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Abstract

Inspired by tensor voting, we present luminance voting,
a novel approach for image registration with global and lo-
cal luminance alignment. The key to our modeless approach
isthe direct estimation of replacement function, by reducing
the complex estimation problemto the robust 2D tensor voting
in the corresponding voting spaces. No model for replace-
ment function is assumed. Luminance data are first encoded
into 2D ball tensors. Subject to the monotonic constraint only,
we vote for an optimal replacement function by propagating
the smoothness constraint using a dense tensor field. Our
method effectively infers missing curve segments and rejects
image outliers without assuming any simplifying or complex
curve model. The voted replacement functions are used in our
iterative registration algorithm for computing the best warp-
ing matrix. Unlike previous approaches, our robust method
corrects exposure disparity even if the two overlapping in+
ages areinitially misaligned. Luminance voting is effective in
correcting exposure difference, eliminating vignettes, and thus
improving image registration. \e present results on a variety
of images.

1 Introduction

Creating panoramas or mosaics is still an inexpensive and
commonly adopted method to generate photographs of higher
resolution and/or of wider angle of view. To successfully
generate a visually acceptable or seamless mosaic from a
few images, many registration methods [12, 13, 9, 16] have
been proposed, which align images taken under a subclass
of camera motions. However, in the registration process,
the environment illuminance (or brightness) recorded by a
moving/rotating camera is often inconsistent even for a static
scene. Exposure variation and other camera internal param-
eters further complicate the light recording process, causing
abrupt color transition from one image to another. Seams in
the image composite are quite noticeable. Worst, these com-
plications may lead to image misregistration. Image mosaics
with large exposure difference results in unnatural color tran-
sition and misregistration.

There are several factors that influence the luminance
recorded in cameras, namely, exposure variance among im-
ages, white balance of a digital camera, Gamma correction,
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vignetting ! and digitizer parameters [3, 5, 15]. When two im-
ages are aligned, in order to eliminate seams and artifacts due
to the above factors, feathering [13] can be applied to blend
two overlapping images locally. Alternatively, a model for the
response function [15] can be estimated to correct the lumi-
nance or exposure difference of the overlapping areas.

Estimating response function is an under-constrained prob-
lem. One common approach to tackle the problem is to per-
form radiometric calibration, by taking several images of a
static scene under different lighting conditions. The consis-
tency requirement of conditions other than exposures is cru-
cial to the stability of the resulting model. This is difficult es-
pecially when image noise and ambiguities are very common.
Moreover, even if such a model can be reliably estimated, the
evaluation metric may not be available to judge the efficiency
or optimality of the obtained model.

In this paper, we propose a modeless and effective approach
to address the luminance disparity when two overlapping im-
ages are registered. Our approach is called luminance voting,
which is inspired by 2D tensor voting, a modeless approach for
structure inference in 2D. Luminance voting robustly removes
image outliers and estimates an optimal mapping function for
global and local luminance replacement. The optimality of our
estimated response function is subject to the only constraint:
the monotonic constraint, that is, higher exposures should al-
ways generate brighter pixel colors, and vice versa. Unlike
the algorithm in [3], we only need the focal length of the first
image to eliminate natural vignetting. No other curve or sim-
plifying model is assumed.

For ease of reference, we summarize the notions and termi-
nologies used in this paper below: I(z,y) is the pixel color in
position (z,y) of an image I. The corresponding scene illu-
minance of V, recorded by image I, satisfies

I =u(V) (1

where u(-) is the response function [15] and can be further
decomposed as (f - k)(-). f(-) is called global response func-
tion which collectively characterizes exposure, white balance,
gamma correction and digitizer parameters. Vignetting, being
a position variant quantity, is addressed by the local response
function &(-). Thus, global response function f(-) describes

'Tt indicates the unintended darkening at image corners and/or borders
in a photographic image. Some different image formation mechanisms may
account for vignetting [10]. Among them, natural and optical mechanisms
inherent in many lens design are main causes.
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Figure 1: Overview of the luminance voting in image registration.

global color mapping process, i.e., if two pixels receive the
same amount of light in one image, they have the same color
value irrespective of their positions in the image plane. On
the other hand, local response function &(-) is related to pixel
positions: the pixels around image borders are darker than the
pixels at the image center, even if incoming irradiance is sim-
ilar. In this paper, we do not explicitly estimate u(-). Instead,
the replacement function g(-) is our goal. g¢(-) directly mea-
sures the color difference between images. The relationship
between g(-) and u(-) is analyzed in Sec. 4.1.

