CMSC5733 Social Computing

Irwin King

The Chinese University of Hong Kong

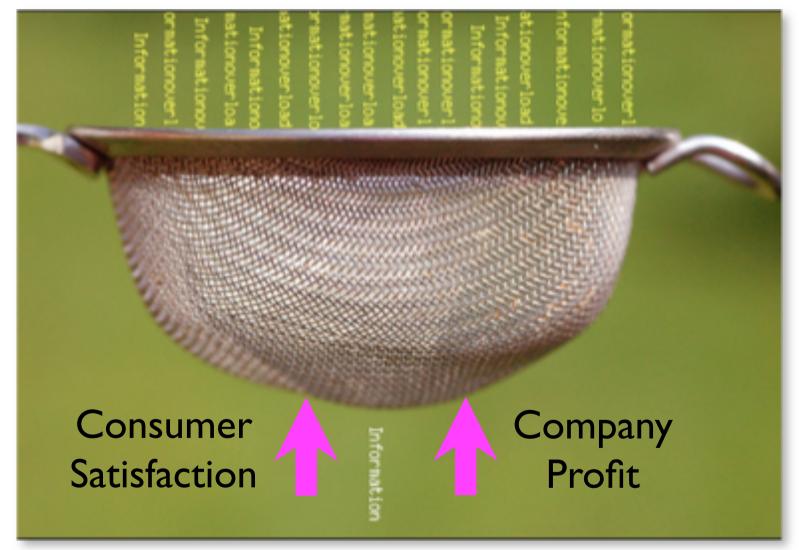
king@cse.cuhk.edu.hk

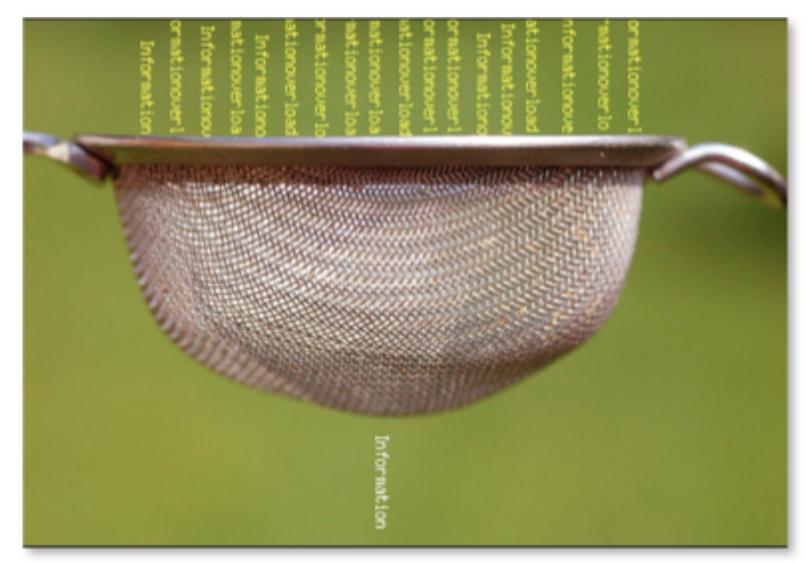
©2013-2015 All Rights Reserved.

Information and more Information!

Information Overload

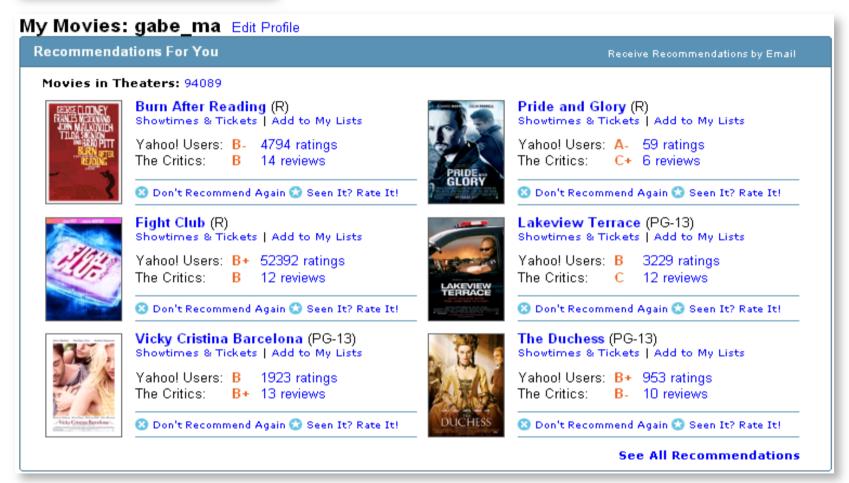
The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King



