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Information and more Information!
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Information Overload
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Consumer
Satisfaction

Company
Profit
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Real Life Examples
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Real Life Examples

Five scales rating
                          I hate it
                          I don’t like it
                          It’s ok
                          I like it
                          I love it
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Real Life Examples
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5-scale Ratings
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5-scale Ratings
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•  Introduction

•  Basic Techniques

•  Collaborative filtering

•  Matrix factorization

•  Different Models

•  Social graph

•  Social ensemble

•  Social distrust

•  Website recommendation

On The Menu
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Basic Approaches
•  Content-based Filtering 

•  Recommend items based on key-words

•  More appropriate for information retrieval

•  Collaborative Filtering (CF)

•  Look at users with similar rating styles

•  Look at similar items for each item

Underling assumption: personal tastes are correlated-- 
Active users will prefer those items which the 

similar users prefer!
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Framework
                                        Items

Users

• The tasks

•  Find the unknown rating!

•  Which item(s) should be recommended?

 i1  i2 ij im
u1

u2 1 3 4 2 5 3 4

ui 3 4  rij 3 4 3 4 4

un 1 3 5 2 4 1 3
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Collaborative Filtering

•  Memory-based (Neighborhood-based)

•  User-based

•  Item-based

•  Model-based

•  Clustering Methods

•  Bayesian Methods

•  Matrix Factorization

•  etc.
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User-User Similarity

5

4
3

32

?

Q1: How to measure 
the similarity?

Q2: How to 
select 

neighbors?

target
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User-based Collaborative Filtering

u1

u2 1 3 4 2 5 3 4

u3

u4 3 4 3 4 3 4 4

u5

u6 1 3 5 2 4 1 3

                                       Items

Users
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User-based Collaborative Filtering
                                       Items

Users

u1

u2 1 3 4 2 5 3 4

u3

u4 3 4 3 4 3 4 4

u5

u6 1 3 5 2 4 1 3
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User-based Collaborative Filtering

u1

u2 1 3 4 2 5 3 4

u3

u4 3 4 3 4 3 4 4

u5

u6 1 3 5 2 4 1 3

                                       Items

Users
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User-based Collaborative Filtering

u1

u2 1 3 4 2 5 3 4

u3

u4 3 4 3 4 3 4 4

u5

u6 1 3 5 2 4 1 3

                                       Items

Users
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User-based Collaborative Filtering

u1

u2 1 3 4 2 5 3 4

u3

u4 3 4 3 4 3 4 4

u5

u6 1 3 5 2 4 1 3

                                       Items

Users
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User-based Collaborative Filtering
•  Predict the ratings of active users based on the ratings of 

similar users found in the user-item matrix

•  Pearson correlation coefficient

•  Cosine measure
ui 1 3 4 2 5 3 4

ua 3 4 3 4 3 4 4

1 3 5 2 4 1 3
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Nearest Neighbor Approaches

•  Identify highly similar users to the active one

•  All with a measure greater than a threshold

•  Best K ones

•  Prediction

[Sarwar, 00a]
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Collaborative Filtering

•  Memory-based Method (Simple)

•  User-based Method [Xue et al., SIGIR ’05]

•  Item-based [Deshpande et al., TOIS ’04]

•  Model-based (Robust)

•  Clustering Methods [Hkors et al, CIMCA ’99]

•  Bayesian Methods [Chien et al., IWAIS ’99]

•  Aspect Method [Hofmann, SIFIR ’03]

•  Matrix Factorization [Sarwar et al., WWW ’01]
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Collaborative Filtering

•  Memory-based (Neighborhood-based)

•  User-based

•  Item-based

•  Model-based

•  Clustering Methods

•  Bayesian Methods

•  Matrix Factorization

•  etc.
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Item-Item Similarity

•  Search for similarities among items

•  Item-Item similarity is more stable than user-user 
similarity
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Correlation-based Method
•  Same as in user-user similarity but on item vectors

•  Pearson correlation coefficient

•  Look for users who rated both items

•  u: users rated both items

 i1  i2 ii ij im

u1

u2 1 3 4 2 5 3 4

ui 3 4 3 4 3 4 4

un 1 3 5 2 4 1 3

[Sarwar, 2001]
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Correlation-based Method
•  Calculate item similarity, then determine its k-most 

similar items

•  Predict rating for a given user-item pair as a weighted 
sum over similar items that he rated

 ua 2 3 ? 4

i

[Sarwar, 2001]

3



The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

Collaborative Filtering

•  Memory-based (Neighborhood-based)

•  User-based

•  Item-based

•  Model-based

•  Clustering Methods

•  Bayesian Methods

•  Matrix Factorization

•  etc...
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Matrix Factorization
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Matrix Factorization
•  Matrix Factorization in Collaborative Filtering

•  To fit the product of two (low rank) matrices to the 
observed rating matrix.  

•  To find two latent user and item feature matrices.

•  To use the fitted matrix to predict the unobserved ratings. 
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Matrix Factorization

•  Optimization Problem

•  Given a m x n rating matrix R,  to find two matrices�
                 and                 , �
�
�
�
where                      , is the number of factors
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Matrix Factorization

•  Models

•  SVD-like Algorithm

•  Regularized Matrix Factorization (RMF)

•  Probabilistic Matrix Factorization (PMF)

•  Non-negative Matrix Factorization (NMF)
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SVD-like Algorithm

•  Minimizing

•  For collaborative filtering�
�
�
�
where     is the indicator function that is equal to 1 if user 
ui rated item vj and equal to 0 otherwise. �
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Regularized Matrix Factorization
•  Minimize the loss based on the observed ratings with 

regularization terms to avoid over-fitting problem�
�
�
�
�
�
�
where                 . 

•  The problem can be solved by simple gradient descent 
algorithm.

Regularization terms
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•  Algorithm for RMF

•  Not convex & local optimal

•  Gradient-decent algorithm

•  Gradient computation with randomly initialized U and V�
�
�
�

•  Update U and V alternatively�
�
�
�
�
�

Regularized Matrix Factorization
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•  PMF

•  Define a conditional distribution over the observed ratings 
as:

Regularized Matrix Factorization
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•  PMF

•  Assume zero-mean spherical Gaussian priors on user and 
item feature:

Regularized Matrix Factorization
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•  PMF

•  Bayesian inference

Regularized Matrix Factorization



The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

RMF and PMF

•  PMF is the probabilistic interpretation of RMF

•  PMF and RMF have the same optimization objective 
function
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•  NMF

•  Non-negative constraints on all entries of matrices U and V

Non-negative Matrix Factorization
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•  NMF

•  Given an observed matrix Y, to find two non-negative 
matrices U and V

•  Two types of loss functions

•  Squared error function

•  Divergence

•  Solving by multiplicative updating rules�
�

Non-negative Matrix Factorization
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•  Multiplicative updating rules

•  For divergence objective function�
�
�
�
�
�

Non-negative Matrix Factorization


