
Image Completion with Structure Propagation

Jian Sun1 Lu Yuan2∗ Jiaya Jia3† Heung-Yeung Shum1

1Microsoft Research Asia 2Tsinghua University 3Chinese University of Hong Kong

(a) (b) (c) (d)

Figure 1: Image completion with structure propagation. (a) Input image, (b) unknown region (blue) after removing the pumpkin, with
two intersecting lines (green) specified by the user, (c) intermediate result after propagating structure and texture information along the
user-specified lines, and (d) final result after filling in the remaining unknown regions by texture propagation.

Abstract

In this paper, we introduce a novel approach to image com-
pletion, which we call structure propagation. In our system,
the user manually specifies important missing structure in-
formation by extending a few curves or line segments from
the known to the unknown regions. Our approach synthe-
sizes image patches along these user-specified curves in the
unknown region using patches selected around the curves in
the known region. Structure propagation is formulated as
a global optimization problem by enforcing structure and
consistency constraints. If only a single curve is specified,
structure propagation is solved using Dynamic Program-
ming. When multiple intersecting curves are specified, we
adopt the Belief Propagation algorithm to find the optimal
patches. After completing structure propagation, we fill in
the remaining unknown regions using patch-based texture
synthesis. We show that our approach works well on a num-
ber of examples that are challenging to state-of-the-art tech-
niques.

Keywords: Image Completion, Image Inpainting, Dy-
namic Programming, Belief Propagation, User Interaction

1 Introduction

Image completion, also known as image inpainting, is a chal-
lenging problem in computer graphics and computer vision.
Image completion aims at filling in missing pixels in a large
unknown region of an image in a visually plausible way.
Given an input image I with an unknown or missing region
Ω, the goal of image completion is to propagate structure

∗This work was done when Lu was an intern at MSR Asia.
†This work was done while visiting MSR Asia.

and texture information from the known or existing regions
I − Ω to Ω, where I is the image region of I . Image com-
pletion is inherently an under-constrained problem.

1.1 Related work

Image inpainting, introduced by Bertalmio et al. [2000], fills
in holes in an image by propagating image Laplacians in
the isophote direction continuously from the exterior. Their
method is PDE-based and has its root in the Navier-Stokes
equation in fluid dynamics [Bertalmio et al. 2001]. The in-
painting problem has also been formulated in a variational
framework [Ballester et al. 2001]. Chan and Shen [2001]
incorporate Euler’s elastica as a prior to handle curve struc-
tures. Levin et al. [2003] perform image inpainting in the
gradient domain using an image-specified prior. Image in-
painting techniques work at the pixel level, and have worked
well for small gaps, thin structures, and text overlays. How-
ever, for larger missing regions or textured regions, they may
generate blurring artifacts.

Example-based approaches [Igehy and Pereira 1997; Harri-
son 2001; Bornard et al. 2002; Barret and Cheney 2002]
have also been proposed for image completion by synthesiz-
ing pixels using texture synthesis techniques [Efros and Le-
ung 1999; Wei and Levoy 2000; Liang et al. 2001; Ashikhmin
2001; Efros and Freeman 2001; Hertzmann et al. 2001].
Recent example-based methods work at the image patch
level [Drori et al. 2003; Criminisi et al. 2003; Bertalmio et al.
2003; Jia and Tang 2003]. They fill in unknown regions more
effectively by augmenting texture synthesis with some au-
tomatic guidance. This guidance determines the synthesis
ordering, which significantly improves the quality of com-
pletion by preserving some salient structures.

For example, a fast smoothing approximation is constructed
in a coarse-to-fine manner to guide an iterative completion
process by adaptive example fragments [Drori et al. 2003].
A confidence map is computed to determine the synthesis
ordering. A priority order is proposed to perform the com-
pletion [Criminisi et al. 2003]. The priority of each patch
is determined from both the confidence map and the image
edges in the patch to encourage propagation of linear struc-
tures. Bertalmio et al. [2003] decompose the input image

into texture and structure components that are completed
using texture synthesis and image inpainting, respectively.
The final result is the sum of the two completed components.
Based on texture segmentation, a tensor-voting algorithm is
introduced to smoothly link structures across holes to repair
images [Jia and Tang 2003].

