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Abstract—This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our

modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the

robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed.

Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness

constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications

using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes,

where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the

presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion

which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial

constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting

framework, when only two defective input images are given.

Index Terms—Image correction and recovery, color transfer, replacement functions, applications.
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1 INTRODUCTION

TO successfully generate a visually acceptable or seamless
mosaic from a few images, many registration methods

[26], [27], [22], [32] have been proposed which align images
taken under a subclass of camera motions. However, in the
registration process, the environment illuminance (or bright-
ness) recorded by a moving/rotating camera is often
inconsistent, even for a static scene. Exposure variation and
other camera internal parameters further complicate the light
recording process, causing abrupt color transition from one
image to another. Image formation is related to several factors
that influence the scene radiance recorded in cameras [11]:

. Exposure variance: In a complex environment, a
moving/rotating camera can automatically adapt
to different lighting conditions via controlling the
shutter speed and aperture size. This automatic
adaptation leads to intensity inconsistency of corre-
sponding pixels among captured images.

. White balance: It is a function of digital camera which
performs chromatic adjustment so that theobject color
remains invariant under different lighting conditions.

. Gamma correction: It is related to the mapping from
the received analog illuminance signal to the digital
pixel color produced by a photosensitive sensor. It is
a nonlinear response function.

. Vignetting: It indicates the unintended darkening at
image corners in a photographic image. Some
different image formation mechanisms may account
for vignetting [24]. Natural and optical mechanisms

inherent in many lens designs are usually the main
factors to cause vignettes. Mechanical vignetting is
due to the use of improper lens attachment. The
formula of natural vignetting can be written as [11]:

Vm ¼ Vo � cos4 tan�1 r

f

� �� �
; ð1Þ

where Vm is the illuminance measured by the sensor,
Vo is the incoming illuminance, r is the distance of
the pixel from the optical center of the image, and f
is the focal length. In mosaics construction, images
are overlapped. Any unnatural darkening around
boundaries cannot go unnoticed.

. Digitizer parameters: Different digitizers may use
different A/D conversion techniques which compli-
cate the image formation process and generate
nonlinear response.

When two overlapping images are aligned, in order to
eliminate seams and artifacts due to the above factors,
feathering [27] can be applied to blend the two images
locally around the overlapping region. Alternatively, a
model for the response function [28] can be estimated to
correct the exposure differences only when several images
are taken of a static scene.

In this paper, we propose an effective approach to address
color or intensity disparity when two or more overlapping
images are registered. Inspired by 2D tensor voting, we
propose amodeless approach for replacement function estima-
tion. Our intensity alignment robustly removes image out-
liers and estimates an optimal mapping function for global
and local intensity replacement. The optimality is subject to
the only monotonic constraint, i.e., higher exposures should
always generate brighter pixel colors andvice versa. In image
mosaicking, unlike the algorithm in [11], we only need the
focal length of the first image to roughly eliminate natural
vignetting. No other curve or simplified model is assumed.
Our estimated replacement functions are integrated into an
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iterative scheme,where refinements inwarping function and
replacement function are alternately performed until con-
vergence. Moreover, we also propose an occlusion detection
method (Section 7.2) to address the inherent color incon-
sistency problem in the presence of occluding objects.

Another important contribution of our method is the
application of image intensity compensation. Given only
two defective photographic images taken continuously with
different exposure time by hand-held cameras, we can
successfully generate a corrected image with crisp edges
and appropriate intensities (Section 7.3).

1.1 Notations in This Paper

For ease of reference, Table 1 tabulates some important
notations and terminologies used in this paper. Iðx; yÞ is the
pixel color in position ðx; yÞ of an image I. The correspond-
ing scene illuminance V , recorded by image I, satisfies

I ¼ uðV Þ; ð2Þ

where uð�Þ is the response function [28] which can be further
decomposed as ðf � kÞð�Þ. fð�Þ is called the global response
function, which collectively characterizes exposure, white
balance, gamma correction, and digitizer parameters.
Vignetting, being a position variant quantity, is addressed
by the local response function kð�Þ. Thus, global response
function fð�Þ describes global color mapping process, that
is, if two pixels receive the same amount of light in one
image, they have the same color value irrespective of their
positions in the image plane. On the other hand, local
response function kð�Þ is related to pixel positions: The pixels
around image borders are darker than those at the image
center, even if incoming irradiance is of similar brightness.
In this paper, we do not explicitly estimate uð�Þ. Instead, the

replacement function gð�Þ is our goal. gð�Þ directly measures the
color difference between images. The relationship between
gð�Þ and uð�Þ is analyzed in Section 4.1.

1.2 Organization of This Paper

The rest of this paper is organized as follows: Section 2
discusses and compares related work and overviews our
contributions. In Section 3, we review the tensor voting
algorithm. Section 4 provides an overview of our iterative
scheme which alternates the estimation of registration and
color replacement. In Sections 5 and 6, we describe the
details of estimating the global and local response function
algorithms. We present applications of our voting approach
in Section 7. Finally, we discuss our method in Section 8 and
conclude our paper in Section 9.

The preliminary version of this paper appears in [14],
where the tensor voting approach for intensity (luminance)
alignment is presented in the context of image alignment
and mosaicking. In this paper, besides that more algorith-
mic details are explained, we extend our estimated
replacement functions to the following useful applications
and provide pertinent technical contributions:

. image mosaicking: for static scenes [14] and scenes
with occluding objects.

. image correction: image intensity compensation and
high contrast image correction.

2 RELATED wORK

There are two classes of studies related to our method:
mosaic registration with exposure transition or correction
across images and radiometric calibration. Related works in
image mosaicking and image correction will be reviewed in
their application context in Section 7.

2.1 Mosaic Registration with Exposure Correction

Manyadvancedregistrationmethodshavebeendeveloped in
recentyears.To correct the exposuredifference, oneapproach
is to blend pixel colors in overlapping area. Videomosaic [25]
is a registration algorithm to estimate homography by the
Levenberg-Marquardt method. To reduce visible artifacts, it
blends overlapping areas by a bilinear weighting function.
However, some “mottling” spots still remain under different
exposures. In [27], a feather-based algorithm can be used for
better blending effect, but anunnatural seam is still inevitable
under different lighting conditions. Burt and Adelson [2]
made use of a multiresolution spline to perform blending.
Uyttendaele et al. [29] used a block-basedmethod to compute
the response function for mapping illuminances. By using
averaging and interpolation functions, a more natural
transition is achieved in their results. One disadvantage of
these methods is that they assume the images are already
correctly registered. Moreover, blending is performed by
applying a transfer function at the overlapping area only. The
frameworks themselves do not have global intensity correc-
tion or any optimization process for improving alignment
accuracy. It is therefore difficult to adapt these methods into
ourproposedalternating registrationand intensity correction
scheme, which uses an optimization framework and offers
significant advantages to be described.