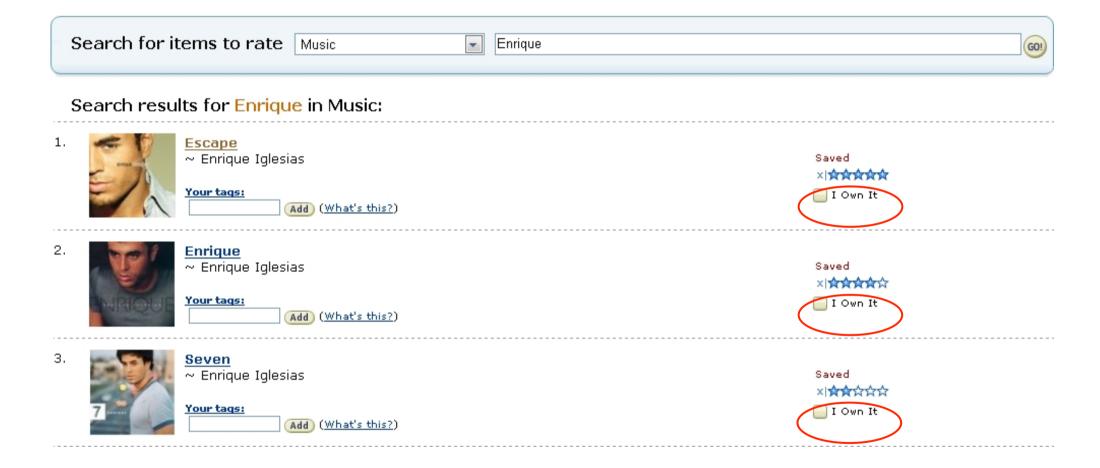


Customers Who Bought This Item Also Bought

YAHOO! MOVIES

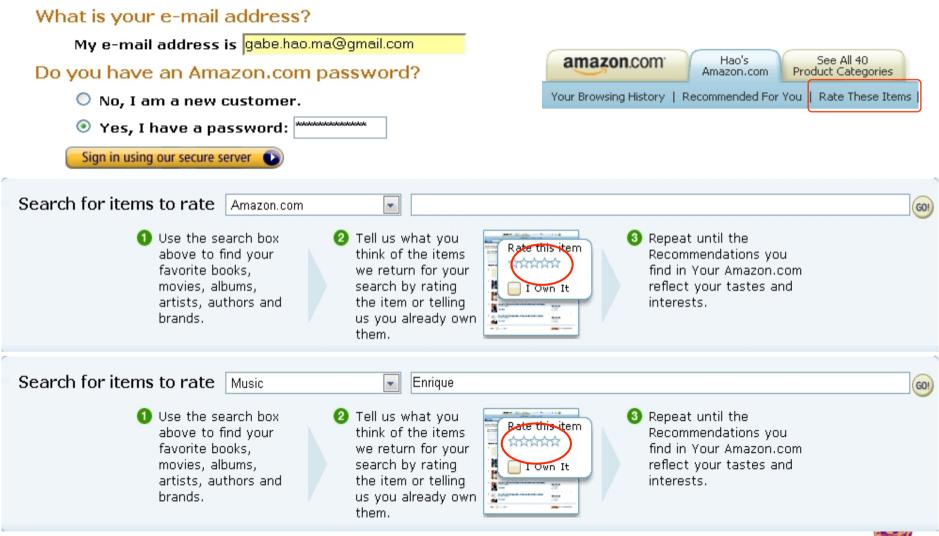


5-scale Ratings



5-scale Ratings

Sign In



On The Menu

- Introduction
- Basic Techniques
 - Collaborative filtering
 - Matrix factorization
- Different Models
 - Social graph
 - Social ensemble
 - Social distrust
 - Website recommendation