The rest of this paper is organized as follows: Section 2
discusses and compares related work and overviews our con-
tributions. In section 3, we review the tensor voting algorithm.
Section 4 provides an overview of our color matching algo-
rithms, which are based on luminance voting. In sections 5
and 6, we describe the details of estimating the global and
local response function algorithms. Section 7 discusses and
presents our results. Finally, we conclude our paper in sec-
tion 8.

2 Reated work

There are two classes of studies related to our method: mo-
saic registration with exposure transition or correction across
images, and radiometric calibration.

2.1 Mosaicregistration with exposure correction

Many advanced registration methods have been developed
in recent years. To correct the exposure difference, one direc-
tion is to blend pixel colors in overlapping area. Video mo-
saic [11] is a registration algorithm to estimate homography
by Levenberg-Marquardt method. To reduce visible artifacts,
it blends overlapping area by a bilinear weighting function.
However, some “mottling” spots still remain under different
exposures. In [13], a feather-based algorithm can be used for
better blending effect, but unnatural seam is still inevitable
for different lighting conditions. Burt et al [1] made use of
a multi-resolution spline to perform blending. Uyttendaele et
al [14] used a block-based method to compute the response
function for mapping illuminance. By using averaging and
interpolation functions, more natural transition is achieved in
their results. One disadvantage of these methods is that they
assume the images are already correctly registered. Moreover,
blending is only performed at the overlapping area to transit
images from one exposure environment to another more natu-
rally.

2.2 Radiometric calibration

The other class of approach to eliminate the illuminance

difference is radiometric/illuminance calibration [8, 2, 6, 15,
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5]. By taking several static images with different exposures,
response function u(-) or its inverse u~1(-) is estimated to
generate high range radiance maps. In [8], u~!(-) is mod-
eled as a high-order polynomial I = u=1(V) = ij:o c V™.
Hence, calibration is viewed as determining the order N and
coefficients c,,. Ramesh et al [15] adopted a noise contam-
inated pattern, and used maximum-likelihood method to es-
timate u(-). However, these methods are usually applied to
static scene with some assumed imaging or noise models. Ad-
ditional knowledge, such as exposure information [2], is re-
quired. Given only two unregistered images with one overlap-
ping area, these methods cannot be directly applied in image
registration and estimation process. Our method does not ex-
plicitly infer the response function u(-). Instead, we formulate
the problem as color mapping in order to align the luminance
difference between images.

Hasler et al [3] combine image registration and cam-
era internal parameters estimation into one optimization pro-
cess, and globally eliminate luminance difference between im-
ages. However, they assume that the parametric models, e.g.,
gamma correction and vignetting, of the camera are known.

3 Review of 2D tensor voting

In this section, we give a concise review on 2D tensor vot-
ing [7]. Our approach is a feather curve extraction and noise
elimination method that makes use of a tensor for token repre-
sentation, and voting for communication among tokens. Ten-
sor and voting are brought together by a voting field. Voting
field is a dense tensor field for postulating smooth connections
among tokens.

We are interested in answering the following geometric
question in 2D. Suppose there exists a smooth curve connect-
ing the origin O and a point P. Suppose also that the normal N
to the curve at O is known. What is the most likely normal di-
rection at P? Fig. 2(a) illustrates the situation. We claim that
the osculating circle connecting O and P is the most likely
connection [7], since it minimizes the total curvature along
the hypothesized circular arc, and thus encodes the smooth-
ness constraint. The most likely normal is given by the nor-
mal to the circular arc at P (thick arrow in Fig. 2(a)). The vote

strength of this normal is decayed according to the following
2

2
function: DF(r, p,0) = ¢~ (=) Where  is the arc length
OP, ¢ is the curvature, c is a constant which controls the de-
cay with high curvature, and o controls smoothness, which
also determines the neighborhood size. If we consider all pos-
sible locations of P in the 2D space, the resulting set of normal
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Figure 2: (a) Design of the 2D stick voting field, (b) how a voter
A casts a stick vote to vote receiver (votee) B, and (c) the 2D ball
voting field, obtained by rotating and integrating the 2D stick voting
field.

directions thus produced constitutes the 2D stick voting field,
Fig. 2(b). Note that ¢ is the only free parameter.

