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Abstract

Conventional stereo matching algorithms assume color
constancy on the corresponding opaque pixels in the stereo
images. However, when the foreground objects with frac-
tional boundary are blended to the scene behind using un-
known alpha values, due to the spatially varying disparities
for different layers, the color constancy does not hold any
more.

In this paper, we address the fractional stereo match-
ing problem. A probability framework is introduced to
establish the correspondences of pixel colors, disparities,
and alpha values in different layers. We propose an auto-
matic optimization method to solve a Maximum a posteri-
ori (MAP) problem using Expectation-Maximization (EM),
given the input of only a narrow-band stereo image pair.
Our method naturally encodes pixel occlusion in the formu-
lation of layer blending without a special detection process.
We demonstrate the effectiveness of our method using diffi-
cult stereo images.

1. Introduction

Stereo matching has been an essential research topic in
computer vision, and has been made rapid and significant
progress in recent years [11, 17, 20]. Most conventional
two-frame stereo matching approaches compute disparities
and detect occlusions assuming that each pixel in the input
image has a unique depth value.

However, this representation has limitation in faithfully
modeling objects with fractional boundaries where pixels
are blended to the scene behind. Directly applying previous
stereo matching methods on ubiquitous hairy objects may
produce problematic disparities. One example is shown in
Fig. 1 where the input images (a) and (b) contain a hairy
fan in front of a background with similar colors. The result
generated from the stereo matching method [11] is shown in
(c). The disparities are incorrect along the fan’s boundary
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Figure 1. A stereo image pair containing a hairy object. (a) and (b)
Input stereo images containing a hairy fan. Notice that the colors
of the background scene and the hairy fan are similar. (c) Stereo
matching result from Sun et al’s method [11]. Because of the color
blending, the assumption of color constancy is invalid along the
boundary of the fan, making the result problematic. (d) The stereo
matching result obtained from our approach. The hairy structure
is successfully preserved. (e) The computed alpha matte of the fan
using our method. (f)-(h) Magnified regions of the results.

without considering color blending.
Recent development on stereo matching algorithms par-

tially generalizes the above assumption and introduces the
transparency constraints. Szeliski et al. [13] propose to
solve the stereo matching problem with opacity using mul-
tiple input images where the color and transparency refine-
ment are formulated as a non-linear minimization problem.
However, their method has difficulties to deal with objects
containing thin and long hairs or with complex alpha matte
given a small number of input images. Assuming a bi-
nary reflection map model, Tsin et al. [17] propose to es-
timate the front translucent and rear background layers us-



ing Graph Cuts. The pixel colors are further computed by
iteratively reducing an energy in multi-frame configuration.
This method is not applicable to objects with general frac-
tional boundary. Both of the above methods require mul-
tiple input images in order to obtain satisfactory disparity
maps.

In this paper, taking the input of only a narrow-band
stereo image pair captured in a scene where the hairy ob-
jects are in front, we neatly formulate the estimation of
alpha values, disparities, and pixel colors in a probability
framework. It is solved using Expectation-Maximization
method. In our method, the color correspondences are es-
tablished on the blended layers respectively. The two pro-
cesses of transparency optimization and disparity estima-
tion boost each other, effectively reducing the disparity er-
rors. We show the disparity map and the alpha matte com-
puted using our approach in Figure 1 (d) and (e) respec-
tively. The comparison of the disparities are illustrated in
(f) and (g). The estimated alpha matte of the fan shown in
(e) and (h) is visually satisfying given the complex struc-
tures in the input images.

Our method also contributes a nice implicit formulation
of pixel occlusion. In conventional stereo matching, since
each pixel has at most one disparity value, the occlusion
needs to be defined separately on pixels having no corre-
spondences [11]. In our approach, any pixel in the layer of
the scene behind the hairy objects can be partially occluded,
entirely occluded, or unoccluded according to the degree of
transparency. The three situations can be naturally encoded
using alpha values without a special treatment.

