vote to
B, using the 2D stick voting field. An adaptive smoothness constraint is
propagated by voting, where we do not smooth everywhere.

If A’s normal is unknown, we need to estimate it first.
Normal estimation is also achieved by tensor voting: Each
point votes with the 2D ball voting field, which is obtained by
integrating or summing up the vote contributions from a
rotating 2D stick voting field.

In 3D,

S = (Al — )\z)élé{ + (AQ — Ag)(élé{ + égég)
+ hs(e1el + el + ézel),

where éé7 is a 3D stick tensor, éél + éél is a 3D plate
tensor, and é;é! + é,é] + é;e! is a 3D ball tensor.

4.2 Feature Extraction

When we have obtained normal directions at each input
site, we can infer a smooth structure that connects the
tokens with high feature saliencies (in 2D (respectively, 3D),
curve (respectively, surface) saliency is represented by A; —
A2 [29]). Feature extraction can be achieved by casting votes
to all discrete sites (input and noninput sites), using the
same voting fields and voting algorithm.

Given this dense information, in 2D (respectively, 3D),
we extract true curve (respectively, surface) points and
connect them. The curve or surface mesh (triangular mesh)
extraction algorithms are modified marching cubes algo-
rithms [29]. Alternatively, we can use B-splines to obtain a
smoother representation, by treating the inferred points as
control points.

5 2D REPAIRING

In this section, we describe image repairing [21] for
2D image data, which generalizes well to 3D (Section 6).

5.1 Algorithm Framework

Fig. 2 gives the overview of the whole process, which uses a
single damaged image as input. To robustly generate pixel
colors, a two-phase process is performed (highlighted in the
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Fig. 2. Overview of our 2D image repairing algorithm.

figure). We call the two phases complete segmentation and color
synthesis, respectively.

Complete segmentation. Usually, images reveal a clut-
tered scene with indistinct edge features, leading to a
complex image structure. In order not to mix up different
information, we perform texture-based segmentation in the
damaged image, followed by extrapolating the resulting
partitioning curves into an image hole. To this end,
2D tensor voting is used to infer the most likely connection
between two curve endpoints. A complete segmentation for
the damaged image is achieved.

In case of range or 3D data, we apply 3D tensor voting
first to infer missing surface patches/depth values. Junction
curves that localize depth or surface orientation disconti-
nuities are also found by tensor voting.

Color synthesis. Let us call a pixel in an image hole
(including the one lying on the hole boundary) a defective
pixel. When an image hole has been segmented, we
synthesize the color value of a defective pixel using only
existing pixels belonging to the same group as shown in
Fig. 3. In other words, we qualify the MRF constraint by
complete segmentation. Adaptive scale adjustment further
eliminates visual artifact.

5.2 Complete Segmentation

We adopt the unsupervised segmentation algorithm de-
scribed in [13] to perform pattern segmentation. Initially, we
assign defective pixels in an image hole to the same segment
Py. Then, seed growing and region merging are performed.
In the process, we can assign merge threshold for small
regions so as to generate partitions with finer details.

5.2.1 Region Merging

In real images, complex occlusion and object discontinuities
are typical. For instance, the building in the flower garden is
occluded and partitioned into several parts by the fore-
ground tree in Fig. 19a. In Fig. 18, the silhouette of the tree is
not a smooth blob, but contains many curve orientation
discontinuities. We perform region merging to group similar
objects together. The grouping is performed in color and
gradient space.

To measure color and pattern feature of different regions,
the statistics of zeroth and first order image intensity
derivatives are considered. We constructa (A/ + 1)D intensity
vector VM*! for each region P; (i #0) where M is the
maximum color depth in the whole image. The first

ND Tensor Voting

Output Repaired
Image

M components in the intensity vector, i.e., V;(1) to V;(M),
represent the histogram of region i. The last component is
defined as

VM +1) =2 [ Vil, 2)

! jeb

where R; is the number of points in region P, and || Vj || is
the intensity gradient magnitude of point j. a can be
thought as a controlling weight to adjust the significance of
the gradient information for measuring intensity similarity.
The larger « is, the more important intensity gradient
becomes. In our experiments, « is set to normalize V;(M + 1)
so that the largest gradient magnitude equals to the color
depth, and the smallest one equals to zero.

Therefore, we merge two similar regions P, and P, into
P,or P=P,UP, if

s =l Vi= Vi lI< Threshold, (3)

where s;, is the similarity score for the region pair and V;
and Vj are intensity vectors for P, and P, respectively.
Hence, we match not only the color information but also
some nearest neighborhood statistics, i.e., pattern informa-

tion, to obtain a more reliable measurement.
Next, we work with the region boundary to infer

partitioning curves inside an image hole.

®  defective pixel

o pixel used to synthesize the defective pixel
partitioning curve

extrapolated partitioning curve

curve endpoint

Fig. 3. Color synthesis constrained by complete segmentation.
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Fig. 4. Hole filling by hypothesizing depth values.