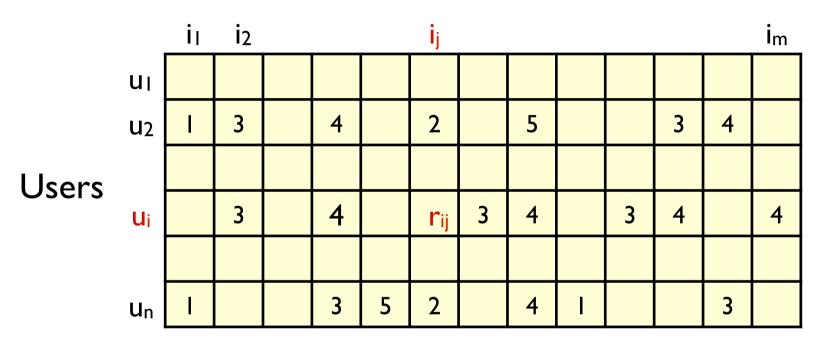
Basic Approaches

- Content-based Filtering
 - Recommend items based on key-words
 - More appropriate for information retrieval
- Collaborative Filtering (CF)
 - Look at users with similar rating styles
 - Look at similar items for each item

Underling assumption: personal tastes are correlated-Active users will prefer those items which the similar users prefer!

Framework

Items



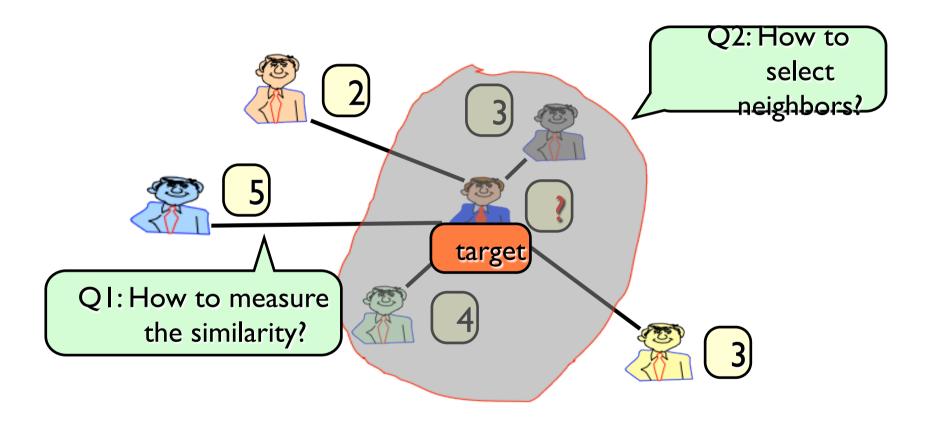
•The tasks

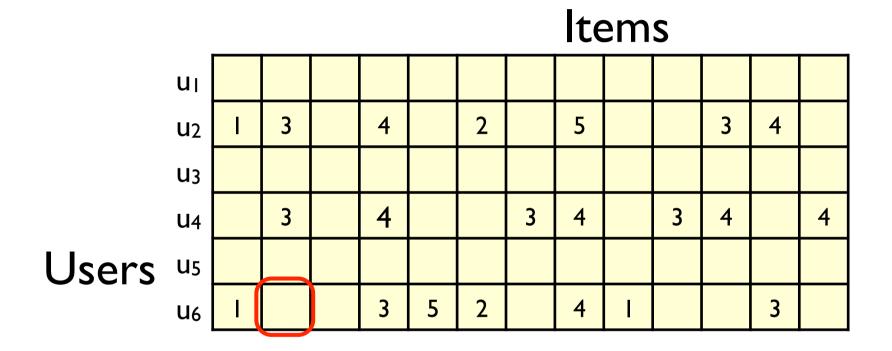
- Find the unknown rating!
- Which item(s) should be recommended? The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