The rest of the paper is organized as follows. Section 2
reviews previous work on stereo matching and digital image
matting. We introduce our model and notations in Section
3. The detailed optimization process is described in Section
4. In Section 5, we show and compare the experimental
results. We conclude our paper in Section 6.

2. Related Work

Our work is related to the research on dense stereo
matching and digital image matting.

Stereo matching. There have been many methods de-
veloped to solve the conventional stereo matching problem.
A two-frame stereo matching survey is in [14].

In recent years, Markov Random Field (MRF) is widely
used in stereo matching [8, 12, 6, 11]. Most of these meth-
ods solve the MRF by either Belief Propagation (BP) [4]
or Graph Cuts [1]. In [8], a method related to expansion
move algorithm is used to find the local minimum of an en-
ergy function. Graph Cuts algorithm is applied to compute
the optimal value. [3] segments the two input frames into
small patches. Graph Cuts is also used to find the disparity
and occlusions embedded in the patches with the symmet-
ric mapping. [15] compares the performance of Graph Cuts

and Belief Propagation on a set of images, and concludes
that, in general, the results produced by the two algorithms
are comparable.

The above methods are not proposed to solve the stereo
matching problem with color blending because of the dis-
parity ambiguities. Szeliski and Golland [13] first propose
to solve stereo matching with boundary opacity. The vis-
ibility is computed through re-projection, where color and
transparency refinement are formulated as a non-linear min-
imization problem. Wexler et al. [19] compute alpha mat-
tes and estimate layers from multiple images with known
background information. [17] estimates depth with the con-
sideration of layer overlapping. It uses nested plane sweep
with refinement from Graph Cuts. The attenuation factors
for color blending at reflecting areas are constant. In [5, 22],
boundary matting along depth discontinuities is applied to
refine the estimation of foreground objects for a better view
synthesis. Besides, [21] computes the alpha contribution
on overlapped regions among segments. A more accurate
optical flow estimation can thus be achieved.

Digital image matting. Natural image matting is to sep-
arate the blended pixels by computing the foreground, back-
ground and the alpha matte respectively given a natural in-
put image. Using trimaps, Bayesian Matting [2] and Pois-
son Matting [10] estimate the foreground and background
colors by collecting samples. Wang and Cohen [18] in-
troduce an optimization approach based on Belief Propa-
gation to estimate the alpha matte without trimaps. In [9],
Levin et al. propose a closed form solution to solve the mat-
ting problem given the user input of a few strokes. Joshi
et al. [7] use an autofocus system to determine pixel cor-
respondences among multi-images to enhance the perfor-
mance of video matting. All these methods cannot be di-
rectly applied to stereo matching without the consideration
of the correspondence of colors and alpha values in input
images.

3. Model Definition

Conventional two-frame dense stereo matching ap-
proaches compute depth value by estimating the correspon-
dence of pixels in the input image pair. In this paper, we also
use two images Cr and Cm in different viewing positions,
and assume that the reference image Cr and the matching
image Cm are rectified [16]. Conventionally, for a pixel
(x, y) in Cr and its corresponding pixel (x′, y′) in Cm with
disparity d, we have

x′ = x + d, y′ = y. (1)

The conventional stereo matching problem is formulated as
the estimation of disparity d using the color constancy on
the matched pixels in a scene with Lambertian reflectance:

Cr(x, y) = Cm(x + d, y). (2)
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Figure 2. Color constancy on blended pixels. Given the input
stereo image pair as shown, the semitransparent pixels Cr and
Cm in the hair are blended by the foreground and the background.
Since Cr and Cm are matched in foreground layer with dispar-
ity df , they have similar foreground color F and alpha value α.
However, the partially occluded background pixels are different as
shown in Br and Bm.

