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Abstract. Under dimly lit condition, it is difficult to take a satisfac-
tory image in long exposure time with a hand-held camera. Despite the
use of a tripod, moving objects in the scene still generate ghosting and
blurring effect. In this paper, we propose a novel approach to recover
a high-quality image by exploiting the tradeoff between exposure time
and motion blur, which considers color statistics and spatial constraints
simultaneously, by using only two defective input images. A Bayesian
framework is adopted to incorporate the factors to generate an optimal
color mapping function. No estimation of PSF is performed. Our new
approach can be readily extended to handle high contrast scenes to re-
veal fine details in saturated or highlight regions. An image acquisition
system deploying off-the-shelf digital cameras and camera control soft-
wares was built. We present our results on a variety of defective images:
global and local motion blur due to camera shake or object movement,
and saturation due to high contrast scenes.

1 Introduction

Taking satisfactory photos under weak lighting conditions using a hand-held
camera is very difficult. In this paper, we propose a two-image approach to
address the image recovery problem by performing intensity correction. In order
to exploit the tradeoff between the exposure time and the blurring degree of the
captured images, we take the two input images using the same camera with the
following exposure settings:

– One image IL is taken with exposure time around the safe shutter speed1,
producing an under-exposed image where motion blur is largely reduced.
Since it is too dark, the colors in the image are not acceptable (Fig. 1(a)).

� This work is supported by the Research Grant Council of Hong Kong Special Ad-
ministration Region, China: HKUST6193/02E.

1 In photography, the safe shutter speed is assumed to be not slower than the reciprocal
of the focal length of the lens, in the unit of seconds [1]. The longer the exposure
time, the blurrier the image becomes.
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(a): (C):(b):IL IH IC

Fig. 1. We take two successive images with different exposure intervals to construct
the high-quality image.

– The other image IH is a normal image acquired under an extended exposure
time. The color and brightness of this image is acceptable. However, it is
motion blurred because of camera shaking or moving objects in the scene
(Fig. 1(b)).

The images can be taken by a hand-held camera, and possibly in a dimly
lit condition. Combining these two defective images IL and IH , our method
automatically generates a clear and crisp image IC , as shown in Fig. 1(c).

There are several related techniques to recover images from camera when
exposure time is above the safe shutter speed. They can be roughly classified
into in-process and post-process approaches, which eliminate motion blur due to
long exposure and camera shake. In-process approaches are mainly hardware-
based techniques, where lens stabilization is achieved by camera shake compensa-
tion [8,9]. Alternatively, CMOS cameras can perform high-speed frame captures
within normal exposure time, which allows for multiple image-based motion blur
restoration [11]. These methods are able to produce clear and crisp images, given
a reasonable exposure time. However, they require specially designed hardware
devices.

On the other hand, post-process methods are mostly motion deblurring tech-
niques. Among them, blind deconvolution is widely adopted to enhance a single
blurred image, under different assumptions on the PSF [6,15,10,14]. Alterna-
tively, several images with different blurring directions [12] or an image se-
quence [2] is used, in more general situations, to estimate the PSF. In both
cases, due to the discretization and quantization of images in both spatial and
temporal coordinates, the PSF can not be reliably estimated, which produced a
result inferior to the ground truth image if available (which is an image either
taken with a camera on a tripod, or of a static scene).

Ezra and Nayar [3] proposed a hybrid imaging system consisting of a primary
(high spatial resolution) detector and a secondary (high temporal resolution)
detector. The secondary detector provides more accurate motion information to
estimate the PSF, thus making deblurring possible even under long exposure.
However, the method needs additional hardware support, and the deblurred
image can still be distinguishable from the ground truth image.

Because of the weakness of the debluring methods, we do not directly perform
deblurring on IH . Instead, an image color correction approach is adopted. By
incorporating the color statistics and the spatial structures of IH and IL, we
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propose a Bayesian framework, and maximize the a posterior (MAP) of the
color mapping function f(·) from IL to IH in the color space so that the under-
exposed IL is enhanced to a normally exposed image IC .

