CSCl5733 Social Computing

Irwin King
The Chinese University of Hong Kong
king@cse.cuhk.edu.hk
©2013-I5 All Rights Reserved.

Social Networkran thery

- Consider many kinds of networks:
- social, technological, business, economic, content, ...
- These networks tend to share certain informal properties:
- large scale; continual growth
- distributed, organic growth: vertices "decide" who to link to
- interaction restricted to links
- mixture of local and long-distance connections
- abstract notions of distance: geographical, content, social,...

Six Degree of Separation

- "Six degrees of separation between us and everyone else on this planet"
[John Guare, 1990]
- What is the probability of two strangers having a mutual friend?
- What is the chain of intermediaries between two strangers?

Small World Networks

- A network that most nodes can be reached from every other node by a small number of steps
- $L \propto \log N$, where L is the steps and N is the network size
- Examples: road, power grid, online social networks, email network, neural networks,WWW, etc.

Dunbar's Number

- It is theoretical cognitive limit to the number of people with whom one can maintain stable social relationships
- It is assumed to be between I 00 to 230 with I 50 as the norm in various studies
- Allen curve--the exponential drop of frequency of communication as the distance between them increases

The Tipping Point

- It is "the moment of critical mass, the threshold, the boiling point"
- Three rules
- The Law of the Few
- The Stickiness Factor
- ...the specific content of a message that renders its impact memorable, i.e., Apple's 1984 Super Bowl commercial
- The Power of Context
- ...are sensitive to the conditions and circumstances of the times and places in which they occur

Pareto Principle

- Also known as the "80-20 Rule" or "The Law of the Vital Few"
- Roughly 80% of the effects come from 20% of the causes
- In 1906, the observation that 80% of the land in Italy was owned by 20% of the population
- 80% of your profits come from 20% of your customers
- 80% of your complaints come from 20% of your customers
- 80% of your sales are made by 20% of your sales staff
- 80% of the work will be done by 20% of the participants

Social Network Theory

- Do these networks share more quantitative universals?
- What would these "universals" be?
- How can we make them precise and measure them?
- How can we explain their universality?
- This is the domain of social network theory

Some Interesting Quantities

- Connected components
- how many, and how large?
- Network diameter
- maximum (worst-case) or average?
- exclude infinite distances? (disconnected components)
- the small-world phenomenon
- Clustering
- to what extent that links tend to cluster "locally"?
- what is the balance between local and longdistance connections?
- what roles do the two types of links play?
- Degree distribution
- what is the typical degree in the network?
- what is the overall distribution?

Types of Relations

- Kinship-mother of, wife of
- Other role-based-boss of, teacher of, friend of, brother of, father of, sister of, enemy of, lover of
- Cognitive/perceptualknows, aware of what they know, is familiar with
- Affective-likes, loves, hates, admires, trusts
- Interactive-give advice, talks to, fights with, sex/ drugs with, buys from, sells to
- Affiliations-belong to same clubs, is physically near
- Derived-has subscription to the same magazine as, is taller than, distance between
- Flows-moves to, flows to

Define Graphs

- A graph $G=(V, E)$ consists of a set of vertices, V, and a set of edges, E.
- Each edge is a pair (v, w), where $v, w \in V$. It is said to join the vertices v and w.
- If the edge $e=(v, w) \in E$, then u and v are both said to be incident with e and adjacent to each other.
- If the pair is ordered, then the graph is directed (digraphs).
- One can associate an attribute to the edge which is called weight.