In our problem definition, to model the color blending be-
tween the objects with hairy boundaries and the scene be-
hind, we assume that each input image contains a fore-
ground object F in front of a background scene B, both
having Lambertian reflectance. The pixels in the back-
ground can be unconcluded, partially occluded, or entirely
occluded by F according to the degree of transparency. Ap-
plying the equation of alpha blending, the blended color in
each pixel is formulated as

Ck(x, y) = αk(x, y)F k(x, y) +
(1 − αk(x, y))Bk(x, y), (3)

where k ∈ {r,m}. Accordingly, in our stereo model,
instead of defining a single disparity d for each pixel in
the input images, we introduce disparities df and db for
latent pixels in foreground F and background B respec-
tively. This definition provides flexibility to model occlu-
sions. Hence, for each latent foreground pixel F r(x, y) (or
the background pixel Br(x, y)) in Cr, applying df (or db),
we can obtain a matched pixel Fm(x, y) (or Bm(x, y)) in
Cm, where

F r(x, y) = Fm(x + df , y),
Br(x, y) = Bm(x + db, y). (4)

Moreover, since there are measurable discontinuities
in depth between the foreground objects and background
scene. The occlusion between them can be nicely formu-
lated using Equation 3 according to the corresponding alpha

values without another explicit occlusion detection process:
⎧⎨
⎩

α(x, y) = 1 B(x, y) is entirely occluded
0 < α(x, y) < 1 B(x, y) is partially occluded
α(x, y) = 0 B(x, y) is not occluded

(5)

Using a narrow-band camera setup, we can naturally as-
sume that the transparency is an inherent property of fore-
ground and is invariant for corresponding foreground pixels.
This assumption has also been validated through our exper-
iments on a variety of scenes. Specifically, if a foreground
pixel (x, y) in Cr is matched to (x+df , y) in Cm, we have

αr(x, y) = αm(x + df , y). (6)

In the rest of the paper, for simplicity, we use subscripts
p, p + df , and p + db to denote pixel in (x, y), (x + df , y),
and (x+db, y) respectively. Substituting Equation 2, 4, and
6 into Equation 3, we obtain the following two equations
for each corresponding pixel pair in the input images:
{

Cr
p = αpF

r
p + (1 − αp)Br

p

Cm
p+df = αm

p+df Fm
p+df + (1 − αm

p+df )Bm
p+df

(7)

We show one example in Fig. 2 where two correspond-
ing foreground pixels are blended by different background
pixels due to the disparity differences. In Equation 7, there
are unknowns F r, Fm, Br, Bm, αr and αm to be esti-
mated given input Cr and Cm. F r and Fm are correspond-
ing foreground pixels. Without loss of generality, we opti-
mize F r and its corresponding αr in our method. Fm and
αm, as complements in stereo configuration, are computed
by mapping the foreground pixels in Cr to Cm using the
computed disparities. We estimate Br and Bm separately
in a symmetric manner. It guarantees that the unmatched
background pixels due to the occlusions are appropriately
handled, which in turn improves the estimation of the dis-
parities and foreground pixels.

In what follows, without special annotation, we use α
and F to denote αr and F r respectively. Thus, substituting
Equation 4 and 6 into Equation 7, Cm

p+df can be rewritten
as

Cm
p+df = αm

p+df Fm
p+df + (1 − αm

p+df )Bm
p+df

= αpFp + (1 − αp)Bm
p+df (8)

4. Our Approach

In this section, we describe our optimization method to
solve the fractional stereo matching problem formulated in
Equation 7 and 8.

4.1. Optimization

Given the observation U = {Cr, Cm}, we separate the
unknowns into a parameter set Θ = {F,Br, Bm, α} and



hidden data J = {df , db}. In this section, we aim at esti-
mating the parameters using Expectation-Maximization

Θ∗ = arg max
Θ

log P (U,Θ)

= arg max
Θ

log
∑
J∈Jn

P (U, J,Θ), (9)

where Jn is the domain of J . After we have obtained the
optimized parameters, we compute an optimal J combining
the spatial smoothness constraint.

4.1.1 Expectation Step

In iteration n + 1, given the estimated Θ(n), for each pixel
p, we compute in this step the expectation of Pp(df =
d1, d

b = d2|Θ(n), U) where d1, d2 ∈ {0, 1, ..., Ld}. Ld

is the maximum disparity. Since df and db are statistically
independent, we have

E(Pp(df = d1, d
b = d2|Θ(n), U))

= E(Pp(df = d1|Θ(n), U)Pp(db = d2|Θ(n), U))
= E(Pp(df = d1|Θ(n), U))E(Pp(db = d2|Θ(n), U)).