5.2.2 Curve Connection by 2D Tensor Voting

After merging regions in the damaged image, we want to
extrapolate the partitioning curves into the holes to
complete our segmentation by inferring the most likely
connection between curve endpoints. Normally, we do not
have any additional knowledge of the missing data. The
only available constraint for extrapolating boundary curves
is to maintain existing geometrical features, e.g., curvature
and curve shape. In order not to oversmooth the synthe-
sized curves and to preserve the shape of the segmented
region, the robust tensor voting algorithm is used. Tensor
voting votes for the missing curve elements in image holes
by gathering tensorial support in the neighborhood.

Fig. 4 shows a simplified hole filling example. First, we
place imaginary points (lightly shaded dots in Fig. 4) evenly
distributed in the hole (the rectangle in Fig. 4). Denote the
sampling density by S = Z,,0; — Zpin + 1. Our goal is to
identify true curve points from the set of imaginary points in
the hole. First, we infer normal directions on the existing
curve points by tensor voting [29] (black arrows on the
curve, in Fig. 4). These points with normal directions n are
then encoded into 2D stick tensors nn’, which cast votes to
each imaginary point.

After receiving and accumulating the collected votes
(Section 4.1) cast by existing curve points, each imaginary
point obtains a curve saliency value, A\; — Ay (Section 4.2).
Assuming that the curve has no intersection and that it is a
function in z (otherwise, the hole can be split to enforce this
function requirement), only one point P,, ., is selected as the
curve pomt for each unchor z; (Fig. 4) whose other
coordinate is equal to Zin-t The larger the curve saliency
the point receives, the more likely the point is actually lying
on the curve. For each anchor z;, the curve saliencies of all
imaginary points along the z-axis are compared. The point
Py, .; having the highest curve saliency is selected as the
optimal curve point P,, at anchor z;. The process can be
formulated as follows:

P.’IL,‘ - maX{RI:,,zy()\l - )\2)} 1 < ] < Sv (4)

where z; is an anchor and S'is the sampling density (in pixels)
along the z-direction. Note that curve normals at P,;s have
been computed at the same time after tensor voting is run.
Once the discrete curve points are synthesized, we
connect them together using a B-spline. In case of a large

1. If the curve is not a function in z, it means that more than one P,, ; has
curve saliency maxima. The curve (hole) can be split at z; to enforce this
function requirement.

Fig. 6. Hole filling examples. (a) The broken curve. (b) Curve connection
result with a large o. (c) Result obtained by using a smaller ¢. (d) Curve
result, constrained by the shape of the hole.

hole, we perform curve connection at successive scales by a
Gaussian pyramid: From the optimal curve points we
inferred at one scale, we warp and upsample inferred curve
points in the next finer scale. The same hole filling is then
applied, with the upsampled points casting votes as well.
This process is repeated until the bottom of the Gaussian
pyramid has been reached.

Since the voting algorithm is dominated by the design of
the voting field, we give a qualitative analysis of the
correctness of the above method. Consider a simple
situation that two point tokens are on a straight line,
with three imaginary points: above, on, and below the
line, respectively, (Fig. 5b). Since |PNi|> |P,N;| and
|PiN3| > | P,N,|, the received vote strength of P is stronger
than that of P;. Hence, P, has the largest curve saliency and
the line segment is extended naturally. If N; and N, are on a
curve, the analysis is similar (Fig. 5b) and P; receives the
largest saliency, due to the sign of the curvature along the
existing curve.

There are two advantages to apply discrete tensor voting to
synthesize optimal curve points. One is that the o parameter
of the voting field can be used to control the smoothness of the
resulting curve. Fig. 6 shows one curve connection example.
The larger the scale is, the smoother the curve ab is. Thus, we
can easily set the appropriate ¢ to avoid oversmoothing. In
our experiments, o is set to be a user-defined global value fora
whole image. The selection criteria is as follows: For a highly
structured image (e.g., buildings and brick walls), a small o is
selected to maintain sharp connection. On the other hand, a
large o is chosen for natural image to construct smooth curve.
Since the Gaussian decay function used in (1), o = 3|V;|,
where V; is the size of the voting field. | V;|is usually set tobe a
larger value than 1 if a Gaussian pyramid is used, say 2, to
obtain a smooth connection curve.

The other advantage is related to the fact that different
shapes of image holes constrain different sets of theimaginary
points. The imaginary points outside the designated area are
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Fig. 7. A hole connection example.

automatically omitted in the voting process. Therefore,
various optimal curves can be synthesized accordingly. One
example is shown in Fig. 6d. The shaded region represents an
imagehole. The optimal curve absynthesized is different from
thatin Figs. 6b and 6c without the hole constraint, butitisstilla
natural connection with respect to the hole shape.

5.2.3 Connection Sequence
We facilitate the discussion in the previous section by using
an unambiguous case where only two salient curve
endpoints are present. In practice, we have the configura-
tion similar to Fig. 7. To complete the segmentation, we
connect all similar but disjoint regions surrounding the hole
by inferring the most likely smooth connection curves.