In [5], Davis proposed a global consistent registration
method which reduces blurry regions by extended phase
correction with the assumption of orthogonal projection.

JIA AND TANG: TENSOR VOTING FOR IMAGE CORRECTION BY GLOBAL AND LOCAL INTENSITY ALIGNMENT 37

TABLE 1
Notations Used in This Paper



Our approach can also be applied to mosaicking in the
presence of occluding objects while no such assumption is
required. In fact, due to the variety of occlusions, phase
correction does not work well in general situations.

2.2 Radiometric Calibration

The other class of approach to eliminate the intensity
difference is radiometric calibration [20], [6], [17], [28],
[16]. By taking several static images with different
exposures, response function uð�Þ or its inverse u�1ð�Þ is
estimated to generate high dynamic range images. In [20],
u�1ð�Þ is modeled as a high-order polynomial I ¼
u�1ðV Þ ¼

PN
n¼0 cn V n. Hence, calibration is viewed as

determining the order N and coefficients cn. Tsin et al.
[28] adopted a noise contaminated pattern and used the
maximum-likelihood method to estimate uð�Þ. However,
these methods are usually applied to static scenes with
certain imaging or noise model assumption. Additional
knowledge, such as exposure information [6], is required.
Given only two unregistered images with a single
overlapping area, these methods cannot be directly
applied in image registration and estimation process.
Our method does not explicitly infer the response
function uð�Þ. Instead, we formulate the problem as
color/intensity mapping in order to improve the align-
ment between images.

In [12], radiometric calibration is performed to model the
camera and eliminate senor noises. In [23], a 360 degree, high
dynamic range mosaic has been produced by adding a
spatially varying filter to the camera. Hasler and Susstrunk
[11] combined image registration and camera internal
parameters estimation into one optimization process and
globally eliminate intensity difference between images.
However, they assume that the parametric models, such as
gammacorrection andvignettingof the camera, areknown.A
parametric approach for the development and assessment of
the accuracy of vignetting correction procedures is proposed
in [7]. In [19], the generated color images are analyzed. After
identifying specific features, the exposure level is adjusted
according to a camera response function.

3 REVIEW OF 2D TENSOR VOTING

In this section, we give a concise review on 2D tensor voting
[18]. Our approach consists of curve extraction and noise
elimination, by associating a symmetric tensor representation
for each input token. We employ a voting algorithm for

“communication” among tokens: Discrete tokens lying on a
smooth curve should mutually reinforce each other after
“communication,” while tokens not forming any smooth
structure should not. Given two overlapping images I
(reference image) and ~I 0I 0 (warped image), a token is a point
in the joint image space ð~I 0I 0; IÞ. Our voting field is a dense tensor
field for postulating smooth connections among tokens,
which imposes the necessary smoothness constraint for
estimating a replacement function in the joint image space,
to guarantee natural color transition (see Fig. 9c for tokens in
the joint image space andFig. 9d for a smooth curve example).
Tensor and voting are brought together by a voting field.

In 2D structure inference, we seek to answer the following
geometric question: Suppose there exists a smooth curve
connecting the origin O and a point P . Suppose also that the
normal ~NN to the curve atO is known. What is the most likely
normal direction at P? Fig. 1a illustrates the situation.
Without a priori assumption, the osculating circle connecting
O andP is chosen to be themost likely connection [18] since it
minimizes the total curvature along thehypothesizedcircular
arc. This constant curvature connection thus implicitly
encodes the smoothness constraint. The most likely normal
is given by the normal to the circular arc at P (thick arrow in
Fig. 1a). The strength of this normal is made to decay
according to the following function:

DF ðr; ’; �Þ ¼ e�
r2þc’2

�2

� �
; ð3Þ

where r is the arc length OP , ’ is the curvature, c is a
constant which controls the decay with high curvature, and
� controls smoothness, which also determines the neighbor-
hood size within which tokens communicate. Thus, the
proximity and smoothness constraints are encoded by the
above decay function.

If we consider all locations of P in the 2D space, the
resulting set of normal directions produced constitutes the
2D stick voting field, Fig. 1b. Note that � is the only free
parameter.

Let usdescribe the basic case:Given an input tokenA, how
do we cast vote to another token B for inferring a smooth
connection between them, assuming that A’s normal is
known. This is concerned with token communication and is
implemented by the following voting algorithm. First, we fix
� to determine the size of the voting field. Then, we align the
voting field, by translation and rotation, with A’s normal, as
shown in Fig. 1b. IfB iswithinA’s voting field neighborhood,
B receives a stick vote ½vx vy�T from the aligned field. Tensor
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Fig. 1. (a) Design of the 2D stick voting field, (b) how a voter A casts a stick vote to vote receiver (votee) B, and (c) the 2D ball voting field, obtained

by rotating and integrating the 2D stick voting field.



voting is thus similar to convolution and the voting field is

like a convolution mask, except that the voting result is not a

scalar. Other input tokens cast votes to B as well. Second

order tensor sums of all votes received atB are collected into a

covariance matrix

S ¼
P

v2x
P

vxvyP
vyvx

P
v2y

� �
:

The corresponding eigensystem consists of two eigenva-
lues, �max � �min � 0, and two corresponding eigenvectors,
êemax and êemin. As a result, S can be rewritten as

S ¼ �maxemaxe
T
max þ �minemine

T
min

¼ ð�max � �minÞêemaxêe
T
max þ �minðêemaxêe

T
max þ êeminêe

T
minÞ:

êemaxêe
T
max is a stick tensor, with êemax indicating curve normal

direction. êemaxêe
T
max þ êeminêe

T
min is a ball tensor. �max � �min is

called the curve saliency. When �max � �min, it indicates a

high likelihood that a smooth curve passes through the point.
Initially, we do not know the normal direction toA. In this

case, we shall estimate it first. It is performed by voting with

the 2D ball voting field, Fig. 1c. The ball voting field is

obtained by rotating and integrating (by tensor sum) the vote

contribution of a rotating 2D stick voting field. The 2D ball

voting field is then aligned with A (along an arbitrary

direction since its normal is unknown), using exactly the

same voting process and collection described above. After

decomposing the collected tensor into the corresponding

eigensystems, the curve normal is given by êemax of the

collected tensor S.
In color replacement estimation, since curve normals are

not known initially, we use the 2D ball voting field to
estimate curve normals and curve saliencies at each discrete
site in the joint image space. Afterward, the 2D stick voting
field is adopted to propagate the smoothness constraint
along the tangent directions for estimating a smooth curve. It
is more effective than voting on scalar saliencies alone,
where no direction information is utilized.