(10)

In what follows, we describe the expectation computation
on df and db respectively.

Computing E((Pp(df = d1|Θ(n), U)). The conditional
probability df is formulated using Bayes’ theorem:

Pp(df |Θ(n), U)

∝ Pp(df |U,Br(n), Bm(n), α(n))

∝ Pp(Br(n), Bm(n), α(n)|df , U) · Pp(df |U). (11)

According to Equation 7 and 8, ideally, the corresponding
foreground pixels in two images should have the same pixel
color:

Cr
p − (1 − αp)Br

p = Cm
p+df − (1 − αp)Bm

p+df . (12)

Thus, we define the probability Pp(Br(n), Bm(n), α(n)|
df , U) as the color similarity of corresponding foreground
pixels in both input images

Pp(Br(n), Bm(n), α(n)|df , U)

= exp(−βf‖(Cr
p − (1 − α(n)

p )Br(n)
p )

− (Cm
p+df − (1 − α(n)

p )Bm(n)

p+df )‖2), (13)

where βf is a weight.
Pp(df |U) models prior probability of df from initial in-

put images. In the initialization step to be discussed in Sec-
tion 4.2, we model all disparities from the foreground and
background pixels using two Gaussian distributions respec-
tively. Thus we formulate the probability

Pp(df |U) = N(df ; df , σdf ). (14)

where df and σdf are the mean and variance of the fore-
ground disparity Gaussian to be introduced later. The ex-
pectation for the disparity value of each foreground pixel p
can be written as

E(Pp(df = d1|Θ(n), U)) =
Pp(df = d1|Θ(n), U)∑
di

Pp(df = di|Θ(n), U)
(15)

Since we have only a few levels for di, the computation of
the above formula is easy.

Computing E((Pp(db = d2|Θ(n), U)). For the back-
ground disparities, we can formulate the probability as

Pp(db|Θ(n), U)

∝ Pp(db|U)Pp(Br(n), Bm(n), α(n)|db, U) (16)

∝ Pp(db|U)
∑
p′

{ P (df
p′ = p + db

p − p′|Θ(n), U)∑
p′ P (df

p′ = p + db
p − p′|Θ(n), U)

·

Pp(Br(n), Bm(n), α(n), α
(n)
p′ |db, U)}, (17)

where p′ denote the pixels from Cr whose foreground
matching pixel have the probability to be p’s background
matching pixel. So for pixel p′ with a foreground disparity
df

p′ = p + db
p − p′, we may have

αm
p+db

p
= αm

p′+df

p′
= αr

p′ , (18)

where αm
p+db in Cm is the corresponding alpha value to αr

p

in Cr for the same background pixel. Note here the match-
ing probability Pp(Br(n), Bm(n), α(n), α

(n)
p′ |db, U) is dif-

ferent from the foreground counterpart in Equation 13 due
to the possibility of been occluded for any background pix-
els. Thus, we define the probability on background color
matching adapting to the alpha values:

Pp(Br(n), Bm(n), α(n), α
(n)

p′ |db, U)

= exp(−βb(1 − αr(n)
p )[(1 − α

m(n)

p+db)‖Br(n)
p − B

m(n)

p+db ‖2

+α
m(n)

p+dbP ])

= exp(−βb(1 − αr(n)
p )[(1 − α

r(n)

p′ )‖Br(n)
p − B

m(n)

p+db ‖2

+α
r(n)

p′ P ]), (19)

where βb is a weight similar to that defined in Equation 13,
and P is set to give penalty when the value of α

m(n)

p+db is

close to 1. This happens when the background pixel p + db

is largely occluded by the foreground in image Cm.
To understand the definition of Equation 19, let us an-

alyze two extreme situations. On one extreme, if αr
p and

αm
p+db both approach 0, it means that both the correspond-

ing background pixels Br
p and B

m(n)

p+db are not occluded.
Their color differences, with a large probability, measure if



the two pixels are matched. On the other extreme, if either
αr

p or αm
p+db approaches 1, one or both background pixels

are occluded. Thus, the color difference ||Br
p − Bm

p+db || is
not reliable.