To reduce the instabilities and avoid ambiguities, we
propose the following connection scheme implemented as a
greedy algorithm:

1. Find all disjoint region pairs around an image
hole which belong to the same merged segment
(Section 5.2.1). Sort these pairs by similarity scores
in descending order and put them into a queue.

2. If the queue is not empty, fetch the region pair at the
queue head:

a. If the two regions are already connected, skip
them and back to Step 2.

b. If there exists a possible boundary connection
which does not intersect any existing curves,
infer the connection curve. Else, skip the current
region pair and go back to Step 2.

3. If there exists a single region unclosed, infer new
curvestocloseit (by constraining the shape of the hole).
To illustrate, we examine the partition situation depicted
in Fig. 7. Assume that regions P, and P; are the most similar,
while P; and P are less similar regions. Initially, we enqueue
two 2-tuples, region pairs (P, P;) and (P, P;), according to
the similarity scores. After that, we dequeue them one by one.
First, we fetch (P, P,) from the queue and connect these two
regions according to Step 2b. Then, we dequeue (P, Ps). Note
that connecting them has to intersect the existing curves from
region P, to P;. According to Step 2b of our method, we skip
this pair. Finally, we close region P, according to Step 3.

5.3 Image Synthesis

Once the image has been completely segmented, we synthe-
size missing data with existing color and texture information.
By the MRF assumption, textureis defined by aneighborhood.
We propose to use ND tensor voting to infer color and texture
information, where N indicates neighborhood scale.

max_intensity

EEr SO TN

e —

x25 26

Fig. 8. Encoding a subimage centered at a by a ND vector (N =26 here).

Fig. 9. Synthesizing one pixel. C is the candidate set of pixels
considered by A, where A € C.

5.3.1 ND Tensor Representation and Voting

Given a neighborhood window of size n x n centered at a
pixel A, we first translate the subimage into a stick tensor
(Section 4.1), by producing a feature vector of dimension
N =nxn+1 (Fig. 8) in a lexicographical ordering. Con-
verted grey levels are used if the input is a color image.
Thus, a feature vector is represented by homogeneous
coordinates, so that zero intensity can be dealt with
uniformly (max_intensity in Fig. 8 is equal to the maximum
color depth, 256 for instance).

Refer to Fig. 9 which depicts the synthesis of one pixel
to illustrate the relationship between the symbols in the
following. Suppose we have two pixels A = (z,,y.) and
B = (x,y) with their respective ND feature vectors T,
and 73, which are encoded as described in Fig. 8. Suppose
also that we want to synthesize color at B. Therefore, some
of the N components in 75 may not have color informa-
tion. We zero out corresponding components in both
vectors before matching A and B. We denote the modified
vectors by 74 and 73, respectively (note the change of the
subscripts), and name A as sample seed. In order to avoid
too many zero components in both vectors, the number of
zero components should be less than £ in 74 and 73 before
synthesis. Else, pixel B will not be synthesized for now.
Later, when the colors of other pixels in its neighborhood
have been synthesized, the number of zeros in B’s feature
vector will ultimately be less than 3.

The matching between 'Z:/; and 'fé is translated into tensor
voting for a straight line in the ND space. Geometrically, this
line defines a family of hyperplanes, and this 1D manifold is
the minimal constraint on continuity in the high dimen-
sional space, without any a priori assumption. The
computation is straightforward in tensor voting terms and
is as follows: First, we need to perform the following ND
encoding for A and B into Ay and By, respectively:

1. Convert A into ND coordinates, denoted by Ay.
Without losing generality, we can choose
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Fig. 10. Vote for colors. (a) The ND vectors at Ay and By are
consistent, indicating that they are lying on the same ND straight line.
(b) Inconsistent normals are indicated by vote inconsistency. (c) Vote
inconsistency is measured by «.

An =(0,---,0).
——
N
2. Choose any unit direction D such that T, - D =0,
that is, 74 and D are perpendicular to each other.
Then, convert B into ND coordinates, by

BN = AN + \/(%‘a - -T/’b)2 + (ya - yb)zl_j' (5)

Therefore, ’fA isanormal to the ND straightline connecting
Ay and By. Now, Ay casts a stick vote to By in exactly the
same way as described in Section 4, except thatnow a VD stick
voting field” is used: In ND, an osculating circle becomes an
osculating hypersphere. We can define a ND stick voting field
by uniform sampling of normal directions in the ND space.
The construction is exactly the same as the 2D stick voting
field, but now in ND.

Refer to Fig. 10. When B)M receives a stick vote from Ay, the
vote will be matched with 7. Vote consistency is indicated by
scosa, where s = A\; — Ay is the vote saliency given by the ND
stick voting field, and « is the angle between 75 and the
received stick vote.

The total number of sample seeds casting votes to By
depends on the complete segmentation result, that is, the
region size of the segment to which B belongs. Among all
sample seeds, let A be the 2D pixel (corresponding to the
An) whose vote to By gives the maximum scos« at By. To
synthesize the color at B, we replace the zero components in
Tg by corresponding nonzero entries in 74 (not 74 where
the corresponding entries are zero). In practice, not all zero

2. In implementation, we need not use an ND array to store the ND stick
voting field due to its symmetry. It suffices to use a 2D array to store the
2D stick voting field and rotate it in ND space.

components are replaced, only zero entries in a small
window centered at B are replaced.