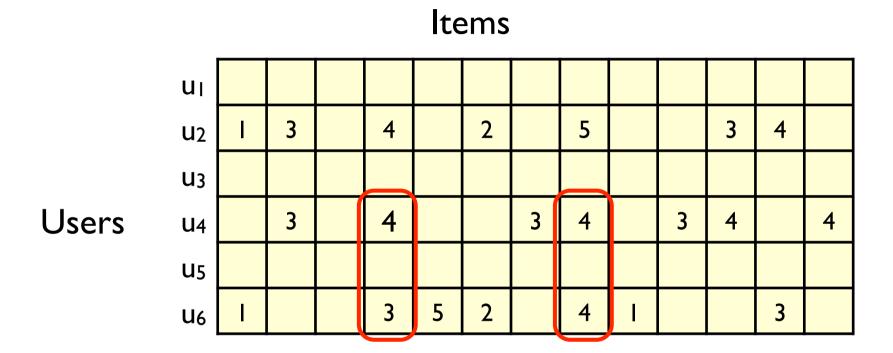
Collaborative Filtering

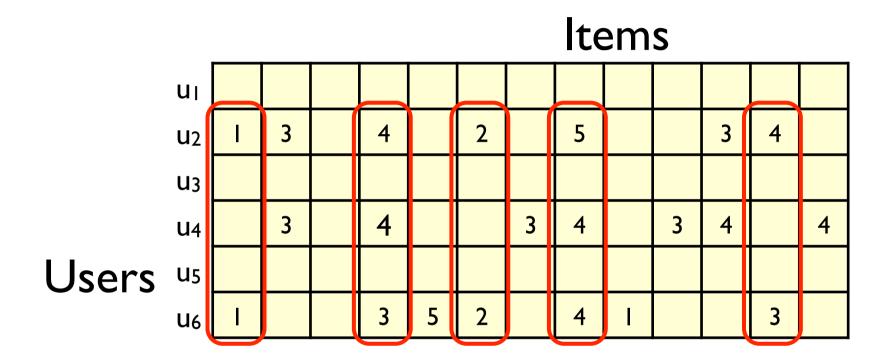
- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

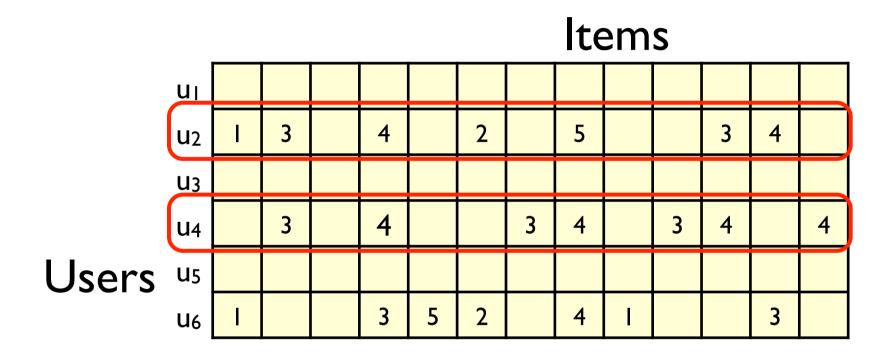
User-User Similarity

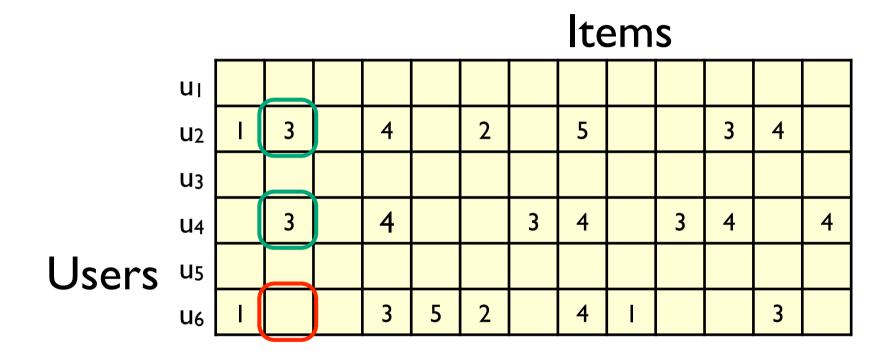










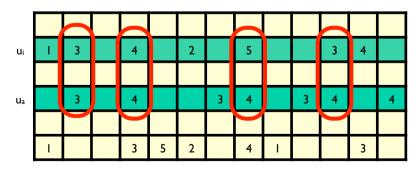


- Predict the ratings of active users based on the ratings of similar users found in the user-item matrix
 - Pearson correlation coefficient

$$w(a,i) = \frac{\sum_{j} (r_{aj} - \bar{r}_a)(r_{ij} - \bar{r}_i)}{\sqrt{\sum_{j} (r_{aj} - \bar{r}_a)^2 \sum_{j} (r_{ij} - \bar{r}_i)^2}} \quad j \in I(a) \cap I(i)$$