The definition of Pp(db|U) is defined in a way similar to
Equation 14 using initially estimated Gaussian distribution
to be described in Section 4.2:

Pp(db|U) = N(db; db, σdb). (20)

Integrating the above two probability definition, the expec-
tation on db can be computed as

E(Pp(db = d2|Θ(n), U)) =
Pp(db = d2|Θ(n), U)∑
di

Pp(db = di|Θ(n), U)
. (21)

4.1.2 Maximization Step

After the expectation computation, we maximize the ex-
pected complete-data log-likelihood w.r.t. J given the ob-
servation U :

Θ(n+1)

= arg max
Θ

∑
J∈Jn

P (J |Θ(n), U) log P (Θ|J, U)

= arg max
Θ

∑
J∈Jn

P (J |Θ(n), U) log P (J, U |Θ)P (Θ)

= arg max
Θ

∑
J∈Jn

P (J |Θ(n), U){L(J, U |Θ) + L(Θ)}, (22)

where L(·) = logP (·), the log likelihood. P (J |Θ(n), U) is
computed in the Expectation step. Using Equations 7 and
8, we define

L(J, U |Θ)
= −∑

p∈Cr (‖αpFp + (1 − αp)Br
p − Cr

p‖2

+‖αpFp + (1 − αp)Bm
p+df − Cm

p+df ‖2)/2σ2
C ,

(23)

where σC is the standard deviation of a Gaussian probability
distribution [2]. L(Θ) is expanded to

L(Θ) ∝ L(α) + L(F ) + L(Br) + L(Bm). (24)

Similar to the methods proposed to solve the natural im-
age matting problem [2, 18], we estimate the foreground
color, alpha value, and background color likelihoods for
each pixel by first collecting samples from the neighboring
pixels. Then we model these samples using single Gaus-
sian or Gaussian mixtures for background and foreground
respectively. In what follows, for simplicity, we describe
our method using a single Gaussian model. The formula-
tion and optimization using Gaussian mixtures are similar.

Denoting the constructed Gaussian mean and covariance
matrix for foreground color in each pixel p as Fp and Σ−1

Fp
,

we obtain

L(F ) =
X

p

L(Fp) =
X

p

−(Fp − Fp)T Σ−1
Fp

(Fp − Fp)/2 (25)

The definitions of L(Br), L(Bm) and L(α) are similar.
Given all above definitions of probability, to optimize,

we first take partial derivatives on Equation 22 with respect
to α for each pixel p, and set them to zero to compute α:

α(n+1)
p =

∑
df

G(Θ, df )P (df |Θ(n), U)
∑
df

H(Θ, df )P (df |Θ(n), U)
, (26)

where

G(Θ, df ) = α/σ2
αp

+ (Fp − Br
p)T (Cr

p − Br
p)/σ2

C

+(Fp − Bm
p+df )T (Cm

p+df − Bm
p+df )/σ2

C ,

H(Θ, df ) = 1/σ2
αp

+ (Fp − Br
p)T (Fp − Br

p)/σ2
C

+(Fp − Bm
p+df )T (Fp − Bm

p+df )/σ2
C .