Thescale NV, as depicted in Fig. 8, is the crucial parameter in
our method. Its value depends on how complex the
neighborhood structure is. If the scale is too large, the
synthesis process is slow, which also makes the MRF
assumption void. If the scale is too small, it is inadequate to
capture the necessary structure or feature scale. Hence, we
propose an automatic and adaptive scale selection method to
determine the value of N.

5.3.2 Adaptive Scaling

Normally, texture inhomogeneity in images gives difficulty
to assign only one global scale N. In other words, all sample
seeds have their own smallest scale sizes that best capture
their neighborhood information. The scale N; for different
region 4 should vary across the whole image in voting
process, as described in the previous Section 5.3.1.

We observe that human eyes are more sensitive to edge
discontinuity than to pure color distinctness when synthesis
artifact exists. Accordingly, to select an appropriate scale for
a sample seed, we compute its edge complexity by
accumulating gradients VI within its neighborhood win-
dow. Simply summing them up will cancel opposite ones.
Hence, the second order moment matrix for the vectors
(tensor) within the window are used [4], [36]:

Ma(wvy) = Gg(x,y)((VI)(VI)T), (6)

where G, denotes an Gaussian smoothing kernel with
variance o” centered at a pixel (z,y). Since the tensor
encoding process (Section 5.3.1) treats the window center
and the boundary points equally, we set o = 0 to make the
Gaussian decay an averaging function to simplify the
notation and computation:

My = AVGN{((VD(VD)")} (M)

quin q12
(o, ®

421 q22
where My is a function of scale N. trace(My) = qi1 + go2
measures the average strength of the square of the gradient
magnitude in the window of size N [36]. By observation,
inhomogeneity usually results in abrupt change in gradient
magnitude. Therefore, we select the scale for each sample
seed to be proportional to the local maxima threshold of

My, as the value of N increases. It gives good estimation in
our examples. The detailed scheme is as follows:

1. For each sample seed A, increase its scale N4 from
the lower bound (typically set to 3, but it does no
harm to start from 1) to the upper bound (depending
on the image resolution).

2. For each scale N4, compute trace(My,).

3. If trace(My,) < trace(My,-1), set Ny —1 — N4 and
return (i.e., local maxima threshold is reached).

4. Otherwise, we continue the loop by incrementing
N4 until a maxima is found, or the upper bound has
been reached.

6 RANGE AND 3D REPAIRING

The same framework (complete segmentation and color
synthesis) generalizes well into 3D, except that the synthe-
sized color and texture are not necessarily pasted onto a
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Fig. 11. Rundown of shape and texture syntheses.

planar surface. In this section, we show that the same ND color
synthesis can be applied after performing complete segmen-
tation accordingly. However, if there exist missing values in
the given range or 3D data, we need to infer them first.

For range data where each pixel can record only one depth
value, missing data are mostly caused by occlusion. We
therefore need tofill in the holes in the depth map, by inferring
discrete depth values. The same occlusion situation exists in
3D data. Moreover, missing data in 3D can also be caused by
insufficient data resolution due to undersampling. In our
method, we take a point cloud as 3D input and construct a
mesh first. Noisy range and 3D data are regularized and
processed by 3D tensor voting, which removes noise, infers
missing data, and extracts a triangular surface mesh.

After all missing data have been filled, surface orienta-
tion discontinuities are detected as curve junctions, also by
3D tensor voting. The curves obtained serve the same
purpose as those in 2D image repairing, to avoid mixing up
textures with distinct statistical distribution. The 3D curve
extraction algorithm can be found in [29], which is
analogous to the modified marching cubes algorithm as in
the case of 2D curve connection.

The extracted curves segment the range and 3D surface
mesh into separate patches with their respective color and
texture. Hence, 2D image repairing method can be applied to
each patch for complete segmentation and color synthesis.

In summary, the main steps for range and 3D repairing
method are:

1. missing range or missing 3D data inference
(Sections 6.1 and 6.2),

2. 3D curve extraction [29],

3. mesh construction [29],

4. mesh partitioning or segmentation according to the

extracted curves,

5. image repairing are performed on each surface patch.

We use Fig. 11 as a running example to illustrate the
overall 3D data repairing process for shape and texture
inference. Fig. 11a is obtained after missing data inference
(Step 1), Normals shown in Fig. 11b and curve junctions
shown as thick lines in Fig. 11c are obtained by 3D tensor
voting in Step 2. A surface mesh can be extracted by a
modified marching cubes algorithm, Fig. 11d (Step 3). The
inferred surfaces and curves segment the scene into a set of
piecewise smooth patches (Step 4). The uniform sampling
criterion we enforce in Section 6.2 reduces distortion effect.
To synthesize color and texture, 2D image repairing is
applied separately to each patch (Step 5), where automatic
scale adaptation is also performed, Fig. 11e.