Our method can deal with camera shake and object movement at the same
time, and in an unified framework. Moreover, change of object topology or object
deformation can also be naturally handled, which is difficult for most deblurring
methods, since different parts of the object have different PSFs. Besides, by
slightly modifying one constraint, our method can be extended to deal with high
contrast scenes, and automatically produce images which capture fine details in
highlight or saturated area.

The rest of this paper is organized as follows: we describe our image acquisi-
tion system in Section 2. Section 3 defines the relationship between IL and IH . In
Section 4, we state and define our problem, propose our probabilistic model, and
infer the color mapping function in the Bayesian framework. Section 5 presents
our results. Finally, we conclude our paper in Section 6.

2 Image Acquisition

To correctly relate two images, we require that IL be taken almost immediately
after IH is taken. This is to minimize the difference between the two images
and to maximize the regional match of the positions of each pixel if the time
lapse is kept as short as possible, as illustrated in Fig. 2(a). In other words,
the under-exposed image IL can be regarded as a sensing component in the
normally exposed image IH in the temporal coordinates. This requirement makes
it possible to reasonably model the camera movement during the exposure time,
and constrain the mapping process.

Our image acquisition system and its configuration is in Fig. 2(b). The digital
camera is connected to the computer. The two successive exposures with different
shutter speeds are controlled by the corresponding camera software. This setup

tshorttlong

interval camera connection

(a) (b)

Fig. 2. (a) Two successive exposures guarantee that the center of the images do not
vary by too much. (b) The configuration of our camera system.
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frees the photographer from manually changing the camera parameters between
shots. So that s/he can focus on shooting the best pictures.

A similar functionality, called Exposure Bracketing, has already been built
in many digital cameras, e.g., Canon G-model and some Nikon Coolpix model
digital cameras. With one shutter pressing, two or three successive images are
taken with different shutter speeds under the same configurations. However,
using the built-in camera functionality has some limitations: it does not operate
in manual mode, and the difference of shutter speeds is limited.

In the next section, we analyze the relationship between IL and IH , and
propose the constraints that relate these two images.

3 Relationship between IL and IH

IL and IH are two images of the same scene taken successively with different ex-
posures. Therefore, they are related not only by the color statistics, but also by
the corresponding spatial coherence. In this section, we describe their relation-
ship, which are translated into constraints for inferring a color mapping function
in our Bayesian framework, which will be described in the next section.

3.1 Color Statistics

In RGB color space, important color statistics can often be revealed through
the shape of a color histogram. Thus, the histogram can be used to establish
explicate connection between IH and IL. Moreover, since high irradiance always
generates brighter pixels [7], the color statistics in IL and IH can be matched
in order from lower to higher in pixel intensity values. Accordingly, we want to
reshape the histogram of IL, say, hIL

, such that:

g(hIL
) .= hIH

(1)

where g(·) is the transformation function performed on each color value in his-
togram, and hIH

is the histogram of IH . A common method to estimate g(·)
is adaptive histogram equalization, which normally modifies the dynamic range
and contrasts of a image according to a destination curve.

Unfortunately, this histogram equalization does not produce satisfactory re-
sults. The quantized 256 (single byte accuracy) colors in each channel are not
sufficient to accurately model the variety of histogram shapes. Hence, we adopt
the following method to optimally estimate the transformation function:

1. Convert the image from RGB space to a perception-based color space lαβ [4],
where the l is the achromatic channel and α and β contain the chromaticity
value. In this way, the image is transformed to a more discrete space with
known phosphor chromaticity.

2. Accordingly, we cluster the color distributions in the new color space into
65536 (double byte precision) bins, and perform histogram equalization.