4 OUR APPROACH

As reviewed in Section 1, the global and local response
functions complicate the color recording process, which
varies from image to image. The analysis here assumes
intensity images. For color images, our algorithm operates
on the three channels separately. Since we always have one
image as reference, the color shifting effect is minimized in
the optimization process.

4.1 Analysis

Consider two overlapping images, I and I 0, taken under
different exposures. If I and I 0 are correctly registered, the
warping function wð�Þ transforms the original input image
to the warped one, i.e., ~I 0I 0ðx00; y00Þ ¼ wðI 0ðx0; y0ÞÞ, so that I
and ~I 0I 0 are correctly aligned. Suppose ðx; yÞ in I and ðx00; y00Þ
in ~I 0I 0 are corresponding pixels in the overlapping area of the
two images. The relationship between their corresponding
incoming illuminance is given by

V ðx; yÞ ¼ t ~V 0V 0ðx00; y00Þ; ð4Þ

where t is the exposure ratio, and it is determined by the
exposure time of each image. Therefore, we have:

Iðx; yÞ ¼ uIðV ðx; yÞÞÞ
¼ uIðtu�1

~I 0I 0
ð~I 0I 0ðx00; y00ÞÞÞ ð5Þ

¼ gð~I 0I 0ðx00; y00ÞÞ ð6Þ
¼ gðwðI 0ðx0; y0ÞÞÞ; ð7Þ

where uI and u~I 0I 0 may not be the same response function and
gð�Þ is called the replacement function. Thus, the relationship
between gð�Þ and uð�Þ can be represented as gð�Þ ¼ uIðtu�1

~I 0I 0
ð�ÞÞ.

If I and I 0 are not correctly registered, we need to
estimate not only the replacement function gð�Þ which
measures the exposure and radiometric differences between
images, but also the warping function wð�Þ to match
corresponding pixels. Accordingly, the cost function to be
minimized for image I and I 0 is:

min
X

ðIðx; yÞ � gðwðI 0ðx0; y0ÞÞÞÞ2: ð8Þ

The simultaneous estimation of gð�Þ andwð�Þ is a nonlinear
andunderconstrained optimization problemwithout a priori
model assumption of the two sets of parameters. In our
method, we estimate and refine them alternately.

Givenanestimationof replacement functiongð�Þwithrespect
to a certain warping function w, in order to simplify (8), we
construct a new intensity adjusted image I 00, which satisfies

wðI 00ðx0; y0ÞÞ ¼ gðwðI 0ðx0; y0ÞÞÞ: ð9Þ

As a result, the intensity distance between I 00 and I is
shortened and (8) can be written as:

min
X

ðIðx; yÞ � wðI 00ðx0; y0ÞÞÞ2; ð10Þ

which can be solved as a normal image registration process.
We give the I 00 construction process as follows:

. Since gðwðI 0ðx0; y0ÞÞÞ ¼ gð~I 0I 0ðx00; y00ÞÞ and gð�Þ models
the intensity replacement quantity between images,
we construct another warped image ~I 00I 00ð�Þ which
satisfies

~I 00I 00ðx00; y00Þ ¼ gð~I 0I 0ðx00; y00ÞÞ:
. Inversely warp ~I 00I 00ðx00; y00Þ by the same w to construct

new input image:

I 00ðx0; y0Þ ¼ w�1ð ~I 00I 00ðx00; y00ÞÞ:

Therefore, constructing image I 00 simplifies the registra-
tion equation. Alternatively, if the warping function w has
been estimated (that is, I and I 0 are roughly registered), we
can determine the replacement function gð�Þ directly by tensor
voting (Section 4.3).

The above analysis of (8) leads us to decouple the
estimation processes of wð�Þ and gð�Þ. Accordingly, we
propose the refinement algorithm to alternately solve the
two subproblems.

4.2 Refinement Algorithm

Initially, we assume gð�Þ is an identity mapping function to
start the registration process. The algorithm then proceeds
as follows:
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1. Fixing the estimated gð�Þ and the corresponding wð�Þ,
we construct a new input image I 00 which adjusts
color according to gð�Þ, and satisfies (9).

2. Solve the registration problem in (10). Many
methods can be used to tackle the normal homo-
graphy estimation problem to refine the warping
function wð�Þ [26], [27], [32]. In our experiment, the
robust 3-parameter rotational model together with
local alignment [27] is adopted, which rapidly
converges to the correct solution even in the
presence of some parallax.

3. Once the above registration is done, the warping
matrix wð�Þ is obtained. Accordingly, we turn to solve

min
X

ðIðx; yÞ � gð~I 0I 0ðx00; y00ÞÞÞÞ2 ð11Þ

to determine the replacement function gð�Þ
(Section 4.3).

4. Repeat Steps 1, 2, and 3 until the difference of gð�Þ in
the last two iterations falls into the tolerance range.

The flowchart of the algorithm is shown in Fig. 2.
If the two imagesdonot roughlyalignwith eachother after

the first registration step, it will mislead the following
intensity correction steps and the convergence will be
seriously affected. There are several cases that make the
registration step in Step 2 fail to produce a reasonable wð�Þ:
large intensity difference or occlusion, insufficient over-
lapping area, and thepresence of largeparallax.Among these
factors, when occlusion occurs, we propose a detection
algorithm to solve the convergence problem, which is
depicted in Section 7.2.

4.3 Algorithm Outline for Estimating gð�Þ
Since the estimation of gð�Þ is subjected to noise, uncertain-
ties, and misalignment in overlapping area of images, Step 3
in the refinement algorithm is most crucial. We assume no
model for the replacement function and make use of
information of pixel colors between images only.

Just like fð�Þ and kð�Þ in the response function uð�Þ, which
maps from illuminance to pixel color, we decompose the
replacement functions into the corresponding global and
local components, say, globalð�Þ and localð�Þ, which map
from image to image in the overlapping area. The global
replacement function globally maps colors between images,
while the local replacement function corrects the vignetting
effect for each image.

Recall that vignettes are the gradual and slight darkening
around imageborders. It is lessproblematic to the registration
accuracy than an erroneous global replacement function. For
this reason, we perform global replacement function estima-
tion first and regard any vignettes as noise or outliers in the

estimation process. After that, thelocal replacement function
is estimated in the input images. The final replacement
function gð�Þ is constructed by compositing them, i.e.,

ðreplacement functionÞ gð�Þ ¼ globalðlocalð�ÞÞ: ð12Þ

Fig. 2 shows the gð�Þ estimation process (dark rectangle).
Note that the only input value to the algorithm is the
approximate focal length of the first reference image in
order to roughly counteract initial vignettes in local
replacement function estimation.