In the following sections, we focus on the inference of
missing data in complete segmentation for range and
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3D data (Step 1). Other steps are either described elsewhere
(Steps 2 and 3 in [29], and Step 5 in Section 5), or easy to
implement (Step 4).

6.1 Inferring Missing Range Data

For range data, a pixel is defined as defective if it has no depth
value, thus producing a hole in the range image. Itis natural to
extend the 2D tensor voting algorithm for hole filling we
described in Section 5.2.2 to fill in missing depth information
since the uniqueness constraint along the line of sight applies
to depth map: Each pixel can contain only one depth value.

To achieve hole filling, we extend the voting space in
Fig. 4 into 3D, where the z-axis represents the depth axis,
and (z,y) are the image coordinates. Depth values (z values)
vary from Z,,, t0 Z,.,. Hence, each defective pixel in the
image plane becomes an anchor. Instead of inferring a curve
in Fig. 4, we infer a depth surface to cover up the anchors.
Accordingly, we apply 3D tensor voting [29] to the volume
of discrete imaginary points to vote for the true surface
points: At each anchor (z,y), a total of Z,,,4; — Zyin + 1 votes
are collected. The imaginary point (z,y,d), d € [Znin, Zmaz),
is selected as the desired surface point if its surface saliency
is maximum along z direction for each anchor (z,y),
analogous to the 2D situation (Fig. 4).

In order to accelerate the algorithm and not to over-
smooth corners or surface orientation discontinuities in the
voting process, our implementation has the following
considerations:

e  Incremental hole filling—If the hole size is small, we set
the voting field size (¢) to be large enough so that the
hole filling process can be accomplished in a single
pass. However, it is not feasible for large holes since
large voting field results in oversmoothing (and
longer computing time as well). Therefore, we adopt
an incremental approach to fill large holes, starting
from hole boundary toward the center. The max-
imum number of passes is thus predetermined and is
simply proportional to the size of the hole in pixels.

e  Discontinuity preservation—Surface orientation dis-
continuities (e.g., corners) should not be smoothed
out. We observe that along the hole boundary, high
curvature points have fewer neighbors than low
curvature ones. To preserve surface orientation
discontinuity inside the hole, we assign higher
priority to lower curvature points. They will vote
first to incrementally fill the hole from the boundary
toward the center, by propagating the smoothness
constraint. High curvature points are less preferred
since they do not propagate smoothness. Fig. 12c
shows the hole filling result without curvature
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Fig. 12. Priority in range data filling for complete segmentation. Lighter points near high curvature area have lower priority than the darker points. (c) is
the filling result without priority consideration, (d) shows better result with priority consideration, where high curvatures are not smoothed out.
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Orthogonal y
projection
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sampled in
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Fig. 13. Three-dimensional data filling illustration for complete segmentation. (a) A 3D mesh with triangles 51, S, ... S,,, each of which is associated
with a local coordinate system. (x;,y;) defines a plane where the triangle S; is lying. The z; axis is perpendicular to this plane. Black dots (nonmesh
vertices) represent anchors. (b) Optimal depth for each anchor in \S; is constructed along the z; direction (e.g., A; and A,). They are connected to
form a finer mesh. (c) A more detailed illustration for constructing the initial local coordinate system. Local z-direction is the equal to the average of
the hole boundary normal directions. The hole area is orthogonally projected onto (x,y) plane, where anchors are sampled.

priority consideration, while Fig. 12d has taken it
into account. The result in Fig. 12d preserves more
curvature details in the hole.

6.2 Inferring Missing 3D Data (Data Resampling)

Based on the method above, large holes (area with very low
resolution) in 3D triangle meshes can be filled in the same
way. However, we need to consider the sampling problem so
that resulting points are roughly uniformly distributed on the
object surface in 3D space. This reduces the distortion effect
when surface textures are synthesized. In [26], an algorithm is
described to fill complicated holes in meshes, which can be
used for this purpose. Complex holes can be filled by [12] to
produce a “watertight” surface mesh. Following, we present
a simpler solution, and more discussion on this alternative is
presented at the end of this section.

To satisfy the uniform sampling criterion, we adopt a
divide-and-conquer method to locate anchors and reorganize
them. Inspired by the previous section about the range data
hole filling, we associate each surface patch with a local
coordinate system and set anchors accordingly so that
existing patches can be extrapolated to cover up a hole.
Fig. 13a shows a triangulated mesh, U;S;, where S; is a
triangle. Each triangle is associated with a local coordinate
system, e.g., S; with (x;,y;, i), where (x;,y;) defines the same
planeas triangle S;. Therefore, we apply hole filling algorithm

for range images in the previous section to each triangle and
vote for more surface points to obtain a finer triangulation.
These new points will be connected together to form a finer
resulting surface to increase sampling density, Fig. 13b.