3. Finally, we transform the result back to the RGB space.

By performing this transformed histogram equalization, we relate the two
images entirely in their color space.
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3.2 Color Statistics in High Contrast Scene

In situations that the images are taken in a high contrast scene, bright regions
will become saturated in IH . Histogram equalization can not faithfully transfer
colors from IL to IH , especially in the saturated area, which not only degrades
the structured detail in the highlight region, but also generates abrupt changes
in the image color space. To solve this problem, the color mapping function
g(·) described in section 3.1 needs to be modified to cover a larger range. In our
experiments, we adopt the color transfer technique in [13] in this situation. It also
operates on image histogram, which transfers the color from the source image
to the target by matching the mean and standard deviation for each channel.
It has no limit on the maximum value of the transferred color since the process
is actually a Gaussian matching. In our method, all non-saturated pixels in IH

are used for color transfer to IL. After applying [13], the mapping result of IL

exceeds the color depth (that is, above 255), and extends the saturated pixels
to larger color values. Hence, we construct a higher intensity range2 image to
reveal details in both bright and dark regions.

3.3 Spatial Constraint

The statistics depicted above does not consider any temporal coherence between
IH and IL. However, since the two images are taken successively, there is a strong
spatial constraint between IH and IL.

Let us consider the situation that a region contains similar color pixels, Fig.
3(a) shows a region from the original image, while Fig. 3(b) shows the same
region taken with motion blur. The yellow dots mark the region centers. The
lower curves show pixel colors along one direction. From this figure, we can
observe that the color toward the center of the region is less affected by blurring,
given that the region area is sufficient large and homogeneous. Additionally, the
consistency of colors in the region also guarantees that the color of central pixels
can be matched. Therefore, we adopt the following region matching method to
robustly select matching seeds in IH and IL:

1. Over-segment IH such that each region Rm(IH) contains similar colors (Fig.
4(a)).

2. To sort all regions according to the homogeneity and size, we perform the
same morphological eroding operation for each region Rm(IH), and record
the number of iterations to completely erode it and the region centers which
are the last few pixels in the eroding process for each region. Fig. 4(b) shows
an intermediate image in the eroding process.

3. We sort all iteration numbers in descending order, and select the first M
regions as the most possible candidates. As a result, the positions of these
region centers are selected as matching positions. Finally, we pick out pixel
pairs {cm

L , cm
H} in IH and IL in the matching position and calculate the

value for each cm as a Gaussian average of the colors of neighboring pixels,
2 We do not construct HDR since we do not perform radiometric calibration
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(a) (b)

center of corresponding
regions

color variety of largest
motion direction

Fig. 3. Matching homogeneous region in blurred situation. (a) original homogeneous
region. (b) blurred region. Color towards the center is less influenced by blurring.

(a) (b) (c)

Fig. 4. Region matching process. (a) Initial segmentation. (b) In the eroding process,
small regions are filled quickly. (c) The final selected regions, in which the red dots
represent the selected region centers after eroding.

where the variance is proportional to the iteration numbers. We illustrate
the selected region centers as red dots in Fig. 4(c), which are in the largest
and most homogeneous M regions.

The matching process implies that an ideal color mapping function should
robustly transform some matching seeds colors in IL to those in IH . In the
next section, we propose our Bayesian framework which incorporates the two
constraints, color and spatial, into consideration, so as to infer a constrained
mapping function.

4 Constrained Mapping Function

We define the color mapping function f(�i) = �′
i, where �i and �′

i are color
values in the two sets respectively. Accordingly, the resulting image IC is built
by applying f(·) to the under-exposed image IL: IC(x, y) = f(IL(x, y)), where
Ik(x, y) is pixel values in image Ik. Note that the form of f(·) is constrained by
both IL and IH .