Given an input token A, how to cast vote to another token
B for inferring a smooth connection between them, assum-
ing that A’s normal is known, Fig. 2(b). First, we fix o to
determine the size of the voting field, or the scale of analysis.
Then, we align the voting field with A’s normal, by translation
and rotation. If B is within A’s voting field neighborhood, B
receives a stick vote [v, v,]T from the aligned field. Hence,
voting is similar to convolution, and the voting field is like a
convolution mask, except that the voting result is not a scalar.

Tensor voting simply means rotation and translation to
align the 2D stick voting field with A’s given normal,
Fig. 2(b). Other input tokens cast votes to B as well. Sec-
ond order tensor sums of all votes received at B are col-

Svr D vayy

PN U;
The corresponding eigensystem consists of two eigenval-
ues Apaz > Amin > 0, and two corresponding
eigenvectors Vmaz and me. As a result, S can be
rewritten as S = MnawVinaz Vot 4+ AminVininVL. =

()\maaz - Amin)vmax VT + )\min(Vmaa: VT + szn VT )

mazx max min

lected into a covariance matrix S =

Vmarv,faz is a stick tensor, with V,,,,, indicating curve nor-
mal direction. Vmaz Vn:fam + meVme is a ball tensor.

If A’s normal is not known initially, we need to estimate it
first. It is performed by voting with the 2D ball voting field,
Fig. 2(c), which is obtained by rotating and integrating (by
tensor sum) the vote contribution of the 2D stick voting field.
The 2D ball voting field is then aligned with the A (along ar-
bitrary direction since its normal is unknown), using exactly
the same voting process described above. After decomposing
the collected tensor into the corresponding eigensystem, the
normal is given by Vm(m.

4 Our approach

As reviewed in section 1, the global and local response
functions complicate the color recording process, which varies
from image to image.
4.1 Analysis

Consider two overlapping images I and I’ taken under dif-
ferent exposures. If I and I’ are correctly registered, the warp-
ing function w(-) transforms the original input image to the
warped one, i.e., I'(2”,y") = w(I'(z',y)), so that I and I’
are correctly aligned. Suppose I(z, y) and I' (2", y"') are cor-
responding pixels in the overlapping area of the two images.
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The relationship between their corresponding incoming illu-
minance is given by

Vi, y) =tV'(z",y") 2)

where ¢ is the exposure ratio, and it is determined by the ex-
posure time of each image. Therefore, we have:

I(e,y) = ur(V(z,y))
= ur(tu; (I'(2",y")) 3)
g(I'(2",y")) @)
gw(I'(z',y"))) (5)

where ur and u;, may not be the same response function, and
g(+) is called replacement function. Thus the relationship be-
tween g(-) and u(-) can be represented as g(-) = uI(tuIT,l(~)).

If I and I’ are not correctly registered, we need to estimate
not only the replacement function g(-) which measures the ex-
posure and radiometry differences between images, but also
the warping function w(-) to match corresponding pixels. Ac-
cordingly, the cost function to be minimized for image I and
I is:

min " (I(z,y) - glw(I'(@,y')))? ®)

It is a non-linear and under-constrained optimization prob-
lem without model assumption to estimate two sets of param-
eters, i.e., g(-) and w(-), simultaneously. In our method, we
estimate and refine them iteratively:

Given an estimation of replacement function g(-) with re-
spect to a certain warping function w, in order to simplify
Eqn. (6), we construct a new luminance adjusted image I”
which satisfies

w(I"(2',y")) = g(w(I'(2",y"))) (7

As a result, the luminance distance between I and [ is short-
ened, and Eqn. (6) can be written as:

min Y (I(z,y) —w(l"(«',y))? ®)

which can be solved as a normal image registration process.
We give the I" construction process as follows:

e Since g(w(I'(«',y))) = g(I'(x",y")) and g(-) mod-
els the color replacement quantity between images, we
construct another warped image I”7(-) which satisfies

f"(l’”, y//) _ g(f/(x//7 y//)).
o Inversely, warp I”(z",3") by the same w to construct
new input image: I”(2',y') = w1 (I"(2",y")).

Therefore, constructing image I’ simplifies the registration
equation. Alternatively, if the warping function w is estimated
(that is, I and I’ are roughly registered), we can determine the
replacement function g(-) by luminance voting (Sec. 4.3).