One minor modification is that instead of sampling
depth candidates from the given Z,,;, to Z,,,,, we constrain
the depth range from max(Z,;,,, SUR) to min(Z,q., SUR)
for each anchor (z;,y;), where SUR is the nearest surface
point along z or —z direction in (z;,y;) position. The
detailed 3D hole filling algorithm is as follows:

1. Assignacoordinate system (x,y, z) to the entire hole,
Fig. 13c. Sample anchors in the hole area and apply
holefilling for range data to infer initial surface points,
which will be triangulated to form finer triangles. The
computation of (x,y, z) will be explained shortly.

2. If there is any triangle S; whose area size is larger
than some threshold, i.e., insufficient sampling
density, repeat the following steps.

3. Associate S; with a local coordinate system (x;, y;, 2;)
where the (x;,y;) plane is the triangle plane S;, and
z; direction is perpendicular to it (e.g., S; in Fig. 13a).

4. Sample S; according to the assigned density value,
and generate anchors in the (x;,y;) plane (e.g., Si
and S, in Fig. 13a).
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Fig. 14. Result on synthesizing structured textures. Left: input texture
sample. Right: a larger synthesized image.

5. Hole filling algorithm for range data is applied to
generate new surface points for all anchors. They are
connected to form new triangles, Fig. 13b. To construct
anintegrated mesh given these new surface points, we
can either apply 3D tensor voting to the subset of new
points for inferring the mesh to connect them, or use
the construction and optimization algorithm [19], [20]
to generate the resulting mesh, Fig. 13b.

Here, we provide details for computing (x, y, z) in Step 1.
Wewanttoselectan optimal (x, y) plane which maximizes the
orthogonal projection area of the hole. However, it is
expensive to accurately locate the maxima due to the varieties
of the hole shape. Alternatively, a more intuitive but stable
method is adopted to create the initial coordinate system
(x,y,z), shown in Fig. 13c, by first averaging the normal
directions of all hole boundary points as N, i.e., N =
(Zf\g normal(P;))/Np, where Ny is the number of the
boundary points P;. The normals at these boundary points
are either given (by the mesh) originally, or computed by
tensor voting [29]. .

Then, we set the z-direction to be equal to N. The (x,y)
plane is randomly selected as long as x, y, and z are
perpendicular to each other. Orthogonally project the hole
onto the (x,y) plane and compute anchors according to the
sampling density (Fig. 13c).

6.3 Discussion

In this section, we have extended our methodology to repair a
3D mesh. Here, we qualify our proposed method, where the
four results depicted in Figs. 23, 24, and 25 also show the
limitation of our extension, and they can be improved in the
future. Our 3D extension works in the presence of disconti-
nuities (C° continuous but C! discontinuous), large amount
of noise and missing data, as long as the local geometric scales
remain approximately constant. When the hole to be repaired
covers geometric features of multiple scales, the complete
segmentation must be performed also in multiple scales,
which is under investigation [39]. For example, because of
self-occlusion, the hole may cover both the nose (small scale
geometric feature) and cheek (large scale geometric feature)
of a defective face mesh at the same time, when only a sparse
set of scans is available. The output of the complete
segmentation in multiscales is a segmented multiresolution
mesh where different scale features are coherently integrated
along scale transition (curves), in addition to discontinuity
curves described above for restricting the color/texture
synthesis, so that only relevant information in each segmen-
ted patch is used in the synthesis process.

VOL. 26, NO. 6, JUNE 2004

Fig. 15. Comparison with structure and texture image inpainting.
(a) Original image extracted from [3]. (b) Structure and texture image
inpainting result. (c) Our result.

7 TiME COMPLEXITY ANALYSIS

This section collectively analyzes the time complexity for
our repairing methods. Let:

Dy = number of anchors in 2D repairing.

D3 = number of anchors in range/3D repairing.

B = number of pixels along hole boundary (B <« D,, D3).

T = number of nondefective pixels in the image.

R = number of regions (R < T)).

S = number of samples (S = Z,,.; — Zpin + 1).

There are two steps for 2D complete segmentation. In the
texture-based region segmentation (Section 5.2.1), it takes
O(T) time to compute the joint intensity and gradient
vector, and merge regions. It results in a total of R regions.
For curve connection, it takes O(R?) time to pair up regions,
before putting them into a priority queue (very efficient

Fig. 16. Limitations of our method. Pixels inside the yellow or shaded
rectangle cannot be well synthesized. (a) Handrail and stairs. (b) Bird
beak. (c) Result on applying image repairing without any a priori
knowledge.
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Fig. 18. Beach and Moor. Left: original images. Middle: damaged images by erasing some objects. Right: our image synthesis results. In Moor, we
repair the full rainbow and hallucinate the upper, very faint rainbow “arc,” which is largely occluded by the sign post.

Fig. 19. Flower garden example. (a) Only a single image is used. (b) Damaged image by erasing the tree. (c) Result obtained by pure texture
synthesis algorithm. (d) Image segmentation. (e) Curve connection. (f) Our image synthesis result.