Define Graph Isomorphism

- Two graphs G and H are said to be isomorphic, denoted by $G \sim H$, if there is a one-to-one correspondence, called an isomorphism, between the vertices of the graph such that two vertices are adjacent in G if and only if their corresponding vertices are adjacent in H.
- Likewise, a graph G is said to be homomorphic to a graph H if there is a mapping, called a homomorphism, from $V(G)$ to $V(H)$ such that if two vertices are adjacent in G then their corresponding vertices are adjacent in H.

a	l
b	6
c	8
d	3
g	5
h	2
i	4
j	7

Define Adjacency Matrix

A graph G with n nodes can be represented by an n-by- n matrix. Given $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. Then the adjacency matrix A is an n-by- n matrix whose entry $A_{i j}$ is defined to be:

$$
A_{i j}= \begin{cases}1, & \text { if there is an edge from } v_{i} \text { to } v_{j} \tag{1}\\ 0, & \text { otherwise. }\end{cases}
$$

Note that for the an undirected graph, $A_{i j}=A_{j i}$ so the adjacency matrix is a symmetric matrix. Moreover, we can put value attributes to the edges and define $A_{i j}$ to be:

$$
A_{i j}= \begin{cases}\mathrm{w}, & \text { if there is an edge from } v_{i} \text { to } v_{j} \text { and } w \text { is its weight } \tag{2}\\ 0, & \text { if there is no edge from } v_{i} \text { to } v_{j} .\end{cases}
$$

Examples of Adjacency Matrix

	Alice	Bob	Cathy	David
Alice	-	1	0	0
Bob	0	-	0	1
Cathy	0	1	-	0
David	1	0	0	-

	Alice	Bob	Cathy	David
Alice	-	3	0	4
Bob	3	-	1	8
Cathy	0	1	-	0
David	4	8	0	-

Define Length, Path, and Cycle

- A path p in G is a sequence of vertices $w_{1}, w_{2}, w_{3}, \cdots, w_{N}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $1 \leq i \leq N$ and that $w_{i} \neq w_{j}$ with $i \neq j$.
- The length of p is the number of edges on the path, which is equal to $N-1$.
- The length can be zero for the case of a single vertex.
- The distance between two nodes is the length of shortest path.
- A path with no repeated vertices is called a simple path.
- A cycle with no repeated vertices aside from the starting and ending vertex is a simple cycle. A simple cycle that includes every vertex of the graph is known as a Hamiltonian cycle.
- Two paths are independent if they do not have any internal vertex in common.
- For a weighted graph, the weight of a path is the sum of the weights of the traversed edges.

Define Trail and Walk

- A trail t in G is a sequence of vertices $w_{1}, w_{2}, w_{3}, \cdots, w_{N}$ such that $\left(w_{i}, w_{i+1}\right) \in E$ for $1 \leq i \leq N$ and that $e_{i} \neq e_{j}$ with $i \neq j$.
- A walk is an alternating sequence of vertices and edges, beginning and ending with a vertex, where each vertex is incident to both the edge that precedes it and the edge that follows it in the sequence, and where the vertices that precede and follow an edge are the end vertices of that edge.
- A walk is closed if its first and last vertices are the same, and open if they are different.

Example of Path,Trial, and Walk

Walk is the most general! Walk: $\{1,4,5, \mathrm{I}, 6,5,4,3\}$

Trail is a special type of walk with no repeated edges. Trail: $\{2,7,6,1,7,8,9\}$

Path is a walk with no repeated vertices.
Path: $\{1,4,5,6,7,8,9\}$
A walk is closed if the starting and ending nodes are the same.

A cycle is a closed trail. A cycle of length k is called a k-cycle.

Define Some Graph Properties

- The eccentricity ϵ of a vertex v is the greatest distance between v and any other vertex.
- The radius of a graph is the minimum eccentricity of any vertex.
- The diameter of a graph is the maximum eccentricity of any vertex in the graph, i.e., it is the greatest distance between any two vertices.
- A peripheral vertex in a graph of diameter d is one that is distance d from some other vertex, i.e., a vertex that achieves the diameter.
- A pseudo-peripheral vertex v has the property that for any vertex u, if v is as far away from u as possible, then u is as far away from v as possible.
- The girth of a graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles, its girth is defined to be infinity.