To apply the voting process in the image space without a
model and fitting assumption, we propose a robust tensor
voting approach to estimate globalð�Þ and localð�Þ, which is
derived from the generic 2D tensor voting. Table 2 compares
the original 2D tensor voting and intenisty voting.

5 ESTIMATING THE GLOBAL REPLACEMENT

FUNCTION globalð�Þ BY TENSOR VOTING

Recall that the global replacement function maps intensity
from image to image. The estimation process involves the
voting space construction, tensor encoding, and the voting
algorithm.

5.1 Voting Space Construction

In the overlapping area, each pixel in the warped image ~I 0I 0ð�Þ
has one corresponding pixel in the reference image Ið�Þ.
Therefore, we construct the joint image, ð~I 0I 0; IÞ, which maps
colors between images I and ~I 0I 0 in the overlapping area. The
left of Fig. 3 shows a typical joint image, where n ¼ 50 in this
illustration indicates the sampling density along the
respective color axes. That is, only a subset of intensity
levels f0; 50; 100; 150; 200; 250g � ½0; 255� is considered as
voters in tensor voting to speed up processing (all other sites
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Fig. 2. Overview of our approach.

TABLE 2
Comparison of the 2D Tensor Voting and This Paper



are votees). We shall describe in Section 5.6 the typical
choices of n.

5.2 Tensor Encoding

Once the joint image space is constructed as the voting space,
we encode each point in the joint image into a saliency tensor.
Similar to the original tensor voting, the saliency is defined by
some �. Initially, there is no preference of the tensor
orientation in the joint image. So, we encode the point as a
ball tensor in 2D spacewith eigenvalues �max ¼ �min ¼ � and
arbitrary perpendicular eigenvectors êemax; êemin, that is,

� êemaxêe
T
max þ êeminêe

T
min

� �
: ð13Þ

This ball tensor turns out to be a circle as shown in Fig. 3.
Now, we set the saliency � of each saliency tensor

Sðd1; d2Þ in the joint image to be proportional to the
instance number v, where d1 and d2 are the joint image
coordinates. v is the total number of instances for
corresponding pixel pairs ðIðx; yÞ; ~I 0I 0ðx00; y00ÞÞ in an over-
lapping area where ~I 0I 0ðx00; y00Þ ¼ d1 and Iðx; yÞ ¼ d2. Thus,
our first proposal on the saliency definition is:

� ¼ bþ v ��s; ð14Þ

where b is the base value for each tensor and �s is the
incremental scale to indicate the importance of v.

Since the local response function is estimated after the
global one, we import some decay function here. Instead of
using the simplified factor of v ��s to roughly counteract
the noise caused by natural vignette, we calculate the
Taylor’s expansion of natural vignetting given by (1) and
get the vignetting factor for each pixel in image:

EmðrÞ � Eo � 1þ 1

2
� 4

f

� �2

�r2 þOðr2Þ
 !

: ð15Þ

Combining the weight of �s and the approximation of
natural vignette EmðrÞ which replaces the fixed incremental
scale in (14), we get:

� ¼ bþ
X
v

�s

1þ 1
2 � 4

f

� �2
�r2 þOðr2Þ

: ð16Þ

We can set f as 50 or the same as the given input reference
image focal length. In our experiments, the setting of the focal
length f is not critical to the robust tensor voting process.

After saliency tensor encoding, each point in the joint
image becomes a ball tensor with size (radius) equal to �, as
defined by (14). The following section describes our voting
process for inferring theoptimal global replacement function.

5.3 Tensor Voting for Color Compensation

Tensor voting infers an optimal global replacement function
by collecting tensor support in the neighborhood and
making use of the monotonic constraint. In this section, we
describe the voting process and postpone the description of
monotonic constraint to Section 5.4.

Colormapping is performed from ~I 0I 0 to I,where eachvalue
of ~I 0I 0 maps to exactly one color in I. Curve inference by tensor
voting is performed, where the eigensystem of the inferred
saliency tensors at each discrete point in the joint image is
computed.Thevalueat the sitewithmaximumcurve saliency
�max � �min in each votee column is chosen as the optimal
curve position (the curve in Fig. 9c). Since exactly one optimal
replacement color in I is selected for a given color ~I 0I 0 by the
tensor voting process, other saliency tensors of the same color
value in ~I 0I 0 (or in the same votee column in Fig. 3) do not cast
vote. Instead, they are only vote receivers or votees. Referring
toFig. 3,we illustrate thevotecastingdirections fromvoters to
votees in the neighborhood by black arrows.

5.4 Enforcing the Monotonic Constraint

Now, we define the monotonic constraint as follows:

. Monotonic constraint: Let ð~I 0I 0; IÞ be the continuous
joint image space. Given that ðx1; y1Þ $ ðx1

00; y1
00Þ and

ðx2; y2Þ $ ðx2
00; y2

00Þ are corresponding pixel pairs in
overlapping area. If ~I 0I 0ðx1 00; y100Þ > ~I 0I 0ðx2

00; y2
00Þ, then

Iðx1; y1Þ > Iðx2; y2Þ.
In other words, the replacement curve has nonnegative
gradient at each point.

To enforce the monotonic constraint in tensor voting, we
propose a local fitting algorithm to refine the curve obtained
in the previous section. Two situations to be rectified are
shown in Fig. 4.

Let Pi be a point in the joint image voting space with
coordinate ðxi; yiÞ. Recall that, for each column xi, we select a
unique optimal point P �

i with coordinate ðxi; y
�
i Þ, where the

corresponding tensor has themaximumvote saliency among
all tensors in the same column. Given two neighboring curve
points P �

i and P �
i�1, if y

�
i < y�i�1, monotonicity is violated.

To rectify it, for each column xi, we first sort all tensors in
nonincreasing order of vote saliency and keep the sorted list
as Li. Afterward, the local fitting algorithm proceeds as
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Fig. 3. Voting in the joint image space ð~I 0I 0; IÞ. Left: The gray dots represent
tensors which communicate with each other in the voting field (black
circle). The tensors in the votee column (inside the dark box) receive votes
but do not cast votes. The black arrows indicate the vote cast by voters in
the neighborhood. Right: An encoded ball tensor in the joint image space.

Fig. 4. Starting from left to right along the ~I 0I 0 axis, if one pointP3 in the curve
is lower than some of the previous points, two situations may happen:
(a) Positions of the previousm points ofP3 aremisestimated to be too high
and (b) the position of P3 is a wrong estimation, which is too low.



follows: Suppose P �
i is lower than P �

i�1, our process iterates
column xv from xi to xi�m, where m is a user-defined
parameter. In each iteration:

1. Consider P �
v in the current pass. We select the

suboptimal point P 0
v in the same column, i.e., the

point following P �
v in list Lv.