Interactive guidance has also been proposed. Previous sys-
tems have utilized source region selection, depth informa-
tion [Pérez et al. 2004], and “point of interest” [Drori et al.
2003] to further improve their completion results.

While previous approaches have produced some amazing re-
sults, they have difficulties completing images where com-
plex salient structures exist in the missing regions. Such
salient structures may include curves, T-junctions, and X-
junctions. A challenging example to previous techniques is
shown in Figure 1, where the region left by the removed
pumpkin needs to be filled in. Although the human vi-
sual system has the ability to perceptually complete missing
structures [Noe et al. 1998] (e.g., completing the window
frames occluded by the pumpkin in Figure 1), the underly-
ing mechanisms (e.g., visual Gestalt principles [Koffka 1935,
1967]) remain unclear. Moreover, previous patch-by-patch
completion algorithms operate in a greedy manner that may
also cause discontinuities in salient structures. Due to the
inherent ambiguity of image completion from a single image,
we must leverage high-level knowledge.

1.2 Our Approach

Our approach is based on the following observations.

• For natural images, the most salient missing structures
can often be approximated by a few well-defined curves.

• There exists a synthesis ordering for image completion:
the regions with salient structures should be completed
before filling in other regions.

Therefore, our approach proceeds in three steps: user inter-
action to specify the curves, structure propagation to syn-
thesize regions with salient structures, and texture propaga-
tion to fill in the remaining unknown regions. Note that we
completely separate structure propagation and texture prop-
agation and perform structure propagation first. Compared
with previous methods, this completion process largely re-
duce the breaking of salient structures which human eyes are
sensitive to.

In our system, we allow the user to draw a few curves that
extend from the known region to the unknown region to in-
dicate how the global structures should be completed. As
shown in Figure 1(b), two nearly perpendicular lines com-
plete the window frames. These two simple lines can sig-
nificantly reduce inherent ambiguity in the unknown regions
because they provide information on what structure should
be propagated and where texture can be obtained. By draw-
ing a few curves or lines, the user can generate desirable
completed images by propagating the salient structures ac-
cordingly.

Given the user-specified curves, our approach first synthe-
sizes the missing structure and texture information along
the curves inside the unknown region. Unlike previous tech-
niques that synthesize image patches in a greedy patch-
by-patch manner, we formulate structure propagation as a
global optimization problem. For all the patches synthesized
on the specified curves, the color difference in the overlap-
ping area between neighboring patches is globally minimized.

I

Ω

piC

P P (xi)

(a) (b)

Figure 2: Structure propagation - 1D chain. (a) I is the
input image region, Ω is the unknown region and C is a user-
specified curve. Structure propagation synthesizes missing
image patches on a set of anchor points {pi}

L
i=1 using the

sample set P . (b) P (xi) is a candidate patch in P which is
chosen for the anchor point pi.

If a single curve is specified by the user, we connect the
synthesized patches as a chain, and solve the optimization
problem effectively using dynamic programming. For multi-
ple intersecting curves, we connect the patches as a graph,
and adopt the efficient belief propagation algorithm for op-
timization. Figure 1(c) shows the intermediate result after
structure propagation using belief propagation.

The user-specified curves also partition the input image I
into several regions. Using patch-based texture synthesis,
texture propagation synthesizes the remaining missing re-
gions using samples from respective segmented regions. A
photometric correction method in the gradient domain fur-
ther improves the synthesis results. Figure 1(d) shows the
final result after filling in all unknown regions.

2 Structure Propagation

In this section, we introduce the concept of structure prop-
agation using a single curve C specified by the user. The
problem we address is how to synthesize missing structure
and texture along curve C in the unknown region by using
samples around the curve in the known region. Applying
structure propagation for multiple non-intersecting curves is
straightforward. We will discuss the case of multiple inter-
secting curves in Section 3.

We first sparsely sample curve C in the unknown region
Ω to generate a set of L anchor points {pi}

L
i=1. As illus-

trated in Figure 2(a), the centers of the synthesized patches
are located at these anchor points, which form a single
chain, or a one-dimensional graph G = {V, E}. V is the
set of L nodes corresponding to the anchor points, and
E is the set of all edges connecting adjacent nodes on C.
The sampling interval is typically half of the patch size to
guarantee sufficient overlaps. Outside Ω, the sample set
P = {P (1), P (2), ..., P (N)} contains all patches whose cen-
ters are within a narrow band (typically 1-5 pixels wide)
along curve C, as shown in Figure 2(a). Typically the sam-
ple size N is in the order of hundreds or thousands.