Define Connected Component

- A connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and to which no more vertices or edges can be added while preserving its connectivity. That is, it is a maximal connected subgraph.
- An undirected graph is connected if there is a path from every vertex to every other vertex.
- A directed graph with this property is called strongly connected.
- A weakly connected graph is a a directed graph which is not strongly connected, but the underlying graph (without direction to the edges) is connected.
- A complete graph is a graph in which there is an edge between every pair of vertices.

Example of Components

Connected Components

```
>>> G =
nx.generators.random_graphs.gnp_random_graph(10,0.15)
>>>
>>> nx.is_connected(G)
False
>>> nx.number_connected_components(G)
4
>>> nx.connected_components(G)
[[0, 8, 2, 3, 7], [4, 5, 6], [1], [9]]
```


Define Cutpoint

- A cutpoint is a vertex whose removal from the graph increases the number of components. That is, it makes some points unreachable from some others. It disconnects the graph.
- A cutset is a collection of points whose removal increases the number of components in a graph.
- A minimum weight cutset consists of the smallest set of points that must be removed to disconnect a graph. The number of points in a minimum weight cutset is called the point connectivity of a graph.
- If a graph has a cutpoint, the connectivity of the graph is 1 .
- The minimum number of points separating two nonadjacent points s and t is also the maximum number of point-disjoint paths between s and t.

Define Cutpoint

- A bridge is an edge whose removal from a graph increases the number of components (disconnects the graph).
- An edge cutset is a collection of edges whose removal disconnects a graph.
- A local bridge of degree k is an edge whose removal causes the distance between the endpoints of the edge to be at least k.
- The edge-connectivity of a graph is the minimum number of lines whose removal would disconnect the graph. The minimum number of edges separating two nonadjacent points s and t is also the maximum number of edge-disjoint paths between s and t.

Example of a Cutpoint and Bridge

Define Graph Density

For undirected simple graphs, the graph density is defined as:

$$
\begin{equation*}
D=\frac{2|E|}{|V|(|V|-1)} \tag{1}
\end{equation*}
$$

where $|E|$ denotes the number of edges and $|V|$ denotes the number of vertices. The maximum number of edges is $\frac{1}{2}|V|(|V|-1)$, so the maximal density is 1 (for complete graphs) and the minimal density is 0 .

Define Graph Distance

- The distance $d_{G}(u, v)$ between two (not necessary distinct) vertices u and v in a graph G is the length of a shortest path between u and v.
- When u and v are identical, their distance is 0 . When u and v are unreachable from each other, their distance is defined to be infinity ∞.
- The average distance is the summation of the distance between all pairs of reachable nodes divided by the number of nodes.

$$
d_{a v}(G)=\frac{\sum_{u, v}^{V} d_{G}(u, v)}{|V|}
$$

Define Degree Centrality

Let $G=(V, E)$ with n vertices, the Degree Centrality $C_{D}(v)$ for a vertex v is defined as

$$
\begin{equation*}
C_{D}(v)=\frac{\operatorname{deg}(v)}{n-1} \tag{1}
\end{equation*}
$$

For directed graphs, the above can be decomposed to include indegree and outdegree as

$$
\begin{align*}
C_{D i n}(v) & =\frac{\operatorname{indeg}(v)}{n-1} \tag{2}\\
C_{\text {Dout }}(v) & =\frac{\operatorname{outdeg}(v)}{n-1} \tag{3}
\end{align*}
$$

Define Group Degree Centralization

The Group Degree Centralization is defined by Freeman as

$$
\begin{equation*}
C_{D}(G)=\frac{\sum_{v}\left(\Delta_{G}-C_{D}(v)\right)}{\max _{H} \sum_{v \in H}\left(\Delta_{H}-C_{D}(v)\right)}, \tag{1}
\end{equation*}
$$

where Δ_{G} is the maximum degree of any node in $G, C_{D}(v)$ is the degree of node v in G and the maximum is taken over all possible graph of the same order (the same number of nodes).