2. If xv ¼ xi and P 0
v is higher than P �

v , replace P �
v with

P 0
v. If y

�
i � y�i�1, the iteration ends.

3. If xv < xi and P 0
v is between P �

v�1 and P �
v in vertical

position in the voting space, replace P �
v with P 0

v. If
y�i � y�i�1, the iteration ends.

To ensure that the local fitting algorithm globally satisfies
themonotonic constraint, we start from left to right along the
~I 0I 0 axis and, for each P �

i , lower than P �
i�1, we perform the local

fitting described above until all curve points are examined.

5.5 The Algorithm

Finally, we summarize our global intensity voting algo-
rithm as follows:

1. Tensor construction: For each ðxi; yiÞ, where 1 	 i 	
bD=nc, D is the color depth, and n is the sampling
density or step size, we construct a ball tensor (with
�max ¼ �min ¼ �) according to (14).

2. First pass tensor voting: For each column xi, tensor
voting is performed in the whole space. All tensors in
column xi only receive votes, while others vote to
them. Curve normal (denoted by êemax) and vote
saliency (�max � �min) are inferred at each point.

3. Second pass tensor voting: For each column xi, tensor
voting is runwith the stick voting field by aligning the
fieldwith each curve normal to reinforce curve points
andsuppressothers.Tensors incolumnxi onlyreceive
votes, while all others cast votes to them. Result
saliency salð�Þ is obtained at each site. The larger sal is,
themore likely thepoint is on the replacement curve to
be inferred.Onthecontrary, ifsal is toosmall, thepoint
is likely to be an outlier or noise point to be eliminated.
Hence, we regard the position where the correspond-
ing tensor has largest saliency in column xi as the
optimal curve point P �

i .
4. Run the local fitting algorithm.

5.6 Multiscale Voting

The voting space can be considered as a uniformly sampled
saliency image. In a large overlapping area, the intensity
data are dense (Fig. 9b). The size of voting fields is not

required to be very large. Normally, a 9
 9 field is used.
Using this voting field, a typical sampling density n is 1. For
highly contaminated data, we can increase the voting field
size to enforce more smoothing.

In ourmethod, in order to speed up the voting process, the
multiscale voting scheme is adopted, which also helps to
reduce theeffect ofnoisedue tomisregistrationandvignettes.

We apply the Gaussian pyramid algorithm to construct
an image hierarchy. The number of pixels at level i is one
quarter of the number at level i� 1 (or, equivalently, n is
two times larger). The size of the voting field differs by a
factor of two in each successive level.

Suppose we vote and generate the function curves in
level i� 1 (coarse scale). Only points on the curve are
propagated to level i (fine scale) for inferring a finer one.
Each point in level i� 1 has five corresponding points in
next level. Therefore, in level i, we only need to vote for at
most 5ni points, where ni is the sampling density in level i
image. Fig. 5 shows two joint images in two consecutive
scales or levels in the Gaussian pyramid.

The global replacement function corrects input images
withcompatible intensities.However, tobetteralignthem,we
need to eliminate vignettes as well. Based only on the
knowledge of focal length of the first reference image only,
we apply another voting process to estimate the local
replacement function.

6 ESTIMATING THE LOCAL REPLACEMENT

FUNCTION localð�Þ BY TENSOR VOTING

The local replacement function is a position dependent
mapping. A new voting space is needed to account for
position changes in the saliency tensor encoding.

Since lenses and apertures are known to bemostly circular
and centrosymmetric to the optical center, vignetting is a
function of the distance r from the optical center, which is
normally projected onto the image center. Accordingly, we
partition the image into uniform concentric annuli, shown as
Ti in Figs. 6a and 6b. Each annulus has the same width w,
which is analogous to uniform sampling density n in the joint
image space for global replacement estimation (Section 5).

Our new voting space is parameterized by ðr; lÞ, where r is
themean of the inner and outer radii for each annulus and l is
thevignetting level fordifferent annuli in the input image: Let
the original (devignetted) color in the input image be Ci and
the contaminated color after vignetting be C0

i. Then,

l ¼ Ci � C0
i: ð17Þ

To estimate the unknown Ci, we first roughly devignette
the first reference image by substituting the input focal length
into the natural vignetting equation ((1) in [11]). Then,Ci can
be regarded as the corresponding color in the reference image
in the overlapping area. The process is illustrated in Fig. 6c.

Note that the two dimensions of the ðr; lÞ space are quite
different in their measurement and unit. In order to unify
the metric so that points in the space can be encoded as
homogeneous tensors (along the two dimensions), we
should perform normalization in the space. The procedure
is as follows:

1. Measure the longest distance rmax from a corner to
the center of the image, i.e., half of the diagonal
length of the image. Therefore, rmax indicates the
resolution of the annuli.
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Fig. 5. Global replacement estimation with multiscale voting. The gray
scale of the points represents the resulting votee saliencies. The
replacement curve inferred in a coarse scale space (a) is propagated to
the next level in a fine scale space for inferring a more accurate
curve (b). The dashed curve is the inferred replacement curve.



2. Compare all values of l in the overlapping area and
select the largest one as lmax. The unit is pixel.

3. Normalize l to l0: l0 ¼ l rmax

lmax
in quantity measurement.

Therefore, we normalize the 2D voting space such that the
maximumvalues and quantization intervals for both axes are
uniform. The ðr; l0Þ space is therefore analogous to the joint
image space ð~I 0I 0; IÞ for global replacement curve estimation
and the saliency tensors are thus encoded in the same way.

Moreover, similar monotonic constraint can also be
applied here since pixels on the image border (large r) are
darker than those near the image center (small r). As a
result, the same tensor voting process can be applied to
estimate local replacement function.

The same multiscale processing can be performed to
speed up the inference process and enhance the outlier
elimination ability, as illustrated in Figs. 6a and 6b,where the
width w of annuli for different levels is scaled, analogous to
the sampling density n in the global case. Given that the
width w of annuli in the finest voting space is small enough,
we densely sample the vignetting functions to give a good
approximation for the local replacement.

Once we have obtained both global and local replace-
ment functions, globalð�Þ and localð�Þ (Section 5 and this
section), we concatenate them to estimate gð�Þ.

7 APPLICATIONS

Our global and local replacement approach by tensor voting
is applied to the following practical applications: image
mosaicking and color correction. The key idea is to adapt
our replacement function estimation into each application
in order to vote for the functions accordingly. For RGB
images, tensor voting is performed on the three channels
separately. In our final result, the three channels are scaled
according to the proportion of mean values between the
final corrected image gð~I 0I 0ðx00; y00ÞÞ and reference image I to
minimize the color shifting effect.