We thus consider structure propagation as a graph labeling
problem. For each anchor position pi, we find a label xi ∈
{1, 2, ..., N} corresponding to one of the sample patches. We
select the sample patch P (xi) from P , and paste it at point
pi as shown in Figure 2(b).

2.1 Energy Minimization

We define the following energy on G

E(X) =
∑

i∈V

E1(xi) +
∑

(i,j)∈E

E2(xi, xj), (1)

where

E1(xi) = ks · ES(xi) + ki · EI(xi). (2)

ES(xi), EI(xi) and E2(xi, xj) are energy terms for structure,
completion, and coherence constraints, respectively. These
terms are defined in the following paragraphs. ks and ki are
relative weights. The optimal sample labels X = {xi}

L
i=1

are obtained by minimizing the energy E(X).

ES(xi) encodes the structure similarity between the source
patch and the structure indicated by the user at each node
i. Suppose that source patch P (xi) and the target rectan-
gle with the same size centered at anchor point pi contain
two curve segments cxi

and ci (the red and yellow curves
in Figure 3(a)), respectively. In structure propagation, we
prefer a source patch P (xi) whose cxi

is similar to ci in or-
der to generate the structure desired by the user. Therefore,
we introduce the following symmetric energy term based on
curves ci and cxi

:

ES(xi) = d(ci, cxi
) + d(cxi

, ci), (3)

where d(ci, cxi
) =

∑

s
||dist(ci(s), cxi

)||2 is the sum of the
shortest distance between all points in segment ci and cxi

.
Note that s is the index of the point in segment ci, and
dist(ci(s), cxi

) is the shortest distance from point ci(s) on
segment ci to segment cxi

, as shown in the merged and en-
larged patch in Figure 3(a). ES(xi) is further normalized by
dividing the total number of points in ci.

EI(xi) constrains the synthesized patches on the boundary
of unknown region Ω to match well with the known pixels in
I−Ω, as shown in the green box in Figure 3(b). EI(xi) is the
sum of the normalized squared differences (SSD) calculated
in the red region on boundary patches. EI(xi) is set to zero
for all other patches inside Ω.

E2(xi, xj) encodes the coherence constraint between two ad-
jacent synthesized patches P (xi) and P (xj), where xi and xj

are labels for adjacent nodes. This energy term is defined as
the normalized SSD between their overlapped regions, which
are shown in the red box in Figure 3(b).

Dynamic programming (DP) Since G is a single chain,
minimizing the energy E(X) for structure propagation can
be regarded as searching for a minimal cost path with dy-
namic programming [Bellman 1957]. To find the minimal
cost path from node 1 to L, we first define Mi(xi) as the cu-
mulative minimal cost from node 1 to node i for all possible
xi. Dynamic programming traverses the nodes from 2 to L
and computes Mi(xi) for all the paths recursively:

Mi(xi) = E1(xi) + min
xi−1

{E2(xi−1, xi) + Mi−1(xi−1)}, (4)

where M1(x1) = E1(x1). Finally, the optimal label of node
L is obtained by: x∗

L = arg minxL
ML(xL). The minimal

cost path can be back-traced by maintaining a table during
the computation of Mi(xi). This yields the optimal labels
for all nodes.

ci

ci

cxi

cxi

ci(s)
dist

(a) (b)

Figure 3: Energy terms for structure propagation. (a) Curve
segments cxi

(red) in the source patch, and curve segments
ci (yellow) in the target rectangle. ES(xi) measures the
structure similarity between cxi

and ci. dist is the shortest
distance (black dotted line) from point ci(s) on segment ci

to segment cxi
. (b) The green box shows the cost EI(xi)

on the boundary of the unknown region. The red box shows
the cost E2(xi, xj) for neighboring patches.