The above analysis of Eqn. (6) inspires us to decouple the
estimation process of w(-) and g(-). Accordingly, we propose
the refinement algorithm to alternatively solve those two sub-
problems.
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4.2 Refinement algorithm

Initially, we assume g(-) is an identity mapping function to
start the registration process. The algorithm then carries out
as follows:

1. Fix the estimated g(-) and the corresponding w, we con-
struct a new input image I”" which adjusts color accord-
ing to g(-), and satisfies Eqn. (7).

2. Solve the registration problem in Eqn. (8). Many meth-
ods can be used to tackle the normal homography esti-
mation problem to refine the warping function w [12, 13,
16]. In our experiment, the robust 3-parameter rotational
model together with local alignment [13] is adopted,
which rapidly converges to the correct solution even in
the presence of some parallax.

3. Once the above registration is done, the warping matrix
w(-) is obtained. Accordingly, we turn to solve

min ) (I(z,y) - g(I'(z",y")))) ©)

to determine the replacement function g(-) (section 4.3).

4. Repeat (1), (2) and (3) until the difference of ¢(-) in the
last two iterations falls into the tolerance range.

The flowchart of the algorithm is illustrated in Fig. 1.
4.3 Algorithm outlinefor estimating g(-)

Since the estimation of g(-) is subjected to noise, uncer-
tainties and misalignment in overlapping area of images, step
(3) in the refinement algorithm is most crucial. We assume no
model for the replacement function, and make use of informa-
tion of pixel colors between images.

Just like f(-) and &(-) in the response function u(-), which
maps from illuminance to pixels color, we decompose the re-
placement functions into the corresponding global and local
components, say, global(-) and local(+), which map from im-
age to image in the overlapping area. Global replacement
function is to globally map colors between images, while the
local replacement function is used to estimate vignetting effect
for each image.

Recall that vignettes are the gradual and slight darkening
around image borders. It is less problematic to the registration
accuracy than to an erroneous global replacement function.
For this reason, we perform global replacement function es-
timation first, and regard any vignettes as noise or outliers in
the estimation process. After that, local replacement function
is estimated in the input image. The final replacement function
g(+) is constructed by compositing them, i.e.,

(replacement function) g¢(-) = global(local(-))  (10)

Fig. 1 shows the g(-) estimation process (in green). Note that
the only input value to the algorithm is the approximate focal
length of the first reference image in order to roughly counter-
act initial vignettes in local replacement function estimation.
To apply the voting process in the image space without
model and fitting assumption, we propose a robust luminance
voting approach, which is derived from the generic 2D tensor
voting. Table 1 compares tensor voting and luminance voting.
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2D tensor voting luminance voting

dimension 2D 2D

tensor saliency tensor saliency tensor
space geometry space joint image
constraint no monotonic
voters all neighborhood  discard column votees
feather curve extraction  saliency comparison
scale one multiscale

Table 1: Comparison of the 2D voting and luminance voting.

5 Estimating the global replacement function
global(-) by luminance voting
Recall that the global replacement function maps lumi-
nance from image to image. The estimation process involves
the voting space construction, tensor encoding and the voting
algorithm.
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Figure 3: Voting in the joint image space (I’,I). Left: the green
dots represent tensors which communicate with each other in the vot-
ing field (cyan circle). The tensors in the red box are votees, which
receive but do not cast votes. Blue arrows indicate the vote casting
directions from voters to votees in the neighborhood. Right: an en-
coded tensor in the joint image space.

5.1 Voting space construction

In the overlapping area, each pixel in the warped image
I'(-) has one corresponding pixel in the reference image I().
Therefore, we construct the joint image, (f /. I), which maps
colors between images I and I’ in the overlapping area. The
left of Fig. 3 shows one joint image, where n = 50 in this
illustration indicates the sampling density along the respective
color axes.

