PAGE
1

Controlling the Effects of Complexity in Software Testing

(Testing of GUI Systems)

Lee White

Department of Electrical Engineering and Computer Science

Case Western Reserve University

Cleveland, Ohio

Purpose of Research

Software testing is a very discouraging field of research, because many of the most important theoretical issues, such as test selection, are undecidable. In my research career, I have always been motivated to develop only test methodologies where their properties can be quantitatively characterized. For example:

a) Domain Testing: Test cases developed to test program predicates; showed that a

 single test case could not detect every program defect affecting that predicate, but just

 a finite number of and predictable multiple test cases are required [5].

b) Required Executions of an Iteration Loop: It was shown that under certain conditions,

 an upper bound on the number of iterations of a loop can be given [6,10].

c) Testing Firewall for Functionally-Designed Software: When software is modified,

 need to test only those modules in the firewall; if this is done, then defects will not

 spread beyond the firewall [2]. Also we showed analytically that if unit tests are

 reliable but integration tests are not reliable, then one can still define a firewall with

 these properties; however, if unit tests are not reliable, then no firewall can be defined

 at all [1].

Although I would like to make these general points in the presentation, the discussion will primarily focus on the problem of GUI systems testing. Since the conditions and tests to be made are discrete and finite, at first glance the GUI testing problem seems to be more amenable to solution than more general software testing problems. In [7], it is

shown that given n GUI objects to test and
[image: image1.wmf]i

s

 selections to make within the ith GUI object, then
[image: image2.wmf]Õ

n

i

i

s

 combinations must be tested; moreover, if the order of these selections and objects is taken into account, then a factorial measure is involved.

Clearly for large GUI systems, there is insufficient time to exhaustively test all these potential combinations. Our proposed approach is to select those tests of greatest interest to the user: to specifically test those behaviors the user is most interested in. Also we

argue that the total testing time is always limited, and may even be unknown. Therefore, more time must actually be spent running tests and less time for analysis to determine the tests to be run.

Methodology

In order to focus on testing those aspects of the GUI system of greatest interest to the user, we concentrate on user sequences of GUI objects and selections that collaborate, called complete interaction sequences (CIS), and that produce the desired response (or effect) for the user called the responsibility. Clearly CIS sequences can overlap, either

with CIS1 properly enclosed within CIS2, or CIS1 and CIS2 might both have objects in

common and each have objects distinct from each other. The first study given in [8] initially investigated testing of CIS sequences.

The first problem we have in this approach is to identify all the responsibilities and the CIS sequences. In order to do this, it might be necessary to consult the GUI design document, the user manual, the code, or to informally interact with the GUI system. Clearly, the success of this or any other GUI testing approach will depend upon the accuracy and extent of this information.

We will use finite state machines (FSM) to partially model the GUI testing approach, and that will capture the GUI objects and selections as states and transitions, but will not

explicitly model the effects of the GUI that will indicate a failure of the system under test. For that reason, it will be necessary to generate tests corresponding to all paths in the FSM for the CIS. In order to avoid a potentially infinite number of paths, we assume that repeated directed cycles will not produce a new effect not observed in a single execution of that directed cycle. Therefore all paths must be traversed in which no cycle needs to be traversed more than once at any point in the path, but that cycle might have to be traversed any number of times, each at different points in that path. Given this assumption, this means that all possible tests will be generated, but there is still the problem that these tests may generate failures that cannot be detected.

In order to experimentally study some interesting cases, we will actually produce four different FSM models for the same CIS. First we wish to study certain reduction components in order to reduce the number of required tests compared to the full FSM. The two components studied are strongly connected components and components with parallel path symmetry. The structural symmetry component is difficult to discover and justify, but once the logical argument is made, the tests obtained will be equivalent in detection effectiveness to those of testing all paths in the FSM of the CIS. On the other hand, we can easily check for components to see if they are strongly connected, but have discovered that the test effectiveness of the strongly connected component is not as high as that of testing all paths. One can define the subtests of strongly connected component to correspond to at least testing for all ordered pairs of states, all ordered pairs of transitions, and all ordered state-transition pairs. The effectiveness of reduction component testing is one of the objectives of our experiments.

The other concept to be modeled in the FSM is design vs implementation as follows:

1) one utilizes the design of the CIS to model the transitions in the FSM; this leads to
 design tests, which assure that the originally given FSM is modeled as designed;

2) one utilizes the implementation of the CIS to model the transitions in the FSM; this

 represents more work, and requires testing every selection in each GUI object in the

 CIS to see if it leads to a message to another GUI object in the CIS; these are called

 implementation tests; note that no new CIS is defined here; the originally designed

 CIS will just have more transitions in its implementation.

Clearly in the experiments, we will want to examine the questions of the increase of the number of implementation tests over design tests, and the cost-effectiveness of running these additional tests in detecting failures. Note that the four models resulting from the selection of these two sets of choices really provide alternate model approaches for testing.

In the second study in [9], not only is CIS testing investigated for various GUI systems, but also the testing of interactions between CIS sequences, and between a CIS sequence and either a non-CIS object or a system element, such as a printer controller, file manager, memory location, etc. The important issue for interactions between CIS sequences is that as the size of the GUI system increases, the number of tests of these interactions can increase as the square of the size of the GUI system. Yet the number of CIS sequences increases linearly with the size of the GUI system, which allows the proposed CIS testing approach to be scalable. These issues will also be investigated in the experimental work.

Limitations of the Proposed CIS Testing Method

The following are limitations of the CIS testing method:

1) The most serious limitation is that we have no systematic way of detecting effects or

 failures that the testing produces; of course, this is an inherent problem for any GUI

 testing method. (The second study in [9] showed that memory tools can substantially

 help with this problem).