For each application, the technicalities involved will be
described. Note that image mosaicking requires an iterative
scheme since the warping function wð�Þ needs to be

estimated alternately with gð�Þ. Image correction only
requires the estimation of gð�Þ. Therefore, noniterative
intensity voting for function estimation is sufficient.

7.1 Image Mosaicking of Static Scenes

Fast versus incremental color replacement. In Section 4.2,
the replacement function gð�Þ in Step 1 of the refinement
algorithm directly maps color from image ~I 0I 0 to I, which
makes the iteration rapidly terminate. We call this fast color
replacement. Unfortunately, for image mosaicking, fast
replacement introduces unnatural artifacts, as in Fig. 7a,
when large exposure or a white balance difference exists. To
overcome this problem, we change the replacement func-
tion from gð�Þ to incremental color replacement �gð�Þ and
modify Step 1 in the algorithm of Section 4.2 as follows.

Once we have estimated the mapping of gð~I 0I 0Þ by tensor
voting (Section 5), we calculate the incremental replacement
function as

�gð~I 0I 0Þ ¼ 1

�j

� �
� gð~I 0I 0Þ � ~I 0I 0
� �

þ ~I 0I 0; ð18Þ

where �j > 1 is the incremental step size to control the
intensity adjustment in each iteration. Then, we construct a
new input image with rectified color satisfying

wðI 00ðx0; y0ÞÞ ��gðwðI 0ðx0; y0ÞÞÞ ¼ 0: ð19Þ

By controlling the color increment in each iteration,
noises are more effectively eliminated. Fig. 7b shows a
better replacement with intervention of �j ¼ 10.

In our experiments, given moderate misregistration and
large intensity disparity, our algorithm converges in less than
10 iterations by adopting�g in the refinement algorithm and
generates seamless mosaics. For a Pentium III 1GHz PC, the
running timeof tensor voting in the joint image spacewith the
construction of Gaussian pyramid is less than 4 minutes on
images with 400
 400 overlapping pixels.

Fig. 8 shows the results of local replacement estimation.
Initially, although the global intensity for the two images is
quite close, vignette is still noticeable. Therefore, we first
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Fig. 6. Multiscale voting space constructed by concentric annuli for
estimating local color compensation. (a) Voting space in a coarse scale.
(b) Voting space in a fine scale. (c) Estimation of vignetting by
measuring the color difference. Fig. 7. (a) Fast versus (b) incremental color replacement. Incremental

replacement generates a more natural image composite.



roughly devignette the reference image by the user input

focal length. Then, the intensity in other input images is

automatically compensated by the voting process in local

replacement.

To illustrate the global intensity alignment process,weuse

two images that are locally aligned and roughly registered, as

shown in Fig. 9a. The corresponding joint image space is

plotted in Fig. 9b, which contains a large amount of noise and
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Fig. 8. The local replacement function is estimated to generate a seamless mosaic. The reference image is roughly devignetted by using input focal
length. (a) Result mosaic with vignettes: the intensity seam is noticeable. (b) Initial input image. (c) Result image after local replacement. (d) Result
mosaic after local replacement.

Fig. 9. Intensity voting example. (a) Input mosaic with large exposure difference and misregistration. (b) The final seamless and globally aligned
mosaic. (c) The points in the tensor voting space (joint image space) are very noisy. The gray scale indicates the curve saliency �max � �min at all
sites after applying tensor voting. (d) The global replacement curve refinement process in the green channel.



holes (e.g., no point instance in some votee columns), mainly

caused by misregistration. Moreover, to demonstrate the

robustness of our method, we add Gaussian noise of mean 0

and variance 5 to the space. After tensor voting, a monotonic

curve is generated, as shown in Fig. 9c. All noise points are

eliminated and all holes are filled. The intermediate and final

curves are also plotted in Fig. 9c for reference. The final

seamless result is shown in Fig. 9d.
The panorama in Fig. 10 shows the ability of our

algorithm to register a large number of images and to

simultaneously compensate intensity or color difference

globally and locally. They are aligned image-by-image.
The robustness of feature enhancement is the major

advantage in our voting process. We observe that color/

intensity inconsistency (Fig. 11) is more detrimental than

image noise due to the measurement process in mosaics

construction or image registration. To illustrate this phenom-

enon,weuse several frames captured froma lowqualityWeb

camera, where the noise level is quite high. Significant

flickering is observed in the image sequence. Fig. 11a shows

that, without any color/intensity correction, the resulting

mosaic cannot be correctly registered in the presence of a

large amount of image noise. We perform the global color

correction andpresent result in Fig. 11b.Without large color/

intensity differences, the images are successfully aligned.

Note that several image filters can be employed here to

eliminate noises. However, they are not performed in this

example to show the raw output of our method.

7.2 Image Mosaicking in the Presence of
Occluding Objects

In this section,we extendour intensity correction approach to
perform imagemosaicking in the presence of large occluding

objects. For instance, as shown in Fig. 12, given an image pair
containing global intensity disparity, we want to remove
occlusion so as to construct a visually seamless mosaic.

In practice, the occlusion cannot be simply distinguished
directly by taking the intensity difference. The initial
misalignment further complicates this problem. Thus, in
most cases, to detect and eliminate occlusion, it is often
assumed that the images are already correctly aligned and

no intensity discrepancy exists [29].
As mentioned in Section 7.1, in most cases, our algorithm

converges in less than 10 iterations, resulting in a roughly

diagonal curve in the voting space. Nevertheless, when our
algorithm does not converge, severe misalignment exists
which may be caused by large occlusion. This effect is
manifested into a partial intensity change that cannot be

corrected in the global voting process. One example is shown
as the oscillatory curve in Fig. 12d.

According to this observation, we can detect occlusions
between images in our framework. To further deocclude
them, we make an assumption that the occluding object is
nearly piecewise constant in color (such as the human
figure shown in Fig. 12), which guarantees that the
occlusion does affect registration accuracy and is distin-
guishable from small misalignment of images or noises.
Specifically, if our method cannot converge after some
iterations, the following algorithm is triggered:
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Fig. 10. The top and bottom show the result of constructing large mosaics without and with color alignment, respectively. The same image registration
methods are applied without color blending. With our global and local color compensation, the final mosaic has significant improvement in quality.



1. Calculate the color difference between two corre-
sponding pixels in the overlapping area (at positions
returned after several iterations) and generate a new
image I0. That is, I0ðx; yÞ ¼ jIðx; yÞ � wðI 0ðx0; y0ÞÞj. I0
is shown in the top of Fig. 13. Note that the large
values in I0 are either caused by occlusion (the
human) or misregistration (the shrub).