5.2 Tensor encoding

Once the joint image space is constructed as the voting
space, we encode each point in the joint image into a saliency
tensor. Like in the generic tensor voting, the saliency is de-
fined by some \. Initially, there is no preference of the tensor
orientation in the joint image. So we encode the point as a ball
tensor in 2D space with eigenvalues %\mm = A\min = A, and

arbitrary perpendicular eigenvectors V,,qz, Vinin, that is,

A Vinaz VL o+ Vinin VI (11)

The ball tensor turns out to be a circle as shown in Fig. 3.
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Now we set the saliency A of each saliency tensor T'(d1, d2)
in the joint image to be proportional to the instance number v,
where d; and d» are the coordinates. v is the total number of
instances for corresponding pixel pairs (I(z, ), I'(z",y")) in
overlapping area where I'(z",y") = dy and I(z,y) = ds.
Thus, we represent the equation as:

A=b+uv-As (12)
where b is the base value for each tensor, and As is the incre-
mental scale to indicate the importance of v.

After saliency tensor encoding, each point in the joint im-
age becomes a ball tensor with size (radius) equal to A as de-
fined by Eqn. (12). The following section describes our novel
voting process for inferring the optimal global replacement
function.

5.3 Luminancevoting for color compensation

The key idea of luminance voting for optimal global re-
placement inference is twofold: (1) the robust and efficient
inference by collecting tensor support in the neighborhood,
and (2) the use of the monotonic constraint. In this section,
we introduce the voting process and postpone the monotonic
constraint description to Sec. 5.4.

Color mapping is performed from I’ to I, where each I’
value maps to exact one color in /. Accordingly, instead of
performing curve extraction by generic tensor voting as re-
viewed in section 3, we apply the luminance voting process
for each discrete color in I’, and the unique optimal corre-
spondence in I is selected as the curve point for the global
replacement function (e.g., Fig. 9(c) in the result section).

Since exactly one optimal replacement color in [ is selected
from a given color I’ by the luminance voting process, other
saliency tensors of the same color value in I’, or in the same
votee column (red box in Fig. 3), do not cast vote. Instead,
they are only vote receivers or votees. Referring to Fig. 3, we
illustrate the vote casting directions from voters to votees in
the neighborhood by blue arrows.

After luminance voting, the eigensystem of the inferred
saliency tensors is computed. The value at the site with maxi-
mum curve saliency A;,qz — Amin 10 each votee column in is
adopted as the optimal curve position (the curve in Fig. 9(c)).
Note that the global replacement function is monotonic, thus
the optimality of the curve is also constrained.

5.4 Enforcing the monotonic constraint
Now, we define the monotonic constraint as follows:

Monotonic constraint Let I, I ) be the continuous joint im-
age space. if I'(z/,y}) > I'(z},yY), then I(x1,y1) >
I(@2,y2)if (z1,51) < (27, y7) and (z2,y2) < (25, 3)
are corresponding pixel pairs in overlapping area.

To enforce the monotonic constraint in luminance voting,
we propose a local fitting algorithm to refine the curve ob-
tained by tensor voting in the previous section. Two situations
to be rectified are shown in Fig. 4.

We first sort samples for each vertical column in the voting
space according to the resulting vote saliencies in descending

Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) 2-Volume Set
0-7695-1950-4/03 $17.00 © 2003 IEEE

_A - _A R
%] Q

?‘p . P3 ?‘P Pz :

.g Pl : . .§ P, . 3

A I AR Tl

s @ :| @

g g

2 &

& > & &

Warped image T’

Warped image f"
(b)

(a)

Figure 4: Starting from left to right along the I” axis, if one point Ps
in the curve is lower than some of the previous points, two situations
may happen: (a) positions of the previous m points of Ps are mis-
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~4 o o o o :A (XX} 160
v ® =0

T e e o ,' g ,o=’e e et
g ’ g L oo 120
° e o o ¢ o| eces (XX 100
° P [ ’g ecee 0000 0
° o ymm=d ° o|eepe (XX} 60
5 U 5| e ee (XX} 40
= o o e eeoe 20
R4 R Y| deooe - o

o 50 100 150 200 250' o 50 100 150 200 250'

Warped image T’ Warped image T’
Figure 5: Global replacement estimation with multiscale luminance
voting. The color of the points represents the resulting votee salien-
cies. The replacement curve inferred in the larger scale space (left)
is propagated to the next level in the smaller scale space for inferring
a more accurate curve (right). The cyan dashed curve is the inferred
replacement curve. [color coded figure]

order, and put them into a queue associated with each column.
A position index d for each sample is introduced, to indicate
the position of the sample in the column. The local fitting al-
gorithm proceeds as follows: If the position of one result point
P; is lower than P;_, iterate from highest saliency sample to
the lowest saliency sample in the queue associated to the col-
umn, and for each position index d, iterate from P; to P;_,,,
where m is a user defined parameter.