Cosine measure

$$c(a,i) = rac{r_a \cdot r_i}{||r_a||_2 * ||r_i||_2} egin{pmatrix} & {}^{\mathrm{u}_i} & {}^{\mathrm$$



Nearest Neighbor Approaches

[Sarwar, 00a]

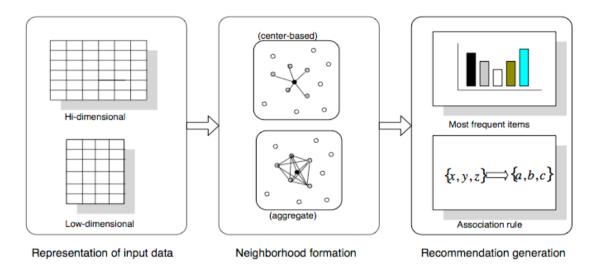


Figure 1: Three main parts of a Recommender System.

- Identify highly similar users to the active one
 - All with a measure greater than a threshold
 - Best K ones Best K ones $r_{aj} = \bar{r}_a + \frac{\sum_i w(a,i)(r_{ij} - \bar{r}_i)}{\sum_i w(a,i)}$ Prediction The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

Collaborative Filtering

- Memory-based Method (Simple)
 - User-based Method [Xue et al., SIGIR '05]
 - Item-based [Deshpande et al., TOIS '04]
- Model-based (Robust)
 - Clustering Methods [Hkors et al, CIMCA '99]
 - Bayesian Methods [Chien et al., IWAIS '99]
 - Aspect Method [Hofmann, SIFIR '03]
 - Matrix Factorization [Sarwar et al., WWW '01]

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc.

Item-Item Similarity

- Search for similarities among items
- Item-Item similarity is more stable than user-user similarity

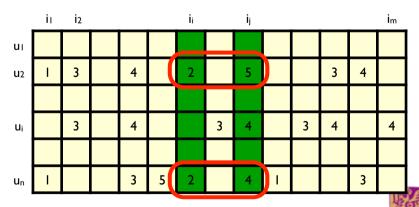
Correlation-based Method

[Sarwar, 2001]

- Same as in user-user similarity but on item vectors
- Pearson correlation coefficient
 - Look for users who rated both items

$$s_{ij} = \frac{\sum_{u} (r_{uj} - \bar{r}_j)(r_{ui} - \bar{r}_i)}{\sqrt{\sum_{u} (r_{uj} - \bar{r}_j)^2 \sum_{u} (r_{ui} - \bar{r}_i)^2}}$$

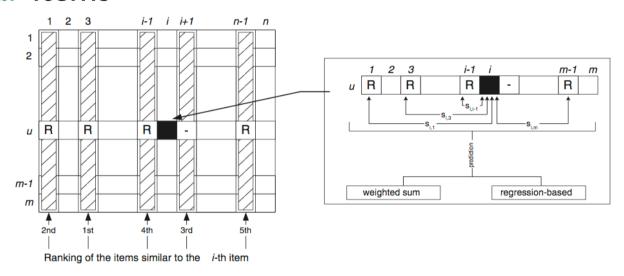
• u: users rated both items



Correlation-based Method

[Sarwar, 2001]

 Calculate item similarity, then determine its k-most similar items



 Predict rating for a given user-item pair as a weighted sum over similar items that he rated

$$r_{ai} = rac{\sum_{j} s_{ij} r_{aj}}{\sum_{j} s_{ij}}$$
 ua 2 3 ? 4

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King

Collaborative Filtering

- Memory-based (Neighborhood-based)
 - User-based
 - Item-based
- Model-based
 - Clustering Methods
 - Bayesian Methods
 - Matrix Factorization
 - etc...