3 Graph Structure Propagation

For a complex scene, a single chain is often insufficient to rep-
resent missing salient structures in the unknown region. For
instance, Figure 4(a) shows a more complex situation where
three curves with two intersections are specified. To con-
struct a graph G from these three curves, both intersections
are first selected as anchor points. Additional anchor points
are then sparsely sampled from the three curves, as shown
in Figure 4(b). Directly applying dynamic programming on
such a graph is, however, computationally expensive. For
the general graph G = {V, E} with K intersection nodes, the
complexity of dynamic programming is O(LN2+K) (We need
to enumerate all possible state combinations at the intersect-
ing nodes). In this section, we introduce an efficient belief
propagation algorithm to minimize the energy E(X) with
complexity O(2LN2).

3.1 Completion using Belief Propagation (BP)

Belief propagation is a probability inference algorithm pro-
posed by Pearl [1988] that has become popular lately in ma-
chine learning and computer vision (e.g., [Freeman et al.
2000]). Belief propagation is a local message passing algo-
rithm that can minimize the Gibbs energy defined on any
pairwise undirected graph, e.g., our energy E(X). The ba-
sic mechanism of belief propagation is for each node in a
graph to receive messages from its neighbors, then to send
updated messages back to each of them. We denote the mes-
sage sent from node i to j as Mij , which is a vector with N
elements over all values of xj . The message Mij indicates
how likely node i believes that node j has the corresponding
label xj . Algorithm 1 presents the main process of belief
propagation for image completion.

The core of belief propagation is its iterative message up-
dating procedure (Equation (5)). Once the optimized labels
{x∗

i }
L
i=1 are computed, we copy the sample P (x∗

i) to each
node i to complete structure propagation.

The original belief propagation algorithm is defined in terms
of probability distributions. There are two versions of belief
propagation: sum-product and max-product. Sum-product
computes the marginal posterior of each node, and max-
product maximizes the posterior of each node. In this paper,
we use the max-product. Using negative log probabilities,
Equation (5) turns max-product into min-sum.

Algorithm 1 Completion using Belief Propagation.

1: Initialize all messages M0
ij = 0 between any two adjacent

nodes i and j in graph G.
2: Update all messages M t

ij iteratively from t = 1 to T :

M
t
ij = min

xi

{E1(xi) + E2(xi, xj) +
∑

k 6=j,k∈N (i)

M
t−1
ki } (5)

where N (i) are all adjacent nodes of i.
3: Compute optimal label x∗

i for each node i:

x
∗
i = arg min

xi

{E1(xi) +
∑

k∈N (i)

M
T
ki} (6)

For a graph without any loops (a single connected graph),
belief propagation guarantees that the optimal solution is
found after at most T iterations, where T is the maximum
distance between any two nodes in the graph. For example,
T is 11 for the graph shown in Figure 4(b).

An example Figures 4(c) and 4(d) show two basic types
of intersecting structures: T-junctions and X-junctions. For
example, Figure 4(b) is the combination of a T-junction and
an X-junction. To illustrate the belief propagation algo-
rithm, we present its message updating procedure for the
graph in Figure 4(c). Belief propagation computes the op-
timal solutions for all nodes simultaneously (we ignore the
notation of iteration t in the rest of this section):

x∗
1 = arg minx1

{E1(x1) + M21}
x∗

2 = arg minx2
{E1(x2) + M12 + M32 + M42}

x∗
3 = arg minx3

{E1(x3) + M23}
x∗

4 = arg minx4
{E1(x4) + M24}

(7)

where each message is updated as follows:

M12 = minx1
{E1(x1) + E2(x1, x2)}

M32 = minx3
{E1(x3) + E2(x2, x3)}

M42 = minx4
{E1(x4) + E2(x2, x4)}

M21 = minx2
{E1(x2) + E2(x1, x2) + M32 + M42}

M23 = minx2
{E1(x2) + E2(x2, x3) + M12 + M42}

M24 = minx2
{E1(x2) + E2(x2, x4) + M12 + M32}.

(8)

After the first iteration, messages M12, M32 and M42 are
converged such that the optimal solution of x∗

2 can be ob-
tained. After the second iteration, the optimal solution for
all nodes can be obtained.