Fibonacci heap can be used to implement the queue).
O(SD5) time is spent for 2D tensor voting: SD, tensor votes
are collected at the imaginary points inside the hole for
computing the optimal curve points. There are at most O(B)
endpoints with their finite neighborhood where we sample
the tensor votes for curve extrapolation. Summing up, the
total time is O(T + R? + SDy + B) = O(T + SD,), that is,
linear with the total number of pixels in the given image.

For complete segmentation in range and 3D data, after
spending O(B) time to fix the local coordinate system,
3D tensor voting is used to infer the (depth) surfaces and
partitioning curves, which takes O(SDj3) time.

For color and texture synthesis, once the scale for a region
has been chosen (the time spent on scale iteration is related to
image resolution and is linear with 7', the total number of
pixels), we perform ND tensor voting. To synthesize the color
for each anchor, only a finite neighborhood need to be
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Fig. 20. Chair example. (a) Original image. (b) Image segmentation before curve connection, after removing the leftmost chair. (c¢) Complete
segmentation after curve connection. (d) The repaired image. (e) Complete segmentation after removing the chair second from right. Note the
complex shape of the curves inside the hole, which are inferred by our 2D hole filling algorithm using tensor voting. (f) Our result with two chairs left.

considered, by the MRF assumption. Therefore, at most
O(T + SDs) time is spent.

The above analysis is valid when the size of the voting field
is not large. Except for very sparse data, applications such as
image/mesh restoration usually involves (quasi-)dense data,
except at the hole. Therefore, o, which used to define the
voting field size, needs not be large. For large holes,
incremental hole filling is performed to keep a small ¢ in
inference. Therefore, the size of the voting field can be treated
as a constant in 2D, 3D, or ND. Tensor voting is thus a linear-
time algorithm regardless of dimensionality. Typical range of
oweuseis1to2.

8 RESULTS

8.1 2D Image Results

We first show one texture synthesis result on regularly
textured patterns (Fig. 14) where rigid structures are
maintained.

One emphasis of this paper is repairing damaged images
of real scenes. We have experimented a variety of such
difficult natural images, most of them contain large and
complex holes with difficult neighborhood topologies.

Figs. 17 and 18 show three examples. From a single
damaged or masked image (middle) with a large amount of
missing complex information, we are capable of synthesiz-
ing new pixels. By adaptively propagating neighborhood
information, our method smoothly generates texture pat-
terns without blurring important feature curves (right). The
left images are original images with the occluding objects.
There exist many methods to erase these objects, which are
out of the scope of this paper. The original images (left) are
provided for comparison.

Next, we also show some intermediate results for
2D image repairing, in addition to the final repaired
images. From a single image of a flower garden with the
occluding tree removed, we synthesize the result in Fig. 19f.
The detailed process is: We first segment the damaged
image. It is followed by a merging process described in
Section 5.2.1 (Fig. 19d). Then, we complete our segmenta-
tion by curve connection using 2D tensor voting described
in Section 5.2.2 (Fig. 19e). There are two key factors

contributing to the success of this difficult example. First,
thanks to the automatic color and texture segmentation [13]
in Fig. 19d, a set of reliable partitioning curves incident at
the hole boundaries is produced. Next, our complete
segmentation infers the curves inside the hole, which
provides sufficient information so that the color synthesis
step is capable of distinguishing which pixels are relevant in
the synthesis process. In this and other experiments, though
there is a set of default thresholds or parameters in our
implementation, they are either unchanged or not critical,
making our method fully automatic. Fig. 20 shows another
result, obtained using the same process. Some intermediate
results are also shown.

Fig. 15 compares our method with image structure and
texture image inpainting [3]. Since our method infers

(@) (b)

Fig. 21. Noisy corner example. (a) initial color image (the ball is an
occluder), (b) initial noisy range data, (c) the recovered background
layer (the occluded corner is not smoothed out), (d) the same view with
automatically recovered background texture which fills the background
hole and does not smooth out the corner.
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Fig. 22. Flower garden example with depth. (a) The input depth image after noise elimination and smoothing, (b) the background reconstruction
result, in which depth discontinuities are preserved, (c) the result of traditional image warping, where holes due to occlusion are seen, (d) the same
novel view we generated after running our system. In (e), we turn the flower garden into a water garden. (f) Alternatively, we can replace the tree
truck by a lamp post without seeing the hole since a layered and textured description has been inferred.

(d) —

Fig. 23. Panorama. (a) Input noisy depth image. (b) Result of traditional image warping when an image at a novel view is rendered. (c) and (d) our

results. Curve junctions and texture boundaries are preserved.

explicit segmentation information and separates different
pattern information, it retains texture structures and
discontinuities in regions, and does not introduce blurring.
Another direct comparison is shown in Fig. 19¢, which
shows that texture synthesis technique such as [15] is not
suitable in our task of repairing natural images. Without
proper segmentation, pixels belonging to distinct statistical
distributions are mixed together.

The actual running time of our method depends on the
image texture and hole complexity. In our experiments,
given a 400 x 300 pixels image and 10,000 pixels hole area,
our method outputs the repaired images in less than
15 minutes on a Pentium III 1GHz PC.