In Bayesian framework, we maximize the a posterior probability (MAP) to
infer f∗ given the observations from IL and IH :

f∗ = arg max
f

p(f |IL, IH) (2)
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In section 3, we observe two kinds of connections between IL and IH . One
is color statistics which can be described by two histograms hIL

and hIH
of

IL and IH respectively. The other is region matching constraint which can be
represented by a number of M corresponding matching color seeds {cm

L , cm
H}M

m=1
between IL and IH . In our formulation, we regard them as our constraints and
rewrite (2) as:

f∗ = arg max
f

p(f |hIL
, hIH

, {cm
L , cm

H}M
m=1)

= arg max
f

p(hIL
, hIH

, {cm
L , cm

H}M
m=1|f)p(f) (3)

Next, we define the likelihood p(hIL
, hIH

, {cm
L , cm

H}M
m=1|f), and the prior p(f).

4.1 Likelihood

Since we perform global matching in discrete color space, f is approximated by
a set of discrete values f = {f1, f2, . . . , fi, . . . , fN}, where N is the total number
of bins in color space. Hence, the likelihood in Eqn. (3) can be factorized under
the i.i.d. assumption:

p(hIL
, hIH

, {cm
L , cm

H}M
m=1|f) =

N∏

i=1

p(g(�i), {c̄i
L, c̄i

H}|fi) (4)

where g(�i) is a function to transform hIL
to hIH

at color value �i. The c̄i
L is the

most similar color to �i in color seeds set {cm
L }M

m=1, and c̄i
H is the corresponding

color of c̄i
L in color seed pairs.

According to the analysis in section 3, g(�i) and {c̄i
L, c̄i

H} are two constraint
factors for each fi. Both of their properties should be maintained on the map-
ping function. As a consequence, we balance the two constraints and model the
likelihood as follows:

p(g(�i), {c̄i
L, c̄i

H}|fi) ∝ exp(−||fi − (αg(�i) + (1 − α)c̄i
L)||2

2σ2
I

) (5)

where the scale α weights these two constraints, and σ2
I is a variance to model

the uncertainty of two kinds of constraints. The larger the value of α is, the
smaller the confidence of the matching seed pairs. We relate α to the following
factors:

– The distance ||�i − c̄i
L||. Large distance indicates weak region matching con-

straint, which makes α approach to 1. Hence, the α is inversely proportional
to this distance.

– The uncertainty of correspondence in matching color pair {c̄i
L, c̄i

H}. As de-
picted in section 3.3, the larger the matching region size is, the larger confi-
dence we can get from the region center for the matching colors. Hence, we
define uncertainty σc to be proportional to the region size for each matching
color.
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(b)

(d)(c)

(a)

Fig. 5. Puppies. (a) Input blurred image. (b) Our result. (c) Color transfer result [13].
(d) Result of Gamma correction by 2.5. Better visual quality and more details are
achieved by using spatial constraint in our framework.

Combining these two factors, we define α as:

α = exp(−σ2
c ||�i − c̄i

L||2
2β2 ) (6)

where β is the scale parameter to control the influence of α.

4.2 Prior

As a prior, we enforce the monotonic constraint on f(·), which maintains the
structural details in IL. In addition, to avoid abrupt change of the color mapping
for neighboring colors, we require that f(·) be smooth in its shape. In this paper,
we minimize the second derivative of f :

p(f) ∝ exp(− 1
2σ2

f

∫
(f

′′
)2)

∝ exp(− 1
2σ2

f

∑

i

(fi−1 − 2fi + fi+1)2) (7)

where σ2
f is the variance to control the smoothness of f .
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(a) (b)

(c) (d)

Fig. 6. Rock example of image correction. The upper two images are input defective
images. (c) is our result. (d) is the ground truth. Note the histograms in (c) and (d)
are much closer than those in (a) and (b). However, because of the quantization error
and large exposure difference between IL and IH , they can not be identical in shapes.

4.3 MAP Solution

Combining the log likelihood of Eqn. (4) and the log prior in Eqn. (7), we solve
the optimization problem by minimizing the following log posterior function:

E(f) = −
∑

i

log p(g(�i), {c̄i
L, c̄i

H}|fi) − log p(f) (8)

where E(f) is a quadratic objective function. Therefore, the global optimal map-
ping function f(·) can be obtained by the singular value decomposition (SVD).