3.2 Complexity of BP

For a graph without any loops, the complexity of the stan-
dard belief propagation is O(2TLN2), because each message
update requires O(N2) operations. However, each message
can be updated only when all necessary neighboring mes-
sages are converged. As an example, in Figure 4(c), messages
M12, M32 and M42 will converge after the first iteration, and
should not be updated again. Messages M21, M23 and M24

converge at the second iteration, and it is not necessary to
update them at the first iteration. Therefore, we associate
each message with a binary variable to avoid unnecessary
updates. The complexity of belief propagation for a graph
without any loops is reduced to O(2LN2) and is independent
of the number of intersection nodes. For a typical value of
N = 103, the running time of belief propagation is about a
few seconds, while dynamic programming might take hours.

I

Ω

C
G

(a) (b)

x1 x2 x3

x4

M12 M23

M21 M32

M24 M42

x1

x2

x3

x4

x5

(c) (d)

Figure 4: Structure propagation - 2D graph. (a) A curve set
C supplied by the user. (b) Corresponding 2D graph G for
structure propagation. Two basic structures in 2D graph:
(c) T-junction, (d) X-junction.

3.3 DP, BP and Loopy BP

DP and BP Dynamic programming can be defined in an al-
ternative way. We define Mi−1,i(xi) as the cumulative min-
imal cost from node 1 to node i (the cost E1(xi) at node i

is exclusive) for all possible xi. We denote {Mi−1,i(xi)}
N
xi=1

as a vector Mi−1,i with N elements. The update equation
of the cumulative minimal cost Mi−1,i is:

Mi−1,i = min
xi−1

{E1(xi−1) + E2(xi−1, xi) + Mi−2,i−1}, (9)

where M0,1 = 0. The converged optimal solution at node L
is obtained by x∗

L = arg minxL
{E1(xL)+ML−1,L}. Equation

(9) and the message update equation (5) in belief propaga-
tion are in fact equivalent when the graph is a single chain.
Therefore, in a single chain, the cumulative minimal cost is
an alternative interpretation of the message in belief prop-
agation. Belief propagation can be viewed as a “parallel”
generalization of dynamic programming on a general graph.

Loopy BP For a graph with loops, the belief propagation
algorithm can still be applied without modification, using
loopy belief propagation. For a graph with a single loop, it
has been proven [Weiss and Freeman 2001] that max-product
belief propagation will yield the optimal solution if it con-
verges. For a graph with multiple loops, loopy belief propa-
gation usually gives a local minimum if it converges. Recent
empirical results on several computer vision problems [Free-
man et al. 2000; Sun et al. 2002] show that belief propaga-
tion is often a very good approximation even for graphs with
thousands of loops. Furthermore, in our image completion,
we typically do not have a graph with multiple loops. In our
experiments, we have found the loopy belief propagation al-
gorithm works well, as shown by the rider example in the
fourth row of Figure 9. We refer the reader to [Yedidia et al.
2002] for additional information on loopy belief propagation.

1

1

2

2

33

4

4

5

5

Ω Ω

(a) (b) (c)

Figure 5: (a) Texture propagation. The labels of the
unknown and known subregions are determined by user-
specified curves. Each unknown subregion is completed only
using the samples in its corresponding known subregion. (b)
and (c) Photometric correction. The red, green and blue rec-
tangles are the first three patches copied into the unknown
region. Photometric correction removes the seam (indicated
in black) between overlapping patches from structure prop-
agation (b) and from texture propagation (c).

4 Implementations

4.1 Texture Propagation

After structure propagation, there still exist large unknown
regions that need to be filled. However, applying texture
synthesis directly may produce poor results, as the synthesis
process may sample irrelevant texture information from the
entire known region.

Note that the unknown/known regions have been partitioned
into several disjoint subregions by the user-specified curves,
and each unknown subregion is usually adjacent to one
known subregion. We can label each corresponding pair of
known/unknown subregions by the same number, as shown
in Figure 5(a). Afterwards, texture information can be re-
liably and efficiently propagated from corresponding subre-
gions using texture-by-numbers techniques [Ashikhmin 2001;
Hertzmann et al. 2001; Jia and Tang 2003]. The propaga-
tion order is computed by using a confidence map, similar to
[Drori et al. 2003] and [Criminisi et al. 2003]. Furthermore,
we also allow the user to interactively assign labels, in case
some subregions do not have a sufficient number of samples.

4.2 Photometric Correction

For an image with significant spatial variations in intensity
or color, the seams between overlapping patches may be vis-
ible, especially when the patch size is large. As observed by
Pérez et al. [2004], such seams cannot be easily removed by
simple blending or by graph-cut [Kwatra et al. 2003]. There-
fore, we propose a photometric correction method to reduce
the photometric seams in the gradient domain.