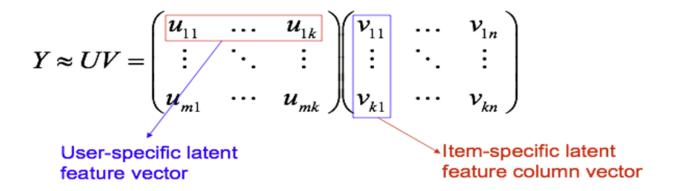
	i_1	i_2	i ₃	i ₄	i_5	i ₆	i,	i ₈
u_1	5	2		3		4		
u_2	4	3			5			
u_3	4		2				2	4
u_4								
u_5	5	1	2		4	3		
u_6	4	3		2	4		3	5

		i_1	i_2	i ₃	į,	i_5	i ₆	i_7	i ₈
u_1		5	2	2.5	3	4.8	4	2.2	4.8
u_2		4	3	2.4	2.9	5	4.1	2.6	4.7
u_3		4	1.7	2	3.2	3.9	3.0	2	4
u_4	4	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_5		5	1	2	3.4	4	3	1.5	4.6
u_6		4	3	2.9	2	4	3.4	3	5

$$U = \begin{bmatrix} 1.55 & 1.22 & 0.37 & 0.81 & 0.62 & -0.01 \\ 0.36 & 0.91 & 1.21 & 0.39 & 1.10 & 0.25 \\ 0.59 & 0.20 & 0.14 & 0.83 & 0.27 & 1.51 \\ 0.39 & 1.33 & -0.43 & 0.70 & -0.90 & 0.68 \\ 1.05 & 0.11 & 0.17 & 1.18 & 1.81 & 0.40 \end{bmatrix}$$

$$U = \begin{bmatrix} 1.55 \ 1.22 & 0.37 & 0.81 & 0.62 & -0.01 \\ 0.36 \ 0.91 & 1.21 & 0.39 & 1.10 & 0.25 \\ 0.59 \ 0.20 & 0.14 & 0.83 & 0.27 & 1.51 \\ 0.39 \ 1.33 \ -0.43 \ 0.70 \ -0.90 & 0.68 \\ 1.05 \ 0.11 & 0.17 & 1.18 & 1.81 & 0.40 \end{bmatrix} V = \begin{bmatrix} 1.00 & -0.05 \ -0.24 & 0.26 & 1.28 \ 0.54 \ -0.31 \ 0.56 \ 0.05 \ 0.68 \ 0.02 \ -0.61 \ 0.70 \\ 0.49 & 0.09 \ -0.05 \ -0.62 \ 0.12 \ 0.08 \ 0.02 \ 1.60 \\ -0.40 & 0.70 & 0.27 \ -0.27 \ 0.99 \ 0.44 \ 0.39 \ 0.74 \\ 1.49 \ -1.00 \ 0.06 \ 0.05 \ 0.23 \ 0.01 \ -0.36 \ 0.80 \end{bmatrix}$$

- Matrix Factorization in Collaborative Filtering
 - To fit the product of two (low rank) matrices to the observed rating matrix.
 - To find two latent user and item feature matrices.
 - To use the fitted matrix to predict the unobserved ratings.



- Optimization Problem
 - Given a m x n rating matrix R, to find two matrices $U \in \mathbb{R}^{l \times m}$ and $V \in \mathbb{R}^{l \times n}$

$$R \approx U^T V$$

where $l < \min(m, n)$, is the number of factors

- Models
 - SVD-like Algorithm
 - Regularized Matrix Factorization (RMF)
 - Probabilistic Matrix Factorization (PMF)
 - Non-negative Matrix Factorization (NMF)

SVD-like Algorithm

Minimizing

$$\frac{1}{2}||R - U^T V||_F^2,$$

For collaborative filtering

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2$$

where I_{ij} is the indicator function that is equal to I if user u_i rated item v_j and equal to 0 otherwise.

 Minimize the loss based on the observed ratings with regularization terms to avoid over-fitting problem

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \underbrace{\frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2}_{}$$

Regularization terms

where
$$\lambda_1, \lambda_2 > 0$$

 The problem can be solved by simple gradient descent algorithm.

- Algorithm for RMF
 - Not convex & local optimal
 - Gradient-decent algorithm
 - Gradient computation with randomly initialized U and V

$$\frac{\partial L}{\partial u_{il}} = \lambda u_{il} - \sum_{j|(i,j) \in S} (y_{ij} - \widehat{y_{ij}}) v_{jl}$$

$$\frac{\partial L}{\partial v_{il}} = \lambda v_{il} - \sum_{j|(i,j) \in S} (y_{ij} - \widehat{y_{ij}}) u_{jl}$$

Update U and V alternatively

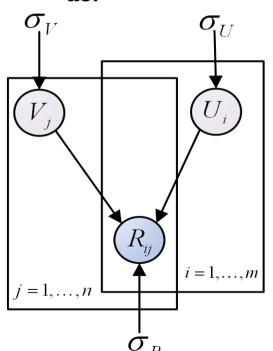
$$u_{il}^{(t+1)} = u_{il}^{(t)} - \tau \frac{\partial L}{\partial u_{il}^{(t)}}$$

$$v_{jl}^{(t+1)} = v_{jl}^{(t)} - \tau \frac{\partial L}{\partial v_{jl}^{(t)}}$$

au is the step size of gradient decent.