8.2 Three-Dimensional and Range Data Results
Fig. 21a shows the input color image and Fig. 21b shows the
corresponding depth map of the noisy corner example.
Three-dimensional tensor voting is used to recover the
background and fill the hole. Complete segmentation is
represented by the inferred 3D surface, curve, and point
junctions. As a result, the surface is optimally partitioned
into three patches and textures are synthesized accordingly
without undesirable mixture, Fig. 21d.

The flower garden example with depth is used in Fig. 22.
The input depth map is shown in Fig. 22a, where noise has
been removed. The background depth map is filled by
3D repairing after removing the tree trunk, Fig. 22b. A hole
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Fig. 24. Mountain scene example. (a) is the original image with per-pixel depth, (b) is the hole filling result, after the trees and the hiker have been
removed, (c) is the color and texture synthesis result from the original image without the foreground objects (the trees and the hiker), (d) note that
using the original range data, holes are observed when viewpoint are changed, and (e) and (f) are rendered after overlapping textured layers are
inferred by 3D and ND tensor voting, which perform complete segmentation and color/texture synthesis effectively.

is exposed when viewpoint changes, Fig. 22c. Note
specifically that, after segmenting the background into
three layers as shown in Fig. 22b, we input them to 2D
image repairing separately (Section 6). The sky is distin-
guished from the house in 2D image repairing process that
follows, which guarantees that different patterns will not be
mixed up in the synthesis process. The result rendered at
another viewpoint is shown in Fig. 22d. Figs. 22e and 22f
indicate some potential applications with the segmented
and textured description we inferred.

Fig. 23a shows a panoramic depth map we computed in
[25] using multibaseline stereo. When viewpoint changes,
the previously occluded background is exposed, Fig. 23b.
Complete segmentation is performed by 3D tensor voting,
which infers the missing depth values without smoothing
out the junction curves, Fig. 23d. ND color and texture
synthesis are performed to fill up the holes. Two views of the
depth maps with color values are shown in Figs. 23c and 23d.

Another range data example is shown in Fig. 24. The input
and the repaired depth map image are shown in the top of the
figure. The hole in the depth map, resulted by removing the
trees and the hiker, is filled by complete segmentation,

implemented in 3D. ND tensor voting votes for the colors and
textures inside the hole and the resulting image is shown in
Fig. 24c. If we use the original input only, the image rendered
at another viewpoint exposes a previously occluded back-
ground, Fig. 24d. By using our segmented and textured
description, we render novel views in Figs. 24e and 24f with
little artifact, except for the shadows.

Four results on 3D repairing are collectively shown in
Fig. 25, which are generated using 3D data inference method
(Section 6) in 3D repairing, followed by texture synthesis
using our ND tensor voting methodology. Note the large
holes in the teapot example (Fig. 25d). We show the closeup
views in Fig. 25e from different angles to depict the
nontextured meshes, before and after applying our
3D repairing method.

9 DiscussION, CONCLUSION, AND FUTURE WORK

Fig. 16 shows some limitations of our method if critical
information is missing or insufficient. One example consists
of various shapes in Fig. 16a, in which the missing portion
of the handrail and stairs cannot be well synthesized due to
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(d)

Fig. 25. Some results in 3D. (a) cactus part, (b) car, (c) golf club, and (d) teapot. Defective meshes with holes, repaired and textured meshes are shown.
(e) is two closeup views on teapot example with holes from different viewing angles, where the generated meshes are not textured for display clarity.

a complex background and their irregular shapes. The other
example consists of an entirely missing bird beak in Fig. 16b.
Fig. 16c shows our 2D image repairing result, which is
obviously incorrect without employing any knowledge. In
both cases, additional knowledge on the scene is needed.
Also, in the ambiguous situation where the missing area
covers the intersection of two perpendicular regions with
similar textures, our complete segmentation may pick the
suboptimal interpretation in the absence of knowledge.

To conclude this paper, we have proposed a new method
to automatically repair and restore damaged images. Our
method is capable of dealing with large holes where missing
details can be complex and inhomogeneous. They cannot be
described by a small set of statistical parameters. Pure texture
synthesis technique will fail on those input images. Real
images of natural scenes are typical examples. We address
this difficult problem by complete segmentation and robust
curve connection. Adaptive ND tensor voting provides a
unified basis to implement many of these tasks. Our image
repairing can be generalized to range and 3D data as well:
Complete segmentation is performed in 3D by 3D tensor
voting to infer missing data and partition surface patches.
The same adaptive ND tensor voting for color/texture
synthesis is used in 2D, range, and 3D data. We have

demonstrated very encouraging results on natural images
using our method, and performed some comparison.

In the future, we propose to scale up the image repairing
technique to process videos, and to repair damaged video
sequence. It has important application to film restoration:
Many films that are half a century old are in need of
restoration. Image repairing produces spatially coherent
and visually acceptable results for large image holes. The
challenge for video repairing is the efficient exploitation of
spatial and temporal coherence inherent in the large
number of frames to achieve visually plausible restoration.
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