Define Group Degree Centralization

Let n and m denote the numbers of nodes and edges, respectively. We have

$$
\begin{equation*}
C_{D}(G)=\frac{n \Delta_{G}-\sum_{v}\left(C_{D}(v)\right)}{(n-1)(n-2)} . \tag{1}
\end{equation*}
$$

For an undirected graph,

$$
\begin{equation*}
C_{D}(G)=\frac{n \Delta_{G}-2 m}{(n-1)(n-2)} \tag{2}
\end{equation*}
$$

For a directed graph,

$$
\begin{equation*}
C_{D}^{i n}(G)=\frac{n \Delta_{G}^{i n}-m}{(n-1)(n-2)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{D}^{\text {out }}(G)=\frac{n \Delta_{G}^{\text {out }}-m}{(n-1)(n-2)} . \tag{4}
\end{equation*}
$$

Define Degree Centrality for G
 Let V^{*} be the node with the highest degree centrality in G. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

 be the n node connected graph that maximizes the following quantity$$
\begin{equation*}
H=\sum_{j=1}^{\left|V^{\prime}\right|} C_{D}\left(v^{* *}\right)-C_{D}\left(v_{j}^{\prime}\right) \tag{1}
\end{equation*}
$$

Then the degree centrality of the graph G is defined as

$$
\begin{equation*}
C_{D}(G)=\frac{\sum_{i=1}^{|V|}\left[C_{D}\left(v^{*}\right)-C_{D}\left(v_{i}\right)\right]}{H} \tag{2}
\end{equation*}
$$

H is maximized when the graph G^{\prime} contains one node that is connected to all other nodes are connected only to this one central node (a star graph). In this case

$$
\begin{equation*}
H=(n-1)\left(1-\frac{1}{n-1}\right)=n-1 \tag{3}
\end{equation*}
$$

so the degree centrality of G reduces to

$$
C_{D}(G)=\frac{\sum_{i=1}^{|V|}\left[C_{D}\left(v^{*}\right)-C_{D}\left(v_{i}\right)\right]}{n-2}
$$

Define Closeness Centrality

Let $d(u, v)$ denote the distance from u to v and $D(v)=\sum_{u} d(v, u)$ be the total distance from v to all other nodes. The Closeness Centrality of v is measured by $1 / D(v)$ and normalized to $C_{C}(v)=(n-1) / D(v)$ since the minimum $D(v)$ is $n-1$, which happens at the center of a star graph. Freeman defines the group centrality as follows,

$$
\begin{equation*}
C_{C}(G)=\frac{\sum_{v}\left(C_{C}\left(v^{*}\right)-C_{C}(v)\right)}{\max _{H} \sum_{v \in H}\left(C_{C}\left(v^{*}\right)-C_{C}(v)\right)}, \tag{1}
\end{equation*}
$$

where v^{*} is the node of maximum closeness.

Define Between Centrality

The Between Centrality is a measure of a vertex within a graph (this can also be extended to edge as well). Vertices that occur on many shortest paths between other vertices have higher betweenness than those that do not. Hence, Betweenness Centrality of a node counts the number of times that a node lies along the shortest path between two others vertices in the graph. It is defined as

$$
\begin{equation*}
C_{B}(v)=\sum_{s \neq v \neq t \in V} \frac{\sigma_{s t}(v)}{g \sigma_{s t}} \tag{1}
\end{equation*}
$$

where $\sigma_{s t}$ is the number of shortest paths from s to t and $\sigma_{s t}(v)$ is the number of shortest paths from s to t that pass through a vertex v.