Figure 5(b) illustrates the photometric correction in struc-
ture propagation. Suppose that the red and green rectangles
are two patches that have already been synthesized, and the
blue rectangle is the place for the third patch. First, we
copy pixels to the blue region from the corresponding pixels
in the sample patch to get a new synthesized patch J in the
blue rectangle. Then we construct a binary mask patch BM

whose value is 0 in the green region and 1 in the blue region.
Finally, we reconstruct a new J∗ from its corrected gradi-
ent ∇J∗ by solving Poisson equations similar to [Pérez et al.
2003]. To remove the photometric seam (black line in Figure
5(b)) between overlapping regions, we correct gradient ∇J

Figure 6: Photometric correction in structure propagation.
Top: input image, unknown (blue) region and input curve
(green). Bottom: zoomed in views of structure propagation
results before (left) and after (right) photometric correction.

to obtain ∇J∗ as follows:

∇Jx(x, y)∗ =

{

∇Jx(x, y) BM (x, y) = BM (x + 1, y)
0 BM (x, y) 6= BM (x + 1, y)

∇Jy(x, y)∗ is computed in a similar way. The Dirichlet
boundary condition is the interior boundary (yellow rectan-
gle in Figure 5(b)) of patch J . The red, green and blue chan-
nels are corrected independently. Photometric correction in
texture propagation performs in a similar way as shown in
Figure 5(c). Figure 6 shows a comparison before and after
photometric correction in structure propagation.

4.3 Sample transformation

Sometimes sample patches may not be sufficient for the pur-
pose of structure propagation. We provide two solutions
to enrich the sample set by transforming existing sample
patches. First, the user can rotate by a fixed angle (e.g.
90◦) or flip (horizontally or vertically) each source patch.
Second, the user is also allowed to rotate each source patch
P (xi) by an arbitrary rotation angle θ for each node i. We
could, for instance, rotate the patch to best align the curve
segment cxi

in the source patch to the curve segment ci in
the target rectangle by a rotation transformation R(cxi

; θ)
so that

θ
∗ = arg min

θ
{d(R(cxi

; θ), ci) + d(ci, R(cxi
; θ))},

where d(·, ·) has the same definition as in Equation (3).

5 Results

In our experiments, we manually set the patch size to be
greater than the largest structure in the image. The weights
ks and ki are 50 and 2 respectively in all our experiments.
All experiments were run on a 2.8GHz PC.

Figure 9 shows the results produced by our image completion
method. The first two columns show the input images with
marked unknown regions and user-specified curves. The

third column shows the results of structure propagation, by
which the most salient structures are seamlessly propagated
from the known region into the unknown region. Completed
structures look natural. The right-most column shows the
final results which are visually pleasing.

For the sunset image (800×600) in the first row, the moun-
tain is occluded by a very large unknown region. The moun-
tain completion by structure propagation is well controlled
by a single curve. The patch size is set at 9 and arbitrary
rotation is allowed for the curve to generate sample patches.
For the jeep example (640×457) in the second row, arbitrary
rotation is also enabled for the top curve because there are
not enough samples in the known regions. For these two
examples, the process of structure propagation took fewer
than 3 seconds for each curve. Texture propagation took
about 2 to 20 seconds for each subregion.

The hawk example (800×505) in the third row contains two
X-junctions. Structure propagation took 6 seconds for opti-
mization, and the patch size is 27×31. We demonstrate the
intermediate optimization results at different iterations of
the belief propagation algorithm in our accompanying video.
The rider example (504×462) in the fourth row shows a more
complex structure (with a T-junction and five X-junctions)
to be completed. Structure propagation allows the user to
edit or control the completion result. For example, the short
vertical fence between two long vertical fences may not be
present in the original image but are added by the user in
the completed image. Note that belief propagation produces
good results despite a loop in the graph for this example. In
the fifth row, the ladder example (460×596) contains three
X-junctions. For the last three examples (hawk, rider, and
ladder), the belief propagation algorithm automatically finds
the junctions from the samples and copies them to the in-
tersection points. Note that the intensity or color of the
samples in the completed region might be slightly different
from the original samples due to photometric correction.