Although the monotonic constraint is not enforced explicitly in Eqn. (7), we
find the smoothness constraint is sufficient to construct the final monotonic f in
our experiments.

5 Results

We evaluate our method in difficult scenarios to show the efficacy of our ap-
proach. The results are classified into 4 different groups as follows, all of them
are illustrated in color:
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Fig. 7. Doll example. The upper two images are our input. Our result is the left bottom
image, which indicates that local blurring in images can be naturally handled.

5.1 Bayesian Color Mapping versus Other Adjustment Techniques

The two constraints described in section 3 are both essential in our method.
They optimize the solution in two different aspects cooperatively. Therefore, the
combination and balance of these constraints guarantee the visual correctness of
our method. Fig. 5 compare our result with that from pure color transfer method
[13] and adaptive histogram equalization. We take the first two images in Fig. 1
as input. They are taken with shutter speed 1

30 s and 1
1.6 s respectively. Fig. 5(b)

is generated with our method. Fig. 5(c) and (d) are the results of pure color
transfer and gamma correction. Clearly, Fig. 5(b) has higher visual quality, and
the colors are closest to the input image in Fig. 5(a).

5.2 Motion Blur Caused by Hand-Held Camera

The rock example in Fig. 6 shows the ability of our method to optimally combine
the color information of the two input images. Unlike other deblurring methods,
the resulting edges are very crisp and clear. The two input images (a) and (b)
are taken with shutter speeds 1

40 s and 1
3 s respectively. (c) and (d) are our color

mapped image IC and ground truth with their corresponding histograms. The
ground truth is taken by using a tripod. Note that colors are visually and sta-
tistically close.
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(a) (b)

(c)

(d)

Fig. 8. Image correction for high contrast scene. (a) IH , which has a large saturated
area. (b) IL has clear structure information. (c) The result produced by applying
original histogram equalization. (d) Our final result IC where pixel intensity values are
enhanced and fine details are maintained. The bottom left images are selected enlarged
portions of IC .

5.3 Motion Blur Caused by Objects Movement

Another strength of our method is that we can easily solve the object movement
or deformation problem if the object movement is too fast in normal exposure
interval. Fig. 7 illustrates one experiment. The input normal exposure image
is locally blurred, i.e., PSF has no uniform representation in the whole image,
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which easily makes deconvolving methods fail. In our method, by reducing the
camera shutter speed by 4 stops, we produce IC with largely reduced blurring
effect.

5.4 High Contrast Scene

As described in section 3.2, for high contrast scene, we modify the statistical color
mapping function from adaptive histogram equalization to the color transfer
function [13] in the framework. We present our results in Fig. 8. (a) and (b) are
input IH and IL, respectively, and (c) is reconstructed by setting g(·) as the
original histogram equalization function. (d) is our final result with enhanced
colors and details by modifying g(·) to use the color transfer method in [13].
Tone mapping [5] is performed to display the image we constructed in (d).

6 Conclusion

In this paper, we propose a Bayesian approach to combine two defective images
to construct a high quality image of the scene, which may contain moving ob-
jects. No special hardware is built to compensate camera shake. Instead, a color
mapping approach is adopted. Yet our color mapping is constrained by spatial
details given by the under-exposed image, and thus differs from and improves on
previous pure color transfer techniques. By properly formulating color statistics
and spatial constraints, and incorporating them into our Bayesian framework,
the MAP solution produces an optimal color mapping function that preserves
structural details while enhancing pixel colors simultaneously. Using only two
images in all our experiments, we produce a high quality image, and largely
reduce the shutter speed by 3 to 4 stops to enhance the image quality in dim
light.

However, the color statistics is largely dependent the image quality of the
camera. If the dark image contains a large amount of noise, the contaminated
information needs to be treated first. One solution is taking more under-exposed
images to reduce noise level. Another issue is the search for spatial correspon-
dence in the presence of fast movement of camera or objects. These issues will
be investigated in future work.
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