The normalized betweenness of undirected graphs is given by

$$
\begin{equation*}
C_{B}^{\prime}(v)=\frac{C_{B}(v)}{(n-1)(n-2) / 2} \tag{2}
\end{equation*}
$$

Define Group Between Centrality

The normalized betweenness of directed graphs is given by

$$
\begin{equation*}
C_{B}^{\prime}(v)=\frac{C_{B}(v)}{(n-1)(n-2)} . \tag{1}
\end{equation*}
$$

To compute the group betweenness centrality, we compute the one of a star at first. For a star, the center has betweenness $(n-1)(n-2) / 2$ and it is zero for all the others. The group centrality of a star is then $(n-1)^{2}(n-2) / 2$. Then we have

$$
\begin{align*}
C_{B}(G) & =\frac{\sum_{v}\left(C_{B}\left(v^{*}\right)-C_{B}(v)\right)}{(n-1)^{2}(n-2) / 2} \tag{2}\\
& =\frac{\sum_{v}\left(C_{B}^{\prime}\left(v^{*}\right)-C_{B}^{\prime}(v)\right)}{n-1}
\end{align*}
$$

Complete Graph

- A complete graph is a simple graph in which every pair of distinct vertices is connected by an edge.
- The complete graph on n vertices has n vertices and $n(n-1) / 2$ edges, and is denoted by K_{n}.
- It is a regular graph of degree $n-1$.
- All complete graphs are their own cliques. They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices.

Bipartite Graph

- A bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V, i.e., U and V are independent sets.
- Equivalently, a bipartite graph is a graph that does not contain any oddlength cycles.
- A balanced bipartite graph is a bipartite graph that satisfy the condition $|U|=|V|$.
- A complete bipartite graph $G=(U+V, E)$ is bipartite such that for any two vertices $u \in U$ and $v \in V$ that (u, v) is an edge in G.
- The complete bipartite graph with partitions of size $|U|=m$ and $|V|=n$, is denoted $K_{m, n}$.

Properties of Bipartite Graphs

- A graph is bipartite if and only if it does not contain an odd cycle. Therefore, a bipartite graph cannot contain a clique of size 3 or more.
- A graph is bipartite if and only if it is 2 -colorable.
- The size of minimum vertex cover is equal to the size of the maximum matching.
- The size of the maximum independent set plus the size of the maximum matching is equal to the number of vertices.

Basic Functions

is_bipartite(G)

- Returns True if graph G is bipartite, False if not. is_bipartite_node_set(G, nodes) Returns True if nodes and G/ nodes are a bipartition of G.
sets(G)
- Returns bipartite node sets of graph G.
color(G)
- Returns a two-coloring of the graph.
density(B, nodes)
- Return density of bipartite graph B. degrees $(B$, nodes[, weighted]) Return the degrees of the two node sets in the bipartite graph B.

Bipartite Module in NetworkX

- This module provides functions and operations for bipartite graphs. Bipartite graphs $G(X, Y, E)$ have two node sets X, Y and edges in E that only connect nodes from opposite sets.
- For example:
>>> import networkx as $n x$
\ggg top_nodes $=[1,1,2,3,3]$
>>> bottom_nodes=['a','b','b','b','c']

>>> edges=zip(top_nodes,bottom_nodes) \# create 2-tuples of edges
>>> B=nx.Graph(edges)
>>> print(B.edges())
- The bipartite algorithms are not imported into the networkx (version I.5) namespace at the top level so you need to do:
>>> from networkx.algorithms import bipartite

Examples of Basic Functions

- networkx.algorithms.bipartite.basic.sets

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]
```


- networkx.algorithms.bipartite.basic.color
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
$\{0: 1,1: 0,2: 1,3: 0\}$

More Examples

- networkx.algorithms.bipartite.basic.density
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> $X=\operatorname{set}([0,1,2])$
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0

- networkx.algorithms.bipartite.basic.degrees

```
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}
```


Other Functions

- Spectral
spectral_bipartivity(G[, nodes, weight])
- Returns the spectral bipartivity.
- Clustering
clustering(G[, nodes, mode])
- Compute a bipartite clustering coefficient for nodes.
average_clustering(G[, nodes, mode])
- Compute the average bipartite clustering coefficient.

Examples of Clustering

- networkx.algorithms.bipartite.cluster.clustering