Previously developed automatic image completion algo-
rithms may not be able to generate good quality results for
the examples shown in Figure 9. Figure 7 shows unsatis-
factory completion results using our implementation of Cri-
minisi’s approach [Criminisi et al. 2003]. High-level human
knowledge is required to complete these images. In our ap-
proach, human knowledge is effectively integrated through a
simple curve-based interface.

Figure 8 shows completion results of two images from [Drori
et al. 2003]. For the painting example in the top row, our
result is similar to or slightly better than Drori’s. For the
train example in the bottom row, our result is visually more
pleasing although our approach cannot complete the missing
locomotive yet.

Our approach only encourages a coherent completion result
but has no ability to handle depth ambiguity. The visibility
order is determined by the samples that can be found. In
our method, we only treat it as a planar graph without con-
sideration of occlusions. Introducing the concept of layers
is one of the possible solutions to handle depth ambiguity,
as shown in Figure 10. We complete the missing region in
three separate layers: vertical trunk, horizontal trunk and
background layer. In the first two layers, the trunks are
completed by specifying two curves along the trunk bound-
aries and automatically extracted by the Bayesian matting
technique. The background layer is completed by texture
propagation. The final completion results are the composi-

Figure 7: Comparison with Criminisi’s approach. Our re-
sults are shown in Figure 9.

Figure 8: Comparison with Drori’s approach. From top to
bottom: input images, results from [Drori et al. 2003] and
our results.

tion of the three layers from back to front.

6 Discussion and Conclusion

In this paper, we have presented an interactive approach to
image completion. Through a curve-based interface, the user
indicates what important structures should be completed
before remaining unknown regions are filled in. Structure
propagation is formulated as a global optimization problem
that is solved efficiently by dynamic programming or belief
propagation. By using an intuitive interface and efficient
optimization algorithms, our system effectively integrates
human knowledge into the completion process to produce
good results even for many challenging images. Moreover,
our system allows the user to control the completion process

Figure 9: Some results. The first column shows original images. The second column shows unknown regions (blue) and input
curves (green). The third and fourth columns are completion results after structure propagation and the final results after
texture propagation, respectively.

Figure 10: Layer-based completion. Top: input image and
our result. Bottom: completed vertical trunk and horizontal
trunk layers. (The background layer is not shown here).

for image editing applications.

Some limitations remain in our approach. The curve-based
interface works well only if the missing salient structures
can be represented by a set of simple curves. Our approach
also shares the most common limitation of example-based
techniques: if there are not enough samples in the image,
it will be impossible to synthesize the desired structure or
texture.

In the future, we plan to extend our approach to other com-
pletion applications, such as video [Wexler et al. 2004] and
meshs [Sharf et al. 2004]. Applying the belief propagation
algorithm for more graphics applications also presents inter-
esting opportunities.

Acknowledgements. We would like to thank the anony-
mous reviewers for their constructive critiques. Many thanks
to Stephen Lin for his help in video production and proof-
reading, and Ka Yan Chan and Kurt Akeley for improv-
ing the manuscript. Images in Figure 1, 6 and 9 are from
(http://www.pbase.com) and images in Figure 8 and 10 are
courtesy of Daniel Cohen-Or.

References

Ashikhmin, M. 2001. Synthesizing natural textures. In ACM Sympo-

sium on Interactive 3D Graphics, 217–226.

Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., and

Verdera, J. 2001. Filling in by joint interpolation of vector fields

and gray levels. IEEE Trans. Image Processing 10, 8, 1200–1211.

Barret, A., and Cheney, A. 2002. Object-based image editing. In

Proceedings of ACM SIGGRAPH 2002, 777–784.

Bellman, R. E. 1957. Dynamic Programming. Princeton University

Press, Princeton, NJ.

Bertalmio, M., Sapiro, G., Ballester, C., and Caselles, V. 2000.

Image inpainting. In Proceedings of ACM SIGGRAPH 2000, 417–

424.

Bertalmio, M., Bertozzi, A., and Sapiro, G. 2001. Navier-stokes,

fluid dynamics, and image and video inpainting. In Proc. Conf.

Comp. Vision Pattern Rec., I.355–362.

Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. 2003. Simultane-

ous structure and texture image inpainting. In Proc. Conf. Comp.