Then we take partial derivatives on Equation 22 with
respect to {F,Br, Bm} for each pixel p, and also set
them to zero to compute {F,Br, Bm}. Denote pJ =
P (J |Θ(n), U), we get

⎡
⎣ A00 A01 A02

A10 A11 A12

A20 A21 A22

⎤
⎦

⎡
⎣ Fp

Br
p

Bm
p+df

⎤
⎦ =

⎡
⎣ M0

M1

M2

⎤
⎦ , (27)

where

A00 =
∑
J

pJ (2α2
pI/σ2

C + Σ−1
Fp

),

A11 =
∑
J

pJ ((1 − αp)2I/σ2
C + Σ−1

Br
p
),

A22 =
∑
J

pJ ((1 − αp)2I/σ2
C + Σ−1

Bm

p+df
),

A01 = A10 = A02 = A20 =
∑
J

pJ (αp(1 − αp)I/σ2
C),

A12 = A21 = 0,

and

M0 =
∑
J

pJ(αpC
r
p/σ2

C + αpC
m
p+df /σ2

C + Σ−1
Fp

Fp),

M1 =
∑
J

pJ((1 − αp)Cr
p/σ2

C + Σ−1
Br

p
Br

p),

M2 =
∑
J

pJ((1 − αp)Cm
p+df /σ2

C + Σ−1
Bm

p+df
Bm

p+df ).

Here I is a 3×3 identity matrix and 0 represents a 3×3 ma-
trix containing all zeros. Using the estimated α(n),F (n) and
B(n) as an initialization, the above optimization processes
on α and {F,Br, Bm} are iteratively performed until con-
vergence.

4.1.3 Computing Final Disparities

After the optimization using the EM described, we obtain
the estimated parameters Θ∗. We then form a MRF on im-
ages based on Θ∗ and compute the final disparities integrat-
ing the neighboring smoothness in pixels:

E(dk|U,Θ∗) = Ed(dk|U,Θ∗) + Es(dk), (28)
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Figure 3. Initialization. (a) The input reference image. (b) The initially computed disparity histogram. The two fitted Gaussians are also
shown. (c) Initial trimap computed. (d) Initial alpha values computed using the trimap in (c). (e) Final computed disparity map using our
iterative optimization method.

where k ∈ {f, b}. Es(dk) is the smoothness term defined
similar to that in [11], and Ed(dk|U,Θ∗) is the data term

Ed(dk|U,Θ∗) =
∑

p

− log P (dk
p = dk|Θ∗, U). (29)

We use Belief Propagation to minimize the energy and com-
pute the final optimal disparities.

4.2. Initialization

Initializing disparity. We initialize a single disparity
dp for each pixel p in images Cr and Cm using a conven-
tional stereo matching method [11]. However, we require
two initial disparity values in each pixel for foreground and
background respectively. So we first compute the histogram
of disparities. Since we assume that there’s a distance gap
between the background and the foreground, it is possible to
partition the histogram into two disjoint segments. For ro-
bustness, we fit the histogram into a two-component Gaus-
sian mixture model. The parameters of the two Gaussians
for foreground and background are denoted as {df , σdf }
and {db, σdb} respectively which are also used in Equation
14 and 20. One example is shown in Figure 3 (b). Then we
use the Bayes classifier to partition the histogramj

d is in foreground N(h(d); df , σdf ) ≥ N(h(d); db, σdb)

d is in background N(h(d); df , σdf ) < N(h(d); db, σdb)

where h(d) the value of the dth bin in the histogram. For
each pixel p, if the initialized dp is classified as the fore-
ground disparity df

p , then we set db
p to be the background

disparity Gaussian mean db. Otherwise, we set df
p to df .

df
p =

{
dp dp is in foreground
df dp is in background

(30)

db
p =

{
db dp is in foreground
dp dp is in background

(31)

Initializing alpha matte. We use Bayesian Matting [2]
method to solve the matting problem initially on both im-
ages. However, this method requires a trimap to indicate
whether one pixel in the input images is definitely fore-
ground (α = 1), definitely background (α = 0), or un-
known.

Equation 30 and 31 produce a binary segmentation in in-
put images according to whether dp = df

p or dp = db
p. The

disparity of the pixels around the segmentation boundaries
are obviously unreliable since these pixels are more likely
to be mixtures of foreground and background. We then au-
tomatically select all these boundary pixels, and dilate them
by 2 to 15 pixels to form the final ’unknown’ region in
the trimap. All other pixels are automatically marked as
’known’ in the trimap, as shown in Figure 3(c). Two ini-
tial trimaps on Cr and Cm are, thus, created. Based on
the trimaps, the foreground F (0), background B(0), and al-
pha matte α(0) are automatically computed using Bayesian
Matting in the two input images. Of course, since the ini-
tial matting is performed separately in two images, there are
inevitable alpha errors, as shown in Figure 3(d).