```
>>> from networkx.algorithms import bipartite
>>> G=nx.path_graph(4) # path is bipartite
>>> c=bipartite.clustering(G)
>>> c[0]
0.5
>>> c=bipartite.clustering(G,mode='min')
>>> c[0]
```


1.0

- networkx.algorithms.bipartite.cluster.average_clustering

```
>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # path is bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0
```


Bipartite Cluster Clustering

- The bipartie clustering coefficient is a measure of local density of connections defined as

$$
c_{u}=\frac{\sum_{v \in N(N(v))} c_{u v}}{N(N(u))}
$$

where $N(N(u))$ are the second order neighbors of u in G excluding u, and $c_{u v}$ is the pairwise clustering coefficient between nodes u and v.

- $c_{u v}$ can be defined in three ways.

$$
c_{u v}=\frac{\|N(u) \cap N(v)\|}{\|N(u) \cup N(v)\|}
$$

- min:

$$
c_{u v}=\frac{\|N(u) \cap N(v)\|}{\min (\|N(u) \cup N(v)\|)}
$$

- max:

$$
c_{u v}=\frac{\|N(u) \cap N(v)\|}{\max (\|N(u) \cup N(v)\|)}
$$

More Functions

- Redundancy
node_redundancy(G[, nodes])
- Compute bipartite node redundancy coefficient.
- Centrality
closeness_centrality(G, nodes[, normalized])
- Compute the closeness centrality for nodes in a bipartite network.
degree_centrality(G, nodes)
- Compute the degree centrality for nodes in a bipartite network.
betweenness_centrality(G, nodes)
- Compute betweenness centrality for nodes in a bipartite network.

Examples of Redundancy

- networkx.algorithms.bipartite.redundancy.node_redundan cy

```
>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph(4)
>>> rc = bipartite.node_redundancy(G)
>>> rc[0]
1.0
```


Example

```
import networkx as nx
import matplotlib.pyplot as plt
import pygraphviz
top_nodes=[1, 1, 2, 3, 3]
bottom_nodes=['a','b','b','b','c']
edges=zip(top_nodes,bottom_nodes) # create 2-tuples of
edges
G=nx.Graph(edges)
print(G.edges())
nx.draw(G)
plt.savefig("example.png")
plt.show()
```


>>> centrality.degree_centrality(G)
\{'a': 0.20000000000000001, 1: 0.40000000000000002, 2:
0.2000000000000001, 'b': 0.60000000000000009, 'c':
0.20000000000000001, 3: 0.40000000000000002\}
>>> centrality.betweenness_centrality(G)
\{'a': 0.0, 1: 0.40000000000000002, 2: 0.0, 'b':
0.8000000000000004, 'c': 0.0, 3: 0.40000000000000002\}
>>> centrality.closeness_centrality(G)
\{'a': 0.38461538461538464, 1: 0.55555555555555558, 2:
$0.45454545454545453, ~ ' b ': 0.7142857142857143, c^{\prime}:$
$0.38461538461538464,3: 0.55555555555555558\}$