Vision Pattern Rec., II.707–714.

Bornard, R., Lecan, E., Laborelli, L., and Chenot, J.-H. 2002. Miss-

ing data correction in still images and image sequences. In Proc.

ACM Int. Conf. on Multimedia, 355–361.

Chan, T., and Shen, J. 2001. Non-texture inpaintings by curvature-

driven diffusions. J. Visual Comm. Image Rep. 12, 4, 436–449.

Criminisi, A., Perez, P., and Toyama, K. 2003. Object removal by

exemplar-based inpainting. In In Proc. Conf. Comp. Vision Pat-

tern Rec., 417–424.

Drori, I., Cohen-Or, D., and Yeshurun, H. 2003. Fragment-based

image completion. In Proceedings of ACM SIGGRAPH 2003, 303–

312.

Efros, A., and Freeman, W. 2001. Image quilting for texture synthesis

and transfer. In Proceedings of ACM SIGGRAPH 2001, 341–346.

Efros, A., and Leung, T. 1999. Texture synthesis by non-parametric

sampling. In Proceedings of Inte. Conf. on Comp. Vision, 1033–

1038.

Freeman, W., Pasztor, E., and Carmichael, O. 2000. Learning low-

level vision. Int. J. Computer Vision 40, 1, 25–47.

Harrison, P. 2001. A non-hierarchical procedure for re-synthesis

of complex textures. In Proc. Int. Conf. Central Europe Comp.

Graphics, Visua. and Comp. Vision.

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., and Salesin,

D. 2001. Image analogies. In Proceedings of ACM SIGGRAPH

2001, 327–340.

Igehy, H., and Pereira, L. 1997. Image replacement through texture

synthesis. In Proc. of Inte. Conf. on Image Processing, 186–189.

Jia, J., and Tang, C. K. 2003. Image repairing: robust image syn-

thesis by adaptive nd tensor voting. In Proc. Conf. Comp. Vision

Pattern Rec., I643–650.

Koffka, K. 1935, 1967. Principles of gestalt psychology. NewYork,

Hartcourt, Brace and World..

Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003.

Graphcut textures: Image and video synthesis using graph cuts.

In Proceedings of ACM SIGGRAPH 2003, 277–286.

Levin, A., Zomet, A., and Weiss, Y. 2003. Learning how to inpaint

from global image statistics. In Proceedings of Inte. Conf. on

Comp. Vision, II.305–313.

Liang, L., Liu, C., Xu, Y. Q., Guo, B., and Shum, H. 2001. Real-time

texture synthesis by patch-based sampling. ACM Transactions on

Graphics 20, 3, 127–150.

Noe, A., Pessoa, L., and Thompson, E. 1998. Finding out about

filling-in: A guide to perceptual completion for visual science and

the philosophy of perception. Behavioral and Brain Sciences 6 ,

723–748.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Net-

works of Plausible Inference. Morgan Kaufmann Publishers, San

Mateo, California.

Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing.

In Proceedings of ACM SIGGRAPH 2003, 313–318.

Pérez, P., Gangnet, M., and Blake, A. 2004. Patchworks: example-

based region tiling for image editing. Technical Report, Microsoft

Research, MSR-TR-2004-04 .

Sharf, A., Alexa, M., and Cohen-Or, D. 2004. Context-based surface

completion. In Proceedings of ACM SIGGRAPH 2004, 878–887.

Sun, J., Shum, H. Y., and Zheng, N. N. 2002. Stereo matching using

belief propagation. In Proceedings of European Conference on

Computer Vision 2002, vol. II, 510–524.

Wei, L. W., and Levoy, M. 2000. Fast texture synthesis using

tree-structured vector quantization. In Proceedings of ACM SIG-

GRAPH 2000, 479–488.

Weiss, Y., and Freeman, W. T. 2001. On the optimality of solutions of

the max-product belief propagation algorithm in arbitrary graphs.

IEEE Transactions on Information Theory. 47, 2, 723–735.

Wexler, Y., Shechtman, E., and Irani, M. 2004. Space-time video

completion. In Proc. Conf. Comp. Vision Pattern Rec., I:120–

127.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. 2002. Understand-

ing belief propagation and its generalizations. Technical Report,

Mitsubishi Electric Research Laboratories, MERL-TR-2001-22 .