2. Now, I0 contains color differences for all pixels which
need to be grouped into different regions according to
their values. Accordingly, we adopt the mean shift
method [4] to perform thegrouping and segmentation
on these images for the following steps.

3. Weassociate each region ri in I0withaweight,defined
as wri ¼

P
Nri

sri , where Nri is the pixel number of
regions ri and sri is the pixel value. The regions are
then sorted according to w in descending order.

4. The following iterations are performed until
converegence:

a. Denote the region in I0 with the largest w by R0,
and map the region into original I and I 0. Let R
and R0 be the mapped regions in I and I 0,
respectively. For example, in Fig. 13, the white
region in the top image is mapped to two
different regions on the bottom images, which
are indicated by the arrows as shown.

b. Remove R and R0 from I and I 0, respectively,
which are classified as occlusion instead of
intensity disparity.

c. Align the two images again. If convergence
tolerance has not been reached, go to Step 4a.

5. Finally, the user can choose which image (I or I 0) is
to be outputted in the converged overlapping area.

Alternatively, it can be determined by certain user-
defined weighting function proportional to the
region sizes R and R0. We show our result in Fig. 14.

Since ourmethodonly removes homogeneous regions one
at a time in each iteration in Step 4, the algorithmcontinues on
improving the image alignment while large color-inconsis-
tent regions are removed gradually. Our multiscale voting
scheme can handle large holes resulting from region removal
and the convergence condition is similar to that of the static
scenes. Furthermore, we still use the local fitting algorithm to
enforce monotonicity requirement. Fig. 14 shows the con-
verged replacement function curve in the green channel.

Note that this algorithm does not cause any damage to
the overlaid result. In addition, we do not distinguish the
occluded or occluding objects. The output mosaics simply
represent the final result with maximum color/intensity
consistency. We use a single occluding object in our
examples to facilitate the depiction. However, the method
can be generalized to more of them.

In somecases, due to camera shakeor scenemovement, the
occluding objects may not be projected into a sharp image. In
the following section,wedescribe another application related
to motion deblurring, which can be applied before employing
the above image mosaicking technique.

Again, our proposed method on image intensity com-
pensation also utilizes the tensor voting framework.

7.3 Image Intensity Compensation

Acquiring crisp images in dim light with a hand-held
camera is difficult. In this section, we propose a novel
method using tensor voting to perform intensity correction.
Given two defective images I 0 and I: I 0 is taken with almost
instantaneous exposure time. Thus, I 0 is an underexposed
image with unacceptable colors (too dark), but is largely
free of motion blur. I is a normal image acquired under an
extended period of exposure time. The color and brightness
of I is acceptable, while it is blurry due to camera or scene
movement. The two images are taken successively so that
their image centers are almost the same.

46 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 1, JANUARY 2005

Fig. 11. Intensity correction for noisy images. These images are obtained
from an inexpensive Web camera where a large amount of random noise
is present. The top image is themosaic constructedwith the original image
sequence, while the bottom one is generated after our color correction.
Better alignment, as well as the intensity transition, is achieved.

Fig. 12. Mosaicking with a large occluding object. (a) and (b) are two
input images, where (b) contains a large partial occlusion. (c) Image
registration with occlusion. (d) After several iterations, the replacement
function curve in the green channel is still fluctuating.



Our goal is to infer a color mapping function g such that
the resulting image IC is constructed by applying g to the
underexposed image I 0, that is, ICðx; yÞ ¼ gðI 0ðx; yÞÞ.

We propose encoding color matches and spatial structures
of I and I 0 as tensor saliencies and show that our tensor
voting approach for replacement function estimation can be
readily adapted to image intensity correction. Most pre-
vious works achieve the goal by blind deconvolution, under
different assumptions on point spread functions (PSFs) [9],
[31], [15], [30]. However, these point spread functions are
sometimes very difficult to estimate: In a single image,
different parts of the scene may require different PSFs.
Alternatively, by making use of additional hardware, Ezra
and Nayar [1] proposed a hybrid system consisting of a
primary camera (of high spatial resolution) and a secondary
camera (of high temporal resolution) to estimate motion
directions. Our proposed approach does not directly deblur
images. Instead, by using replacement functions, we
robustly estimate intensity compensation from I 0 to I with
the following constraints.

Color matches by histogram equalization. Since a scene
with higher brightness always generates brighter pixels [10],
the colors in I 0 and I can be matched in descending order of
pixel intensity values. We use histogram equalization to
estimate color mappings. The converted histogram is then
encoded intoasetoffðcmL ; cmHÞg

D
m¼1,whereD is thecolordepth.

Spatial constraints by oversegmentation and region
matching. Since the two images are taken successively,
there exists a strong spatial constraint between them. Given
a homogeneous image region, we observe that the color
toward the center of the region is less affected by blurring
than the region boundary.

To perform region matching, we first oversegment I so
that each region in I contains similar colors. Afterward, we
perform morphological eroding with the same set of
parameters for each region in I. The total number of
iterations to completely erode the regions is recorded. Then,
we sort all iteration numbers in descending order and select
the first M regions as the most possible candidates. The
positions of these region centers are selected as matching
positions. Finally, we pick pixel pairs fðsmL ; smHÞg

M
m¼1 in I and

I 0 in the matching positions.

Inference of replacement function. The set of joint images
fðcmL ; cmHÞg [ fðsmL ; smHÞg obtained above corresponds to color
matching and spatial constraints, indicating higher confi-
dence for the underlying replacement function curve to pass
through.Weencodeball tensorswith larger saliencies at these
positions, while smaller saliencies are for all others. Finally,
the similar noniterative tensor voting in the joint image space
ðI 0; IÞ is performed to infer the replacement function g. Note
here that the voting space is less complicated than ð~I 0I 0; IÞ for
image mosaicking because no warping is necessary in this
application.

In our previous work [13], a Bayesian approach was
proposed for two-image deblurring, also using two defec-
tive images. In algorithmic terms, our current approach
uniformly transforms the color statistics and spatial con-
straints into soft constraints for voting in the joint image
space, by increasing the saliency of the encoded tensors. In
[13], the likelihood and prior density functions are
separately modeled, taking proximity and correspondence
uncertainty into consideration, whereas here tensor voting
elegantly encodes them uniformly into its voting fields.
Comparable results are produced in both methods.

Results. We show two results on image intensity
compensation given two imperfect images due to camera
shaking and scene movement.