```
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
>>> Y=set([3,4])
>>> centrality.degree_centrality(G)
{0: 0.5, 1: 0.5, 2: 0.5, 3: 0.75, 4: 0.75}
>>> centrality.betweenness_centrality(G)
{0: 0.055555555555555552, 1: 0.055555555555555552, 2:
0.055555555555555552, 3: 0.25, 4: 0.25}
>>> centrality.closeness_centrality(G)
{0: 0.66666666666666663, 1: 0.66666666666666663, 2:
0.66666666666666663, 3: 0.8000000000000000004, 4: 0.80000000000000000
```


Subgroup Cohesion

- A Clique in an undirected graph $G=(V, E)$ is a subset of the vertex set $C \subseteq V$, such that for every two vertices in C, there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by C is complete.
- The size of the clique is the number of vertices it contains.
- The clique number $\omega(G)$ of a graph G is the order of a largest clique in G.
- An n-clique S of a graph is a maximal set of nodes in which for all $u, v \in S$, the graph-theoretic distance $d(u, v) \leq n$.
- In other words, an n-clique is a set of nodes in which every node can reach every other in n or fewer steps, and the set is maximal in the sense that no other node in the graph is distance n or less from every other node in the subgraph.
- A 1-clique is the same as an ordinary clique.

Clan

An n-clan is an n-clique in which the diameter of the subgraph G^{\prime} induced by S is less than or equal to n.

An n-club is a subset S of nodes such that in the subgraph induced by S, the diameter is n or less. Every n-clan is both an n-club and an n-clique.

A k-plex is a subset S of nodes such that every member of the set is connected to $n-k$ others, where n is the size of S. The k-plex generalizes the clique by relaxing density.

Example of Cliques, Clans, Clubs, etc.

(a) A complete graph and also a clique of size 5. (b) An example of a clique of size 3. (c) An example of 2 -clique with $\{1,2,3,4,5\}$. An example of 2 -clan with $\{2,3,4,5,6\}$. An example of 2 -club with $\{1,2,3,6\}$.

The Clique Problem

- There is a clique of size at least k iff there is an independent set of size last least k in the complement graph.
- Brute Force Algorithm
- Examine each subgraph with at least k vertices and check to see if it forms a clique.
- Polynomial if k is the number of vertices, or a constant

$$
\binom{V}{k}=\frac{V!}{k!(V-k)!}
$$

- Consider each node to be a clique of size one, and to merge cliques into larger cliques
- Linear time by the edges
- Disjoint-set data structure

Clique Example

from networkx.algorithms import clique
G = nx.complete_graph(5)

clique.graph_clique_number(G) \# Return the clique number (size of the largest clique) for G 5
list(clique.find_cliques(G)) \# Search for all maximal
cliques in a graph.
[[0, 1, 2, 3, 4]]
clique.cliques_containing_node(G) \# Returns a list of cliques containing the given node.
\{0: [[0, 1, 2, 3, 4]], 1: [[0, 1, 2, 3, 4]], 2: [[0, 1, 2,
3, 4]], 3: [[0, 1, 2, 3, 4]], 4: [[0, 1, 2, 3, 4]]\}

>>> G = nx.complete_bipartite_graph (3, 2)
\ggg G.add_edge (3,4)
\ggg
>>> clique.graph_clique_number(G) \# Return the clique number (size of the largest clique) for G 3
>>> list(clique.find_cliques(G)) \# Search for all maximal cliques in a graph.
$[[3,4,0],[3,4,1],[3,4,2]]$
>>> clique.cliques_containing_node(G) \# Returns a list of cliques containing the given node.
$\{0:[[3,4,0]], 1:[[3,4,1]], 2:[[3,4,2]], 3:[[3,4$, $0],[3,4,1],[3,4,2]], 4:[[3,4,0],[3,4,1],[3,4$, 2]] \}

Graph Measures

>>> from networkx.algorithms import distance_measures
>>> from networkx.algorithms import distance_measures
>>> G = nx.generators.random_graphs.gnp_random_graph(6,0.5)
>>> distance_measures.diameter(G)
2
>>> distance_measures.eccentricity(G)
$\{0: 2,1: 2,2: 2,3: 2,4: 2,5: 2\}$
>>> distance_measures.center(G)
[0, 1, 2, 3, 4, 5]
>>> distance_measures.periphery(G)
[0, 1, 2, 3, 4, 5]
>>> distance_measures.radius(G)
2

References

- NetworkX, http://networkx.lanl.gov/
- D. J. Cook and L. B. Holder, Mining Graph Data, Ist ed. Wiley-Interscience, 2006
- T. G. Lewis, Network Science:Theory and Applications, I st ed.Wiley, 2009.
- M. Gladwell, The Tipping Point: How Little Things Can Make a Big Difference. Back Bay Books, 2002.