1. Consider P; in this range, we select the sub-optimal point
ij in the same column, i.e, the point with position index
d—1.

2. If j <iand PJ’- in the voting space is between P;_; and
P; in vertical position, replace PP; with Pj(.

3. If j = 4 and P} is higher than P, replace P; with P}
(Fig. 4(a)).

The iteration ends when P; > F;_;. This local fitting
algorithm usually terminates in less than three iterations
(Fig. 4(b)).

To ensure that the local fitting algorithm globally satisfies
the monotonic constraint, we start from left to right along the
I axis, and for each P; lower than P;_;, we perform the local
fitting described above until all curve points are examined.
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5.5 Thealgorithm

Finally, we summarize the overall global luminance voting
algorithm as follows:

1. Fetch a new value d; along the I -axis, and set the tem-
porary variable 5 = 0. Go to (5) if there is no more new
value.

2. Fetch a new value ds in [-axis, and generate the initial
saliency tensor at (dy, d2) in the joint image space.

3. Luminance voting with the ball voting field is used to
infer and refine the saliency tensor at (dq,ds). Let the
inferred curve saliency be s. The larger s is, the more
likely the point is on the replacement curve. If s is too
small, the point is likely to be an outlier or noise point to
be eliminated. Hence, we take s as the measurement: if
s> j,setjtobes.

4. When all tensors at votee column d; have been voted for,
set the point with maximum s in the column to be the
curve point, and go to (1). Else go to (2).

5. Run local fitting algorithm.

5.6 Multiscale luminance voting

To speed up the voting process, we apply a multiscale vot-
ing scheme to reduce the effect of noise due to misregistration
and vignettes.

The voting space can be considered as a uniformly sampled
saliency image. Hence, we apply the Gaussian pyramid algo-
rithm to construct image hierarchy such that the image of a
given level has only one fourth of the points in the next lower
level. Suppose we vote and generate the function curves in
level ¢ — 1. Only points on the curve are propagated to level ¢
for inferring a finer one. Each point in level ¢ — 1 has five cor-
responding points in next level. Therefore, in level 7, we only
need to vote for at most bn; points, where n; is the sampling
density in level 7 image. Fig. 5 shows two joint images in two
consecutive scales or levels in the Gaussian pyramid.

The global replacement results in images with similar lu-
minance. However, to better align them, we need to eliminate
vignettes as well. Based only on the knowledge of focal length
of the first reference image, we apply another voting process
to estimate the local replacement.

6 Estimating the local replacement function
local(-) by luminance voting

Local replacement function is a position dependent map-
ping. A new voting space is needed to account for position
changes in the saliency tensor encoding.

Since lens and apertures are always known to be circular
and centrosymmetric to the optical center, vignetting is a func-
tion of the distance r from the optical center, which is nor-
mally projected onto the image center. Hence, we partition
the image into uniform concentric annuli, as shown as 7; in
Fig. 6(a). Each annulus has the same width w which is anal-
ogous to uniform sampling density n in the joint image space
for global replacement estimation (Sec. 5).
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Figure 6: Multiscale voting space constructed by concentric annuli
for estimating local color compensation. (a) Voting space in lower
level with large scale. (b) Higher level with small scale. (c) Estima-
tion of vignetting by measuring the color difference.

Our new voting space is parameterized by (r, ), where r is
the mean of the inner and outer radii for each annulus, and [ is
the vignetting level for different annuli in the input image: let
the original (de-vignetted) color in the input image be C};, and
the contaminated color after vignetting be C. Then,

1=C;—C! (13)

To estimate the unknown C;, we first roughly de-vignette
the first reference image by substituting the input focal length
into the natural vignetting equation [3]. Then, C; can be re-
garded as the corresponding color in the reference image in
the overlapping area. The process is illustrated in Fig. 6(c).

Consequently, our (7, 1) space is analogous to the joint im-
age space (f ! I) for global replacement curve estimation, and
the saliency tensors are also encoded in the same way. More-
over, similar monotonic constraint also applies here, since pix-
els on the image border (large ) are darker than those near the
image center (small ). As a result, the same luminance voting
process can be applied to estimate local replacement function.