2) The assumption that multiple iterations of a directed cycle do not cause failures not

 detected by a single iteration could be erroneous.

3) The strongly connected components are not as effectively tested as when all possible

 paths are tested.

4) The CIS tests and interaction tests between CIS sequences and other elements are a

 long way from exhaustive testing; what should be tested next?

Data Collection

The first study in [8] examined portions of three versions of Windows 98, and a multimedia database GUI system, with 13 and 52 CIS sequences, respectively. In these experiments, one person was identified who knew the GUI system very well, and their only assigned task was to identify each responsibility and to define the CIS that produces that responsibility. Another person was assigned the task of independently testing the CIS responsibilities using the proposed testing method. In each case, neither of these individuals were the developers of the testing method, and so had to be trained in the testing method.

In the empirical investigation, the tester was trained to develop GUI FSM not utilizing reduction components, and also using reduction components. Both design and implementation tests were developed by the tester, again requiring training for this.

In testing and evaluating the proposed CIS testing method, we need to distinguish between defects and surprises. Defects are well understood as serious departures from specified behaviors, whereas a surprise would be a user-recognized departure from expected behavior, but that behavior is not explicitly indicated in the specifications of the GUI. A surprise must be evaluated by someone to establish whether most users would find the surprise objectionable, in which case it is documented as a surprise. For GUI systems, because of usability issues, many surprises might well be considered more serious than many defects.

In the second study in [9], experiments involved RealNetwork Suite, Adobe Suite, InterWin DVD, a Multimedia Database and a Firewall Java Application. The GUI systems were much larger and more complex, and involved 119, 231, 60, 110 and 8 CIS sequences, respectively. The experimental approach was the same as in the first study, except that teams of testers were utilized because of the size of the GUI systems. The same analysis of the data was applied in the second study as for the first, so that results could be compared. However, CIS interactions were investigated in the second study, but not the first study.

One of the biggest differences between the second study and the first study is the use of memory tools, i.e., Memory Doctor and WinGauge, used to discover additional effects and failures. These were termed hidden effects, because they could not be detected by the tester without the use of the memory tools; 15 hidden effects were discovered in the five GUI systems. the memory tools also discovered additional previously unknown CIS sequences, called hidden CIS sequences; 9 such hidden CIS sequences were discovered in the five GUI systems.

Model Validation

The fundamental model of testing all possible paths is quite general, and can be used to validate the reduction components model. Similarly, the implementation model allows the design model to be put in perspective. In our studies, we did not validate the assumption involving multiple cycle iterations; this should be done in a subsequent study.

The use of memory tools illustrated that not all effects and failures had been detected. What is yet unknown is how many additional effects and failures could be found. The best idea for this is a more creative use of the memory tools in future studies.

It would be ideal to compare the CIS testing method with other GUI testing methods; those best described in the literature are that of Shehady and Siewiorek [4] and of Memon, Pollack and Soffa [3]. However, none of the papers describing the results of these methods describe the specific defects and surprises detected, or even the number.

Lessons Learned

· The CIS testing approach is scalable with even interaction testing scalable from our experimental results.

· Reduction components can reduce the required number of tests by 50% with no loss in testing effectiveness.

· Implementation tests can detect many more faults (defects and surprises) than just design tests; however, often a greater test/fault ratio may be required.

· Memory tools can extend the testing method by finding additional hidden effects and hidden CIS sequences.

References

[1] Khalil Abdullah, James Kimble and Lee White, “Correcting for unreliable regression

 integration testing”, Proc. of Conf. on Software Maintenance-95, Nice, France, Oct.

 1995, pp 232-241.

[2] Hareton Leung and Lee White, “A study of integration testing and software

 regression at the integration level”, Proc. of Conf. on Software Maintenance-90, San

 Diego, CA, Nov. 1990, pp 290-301.

[3] Atif Memon, Martha Pollack and Mary Lou Soffa, “Using a goal-driven approach to

 generate test cases for GUIs”, Proc. of 21st Int. Conf. on Software Eng., Los Angeles,

 CA, May 1999, pp 257-266.

[4] Richard Shehady and Daniel Siewiorek, “A method to automate user interface testing

 using variable finite state machines”, Proc. of 27th Int. Symp. on Fault Tolerant

 Computing, Seattle, WA, June 1997, pp 80-88.

[5] Lee White and Edward Cohen, “A domain strategy for computer program testing”,

 IEEE Trans. on Software Eng., SE-6(3), pp 247-257 (1980).

[6] Lee White and Bogdan Wiszniewski, “Path testing of computer programs with loops

 using a tool for simple loop patterns”, Journal of Software Practice and Experience,

 21(10), pp 1075-1102 (1991).

[7] Lee White, “Regression testing of GUI event interactions”, Proc. of Int. Conf. on

 Software Maintenance-96, Monterey, CA, Nov. 1996, pp 350-358.

[8] Lee White and Husain Almezen, “Generating test cases for GUI responsibilities

 using complete interaction sequences”, Proc. of Int. Symp. on Software

 Reliability Eng.-2000, San Jose, CA, Oct. 2000, pp 110-121.

[9] Lee White, Husain Almezen and Nasser Alzeidi, “User-based testing of GUI

 sequences and their interactions”, accepted by Int. Symp. on Softwre Reliability

 Eng.-2001, Hong Kong, Nov. 2001.

[10] Steven Zeil and Lee White, “Sufficient test sets for path analysis testing strategies”,

 Proc. of 5th Int. Conf. on Software Eng., San Diego, CA, March 1981, pp 184-191.

_1064094935.unknown

_1064095267.unknown