The bridge example in Fig. 15 shows the ability of our
method to optimally combine the color information from two
input images. Our resulting image IC is very crisp and clear,
as shown in Fig. 15c. The two input images in Figs. 15a and
15bare takenwith shutter speeds 1

30 s and
1
2 s, respectively. The

replacement function curves for the three channels inferred
by tensor voting are shown in Fig. 15d. Note that the shape of
the replacement function curves is very different from that in
Fig. 9 because the two input images in this example have very
large intensity disparity.

Our method also effectively addresses the problem of

object movement or deformation when the object move-

ment is too fast for normal exposure interval. Fig. 16

illustrates one experiment. The input image taken with

normal exposure is locally blurred, that is, the underlying

PSF has no uniform representation in the whole image,

making deconvolving methods vulnerable to failure. In our

method, by slowing down the camera shutter speed by

three stops, we produce an improved IC with a largely

reduced blurring effect.

7.4 High Contrast Image Correction

The above idea of image intensity correction given two

defective images can be applied to correct high contrast
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Fig. 14. The deocclusion result. Occlusion is detected and removed in
our tensor voting framework. The converged replacement function curve
in the green channel is also shown.

Fig. 13. The matching process. A region in the top image can be
mapped to different regions in the original images. We regard regions in
the bottom images as mapped ones if they cover more than 90 percent
of all pixels in the region in the top image.



scene as well. Again, two images I 0 and I are successively

taken, where I is a saturated image. The joint image space is

still ðI 0; IÞ.
The only modification to deal with high contrast scenes

is the use of the color transfer function in [21] instead of

histogram equalization, where no limit is imposed on the

maximum value of the transferred color. In our method, all

nonsaturated pixels in I are used for color transfer to I 0.

After applying [21], the mapping result of I 0 exceeds the

color depth, which extends the saturated pixels to larger

color values. Thus, we construct a higher range image to

reveal details in both bright and dark regions. The same

tensor voting is used to infer the resulting replacement

function. In the whole process, the saturated pixels which

encode improper values are not taken into consideration.
We present our results in Fig. 17: Figs. 17a and 17b are I

and I 0, respectively, and Fig. 17c is reconstructed by setting

gð�Þ as the original histogram equalization function where

most details are buried in saturated white papers. Fig. 17d

is our final result with enhanced colors and details by

modifying gð�Þ to use the color transfer method in [21].

Obviously, characters are preserved in white papers. Tone

mapping [8] is performed to display the image we

constructed in Fig. 17d.
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Fig. 15. Bridge example of image correction. (a) and (b) are the two input images. (c) Shows our corrected result. (d) Shows the inferred replacement

function curves for the three channels.

Fig. 16. Walking example. (a) and (b) are input images. Our result is shown in (c), which demonstrates that local blurring in images can be naturally

handled. (d) Shows the voted replacement function curves for the three channels using our approach.



8 DISCUSSION

8.1 Direct Estimation versus Tensor Voting

Tensor voting plays an important role in our method to
estimate a correct intensity replacement curve. This method
is analogous to the Markov Random Field (MRF) assump-
tion [3], where neighbors can give some potential support
for each site, either positive or negative.

There are two main steps in the tensor voting method to
facilitate curve extraction in the voting space. The first is the
encoding process to enrich an input site which does not
have any orientation information initially. In the joint image
or voting space, each site is associated with a 2D ellipse
(initially, a circle, represented by arbitrary orthonormal
eigenvectors). The other main step is the voting process,
which is analogous to applying the MRF rule: By gathering
neighborhood information for each site, the resulting space
ultimately amplifies the support of true data points, while
noises are suppressed at the same time.

Furthermore, our voting method infers new intensity
values subject to the smoothness (voting field) and the
monotonic constraints (local fitting algorithm) which are
imposed on the result replacement curve. As shown in the
previous application sections, tensor voting is robust to a
large amount of noise.

We give an illustration to compare between our tensor
voting method and direct estimation, where the estimated
replacement function only makes use of existing intensities.

The direct estimation below is a curve extraction process
without tensor voting. We perform the following steps for
all points in the same joint image space:

1. For each site in the space, we attach an instance
number h, which is the total number of instances of
ð~I 0I 0ð�Þ; Ið�ÞÞ in the overlapping area (as described in
Section 5.2).

2. In each votee column xk (Fig. 3), we simply compare
h for all sites and select the site with the largest value
h. That is,

P �
k ¼ fðxk; y

�
kÞjhðxk; y

�
kÞ > hðxk; ykÞ

for all 1 	 yk 	 bD=ncg:
3. Other procedures, such as local fitting and iteration,

remain the same, as stated in the previous sections.
The replacement function thus obtained is used in
global intensity correction.

Therefore, the only difference between direct estimation
and tensor voting is the voting process. We show our
comparison in Fig. 18. By simply considering the maximum
h in each column in the 2D space, we cannot distinguish
noise from true data points. This noise may be generated by
misregistration, image noise, and occlusion. Consequently,
the “recolored” image contains unnatural transition and
error replacement (Fig. 18). Through our tensor voting, the
noisy data are refined by collecting neighborhood support,
which reinforces a site if it is very likely to be correct (that is,
lying on a smooth and monotonic curve). The tensor voting
result was already shown in Fig. 9.

9 CONCLUSION

We have described a unified and robust approach that uses
tensor voting to address the problem of global and local
intensity alignment for image registration. Our method
globally and locally adjusts intensities of two overlapping
images, without assuming a complex camera model or any
simplified assumptions other than the monotonic constraint.
Our iterative scheme converges quickly, thanks to the robust
estimation of the replacement functions by tensor voting.
Compared with other techniques, tensor voting is novel as it
provides a fundamentally different approach to performing
intensity alignment and effective since an optimal function
under the monotonic constraint is obtained. In the whole
process, only a rough focal length for the first reference image
is required. We have applied our voting methodology to a
variety of applications: image mosaicking of static scenes,
image mosaicking in the presence of occluding objects,
intensity compensation, and correcting saturated images.
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Fig. 17. Image correction for a high contrast scene using our voting
approach. (a) I has a saturated area. Part of the color is acceptable, but
the image is too blurry. (b) I 0 has sharp structure information, but it is too
dark. (c) The result produced by applying a conventional histogram
equalization as preprocessing where most details are buried in saturated
white papers. (d) Our final result IC , where pixel intensity values are
enhanced. As a result, fine details are preserved, especially in the
originally saturated area. The bottom left images are selected enlarged
portions from (c) and (d).

Fig. 18. Comparison between tensor voting and direct estimation by

using the same example as in Fig. 9. In both figures, we compensate

for the intensity disparity and generate recolored images. Here,

intensity artifact is obvious. Fig. 9 shows the intensity with natural

transition, where the final curve is also smoother.
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