5. Experiment Results

We have shown one difficult example in Figure 1. Since
each pixel has at most two disparities in our results, only
for visualizing the hairy object boundary, we construct the
blended disparity map similar to the color blending

dshow
p = αpd

f
p + (1 − αp)db

p, (32)

which has already been used in Figure 1 (d) and 3 (e).
Figure 4 shows another difficult example where two

stereo images contain a toy bear with long hair. (a) and
(b) are two input images. (c) is the disparity result using the
method in [11], which obviously causes errors around the
object boundary. (d) and (e) are our blended disparity map
and alpha matte through optimization. The complex alpha
structure is preserved.

Our approach can also be applied to the traditional stereo
image pairs to improve the object details. We show the
“Tsukuba” example in figure 5. In our experiments, the
lamp is automatically segmented as the foreground objects
since it has largest disparities. We show our optimized al-
pha matte and the extracted foreground in (b) and (c) re-
spectively. Note that the boundary of the extracted lamp is
smooth and natural. Using the optimized alpha matte, we
compute the disparities and compare them with those gen-
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Figure 4. Bear example. (a) and (b) The input stereo images. (c)
Stereo matching result using method in [11]. (d) The blended dis-
parity map computed from our method. The structures are well
preserved. (e) The alpha matte computed in our approach. (f)-(h)
Magnified regions in (c), (d), and (e).

erated in [3] and [11] in 5 (d-f) using the following formula
to produce a single disparity for each pixel:

drefine
p =

{
df

p αp ≥ 0.5
db

p αp < 0.5 (33)

Obviously, our result has clearer boundary of the lamp.
Besides, our method can also produce better matting re-

sults comparing to previous single natural image matting
methods. In figure 6, we compare our result with two state-
of-art natural image matting methods [18, 9] on the diffi-
cult “fan” example. The background has complex patterns
and similar colors as the foreground, which make the fore-
ground and background color estimation unstable. In (b)
and (c), it is observable that the background patterns are
mistakenly estimated as the foreground. Our result in (d)
has less errors in the alpha matte thanks to the stereo con-
figuration and the joint optimization.

6. Conclusion and Discussion

In this paper, we have proposed a novel approach to
solve the stereo matching problem on objects with frac-
tional boundary using two-frame narrow-band stereo im-
ages. Each pixel, with the definition of the layer blending,
is assumed to be blended by two latent pixels with differ-
ent disparities. We have defined a probabilistic model con-
straining the colors, disparities, as well as the alpha mat-
tes on the two input images, and designed an optimization

method using Expectation-Maximization to robustly esti-
mate all parameters.

In discussion, our method has achieved large improve-
ment in handling general boundary transparencies in stereo
matching using an image pair. Our method currently can
separate two layers, i.e., background and foreground. We
expect that if more stereo images or other image informa-
tion are given, our model can be extended to handle more
depth layers. This will be our future work.
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Figure 5. The lamp from the stereo image pair “Tsukuba”. (a) Input reference image. (b) The alpha matte of the foreground lamp computed
from our method. The boundary is natural and smooth. (c) The extracted foreground. (d) Result from the patch-based method [3]. (e)
Result of symmetric stereo matching [11]. (f) Our optimized disparity map. The lamp boundary has large improvement comparing to (d)
and (e). (g)-(l) Side-by-side comparison on the magnified regions.
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Figure 6. Comparison of the alpha matte. (a) Input reference image. The background and foreground have similar colors. The patterns of
the background are also complex. (b) Result from the method in [18]. (c) Results from the method in [9]. (d) Our method is automatic,
and does not require any user input. (e)-(h) The magnified regions for comparison. Notice that, within the green rectangles, results (f) and
(g) mistakenly take the background pattern into foreground while our method produces a satisfactory alpha matte.
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