Multiscale processing can also be performed to speed up
the inference process and enhance the outlier elimination abil-
ity, as illustrated in Fig. 6(a) and (b), where the width w of
annuli for different levels is scaled, analogous to the sampling
density n in the global case. Given that width w of annuli in
the finest voting space is small enough, we densely sample the
vignetting functions which gives a good approximation for the
local replacement.

Once we have obtained both global and local replacement
functions, global(-) and local(-) (Sec. 5 and this section), we
concatenate them to estimate g(-).
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7 Discussion and results
7.1 Fast versusincremental color replacement

In Sec. 4.2, the replacement function g(-) in step (1) of
the refinement algorithm directly maps color from image I
to I, which makes the iteration rapidly terminate. We call
this fast color replacement. Unfortunately, it introduces noise
and unnatural artifacts as in Fig. 7(a), when large exposure or
white balance difference exist. To overcome this drawback,
we change the replacement function from g(-) to incremental
color replacement Ag(-), and modify step (1) in the algorithm
of Sec. 4.2 as follows:

Once we have estimated the mapping of g(I’) by ten-
sor voting (Sec. 5), we calculate the incremental replacement
function as

Ag(I) = (55) - (o)~ )+ T

(14
where At > 1 is the incremental step size to control the lumi-
nance adjustment in each iteration. Then we construct a new
input image with rectified color satisfying

w(I”(@',y") — Ag(w(I'(2",y))) = 0 (15)

(b)

Figure 7: (a) Fast versus (b) incremental color replacement. Incre-
mental replacement generates a more natural image composite.

By controlling the color increment in each iteration, noises
are more accurately eliminated, Fig. 7(b) shows a better re-
placement with intervention of At = 10.

In experiments, given moderate misregistration and large
luminance disparity, our algorithm converges in less than 10
iterations by adopting Ag in the refinement algorithm and gen-
erates seamless result mosaics. For a Pentium III 1GHz PC,
the running time of luminance voting in the joint image space
with the construction of Gaussian pyramid is less than 4 min-
utes on images with 400 x 400 overlapping pixels.
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Figure 8: Local replacement function is estimated to generate seam-
less mosaic. The reference image is roughly de-vignetted by using in-
put focal length. (a) Resulting mosaic with vignettes, intensity seam
is noticeable. (b) Initial input image. (c) Resulting image after local
replacement. (d) Resulting mosaic after local replacement.

7.2 Results

Fig. 8 shows the results of local replacement estimation.
Initially, although the global luminance for two images is quite
close, vignette is still inevitable. Therefore, we first roughly
de-vignette the reference image by the user input focal length.
Then the luminance in other input images is automatically
compensated by voting process in local replacement [4].

To illustrate the global luminance alignment process, we
use two images that are locally aligned and roughly registered,
as shown in Fig. 9(a). The corresponding joint image space is
plotted in Fig. 9(b) which contains a large number of noise and
holes (e.g., no point instance in some votee columns), mainly
caused by misregistration. Moreover, to demonstrate the ro-
bustness of our method, we add Gaussian noise of mean 0 and
variance 5 to the space. After luminance voting, a monotonic
curve is generated as shown in Fig. 9(c). All noise points are
eliminated, and all holes are filled. The replacement function
converges in § iterations. The in-between and final curves are
also plotted in Fig. 9(c) for reference. The final seamless result
is shown in Fig. 9(d).

8 Conclusion

We have described a novel and robust approach, luminance
voting, to address the problem of global and local luminance
alignment for image registration. Our method globally and
locally adjusts luminance of two overlapping images, with-
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Figure 9: Luminance voting example. (a) Input mosaic with large exposure difference and some misregistration. (b) The luminance voting
space (joint image space) is already very noisy and contains discontinuities. To demonstrate the robustness of our approach, we further add
Gaussian noise of mean 0 and variance 5. (c) The global replacement curve refinement process. (d) The final seamless and globally aligned

mosaic.

out assuming complex camera model or any simplifying as-
sumptions other than the monotonic constraint. Our iterative
scheme converges quickly, thanks to the robust estimation of
the replacement functions by tensor voting. Compared with
other techniques, luminance voting is novel as it provides a
fundamentally different approach to perform luminance align-
ment, and effective since an optimal function under the mono-
tonic constraint is obtained. In the whole process, only a rough
focal length for the first reference image is required. Our fu-
ture work focuses on integrating the robust voting into the im-
age registration process in the presence of moving objects, and
on applying it to image-based applications.
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