PMF

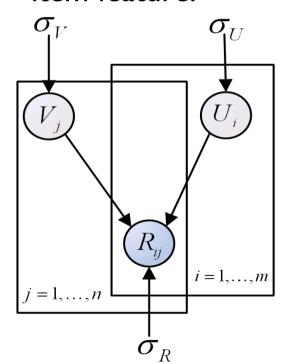
 Define a conditional distribution over the observed ratings as:



$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij}|g(U_i^T V_j), \sigma_R^2\right) \right]^{I_{ij}^R}$$

PMF

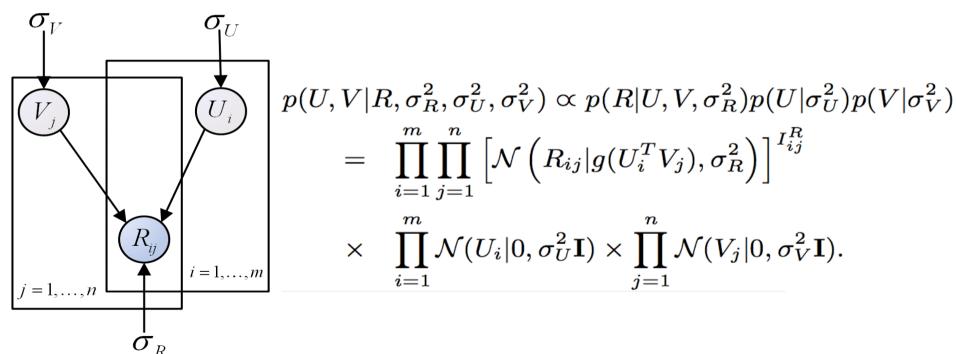
 Assume zero-mean spherical Gaussian priors on user and item feature:



$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0,\sigma_U^2\mathbf{I})$$

$$p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

- PMF
 - Bayesian inference



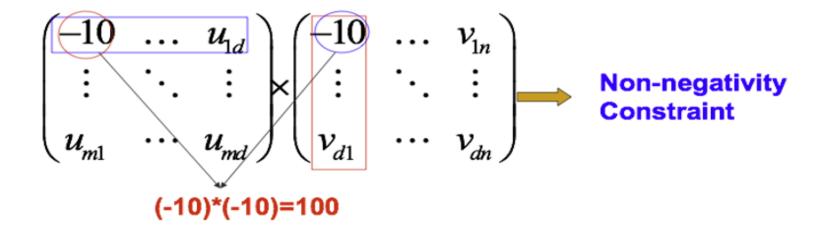
RMF and PMF

PMF is the probabilistic interpretation of RMF

 PMF and RMF have the same optimization objective function

Non-negative Matrix Factorization

- NMF
 - Non-negative constraints on all entries of matrices U and V



Non-negative Matrix Factorization

- NMF
 - Given an observed matrix Y, to find two non-negative matrices U and V
 - Two types of loss functions
 - Squared error function

$$\sum_{ij} \left(R_{ij} - U_i^T V_j \right)^2$$

Divergence

$$D(R||U^{T}V) = \sum_{ij} (R_{ij} \log \frac{R_{ij}}{U_{i}^{T}V_{j}} - R_{ij} + U_{i}^{T}V_{j})$$

Solving by multiplicative updating rules

Non-negative Matrix Factorization

- Multiplicative updating rules
 - For divergence objective function

$$u_{il} \leftarrow u_{il} \frac{\sum_{j} v_{jl} y_{ij} / (\widehat{y}_{ij})}{\sum_{a} v_{al}}$$

$$v_{il} \leftarrow v_{il} \frac{\sum_{j} u_{jl} y_{ij} / (\widehat{y}_{ij})}{\sum_{a} u_{al}}$$

