
CSCI 2100B Data Structures

Midterm Examination (Programming Part)
9:30 a.m. - 12:30 p.m., April 13, 2013

Instructions

1. The programming midterm is an open-book and open-notes examination. You may
bring what you can carry on printed (hard copy) materials. You MUST not take any-
thing that can record program code electronically to the examination venue. You will
not need a calculator for any calculation.

2. The operation system will be Ubuntu. The computer configuration will have these basic
editors: vi/vim, emacs, gedit, and nano.

3. The examination will begin when the Chief TA starts the clock and will end when the
Chief TA stops the clock, which is usually three hours after the starting time including
any missing time due to technical and other difficulties.

4. You should work on Problem A first and then others afterwards. They are in increasing
difficulties as judged by the instructor.

5. You MUST complete at least one problem in order not to fail the course.

6. Anyone who attempts to spam the server either through excessive submissions, allocat-
ing large amount of unnecessary memory, etc. will be penalized severely.

7. Please switch your mobile phones to silent mode, you are not allowed to use them during
the exam.

8. If you want to go to the bathroom, please ask the TA for permission first.

9. If you leave early from the examination without informing the TA, you will not be able
to come back to the examination.

1



Problem A - String Revision

Given some lines of strings, you are asked to delete all the digits in the strings and print other
characters in their original order.

Input There are multiple test cases. The first line of input is an integer T (1 ≤ T ≤ 10)
indicating the number of test cases. Each case contains a line indicating a string. The
length of the string is between 1 and 30, inclusive. Besides, the string consists of only
digits and English letters.

Output For each string, delete all the digits and print the remaining characters in a line.

Sample Input

2

CSCI2100BDataStructure

1plus1equals2

Sample Output

CSCIBDataStructure

plusequals

2



Problem B - Intersection of Two Arrays

Given two array A and B, find out all elements both in Array A and B.

Input There are multiple test cases. The first line of input is an integer T (1 ≤ T ≤ 10)
indicating the number of test cases. For each test case, first line is N (1 ≤ N ≤ 1000):
the length of Array A. Next line contain N integers (in increasing order) in A. Next
line is M (1 ≤ M ≤ 1000): the length of Array B. Next line contain M integers (in
increasing order) in B. All elements k in A or B are guaranteed: (1 ≤ k ≤ 10000)

Output Numbers both in A and B at the same time, in increasing order, separate by one
space. No space after the last number.

Sample Input

2

4

1 3 4 5

5

1 2 5 6 9

3

1 3 4

4

1 5 8 10

Sample Output

1 5

1

3



Problem C - Prime Palindromes

The number 151 is a prime palindrome because it is both a prime number and a palindrome
(it is the same number when read forward as backward). Write a program that finds all prime
palindromes in the range of two supplied numbers a and b (5 ≤ a < b ≤ 100, 000, 000); both
a and b are considered to be within the range.

Input There are multiple test cases. The first line of input is an integer T (1 ≤ T ≤ 10)
indicating the number of test cases. For each test case, there are two integers, a and b.

Output For each test case, output the list of palindromic primes in numerical order, one per
line. There should be a blank line between test cases.

Sample Input

2

5 200

200 500

Sample Output

5

7

11

101

131

151

181

191

313

353

373

383

4



Problem D - Stone Pile

You have a number of stones with known weights W1, . . . ,Wn. Write a program that will
rearrange the stones into two piles such that weight difference between the piles is minimal.

Input There are multiple test cases. The first line of input is an integer T (1 ≤ T ≤ 10)
indicating the number of test cases. For each test case, the input contains the number
of stones N (1 ≤ N ≤ 20) and weights of the stones W1, . . . ,Wn (integers, 1 ≤ Wi ≤
100000) delimited by white spaces.

Output Your program should output a number representing the minimal possible weight
difference between stone piles. One test case per line.

Sample Iutput

2

5

5 8 13 27 14

6

4 6 7 8 9 10

Sample Output

3

0

5



Problem E - Train Re-arrangement II

You are a railroad operator and you are asked to see whether you can re-arrange the carts in
some order by using an auxiliary track, which can be regarded as a queue (See Figure below).
The operations on the carts include the following:

• ’Straight Through’, which means that you let the cart pass the main track directly
without using the queue;

• ’Enqueue’, which means that you put the cart into the queue;

• ’Dequeue’, which means that you pull the top cart out from the queue.

The manage hopes you to save the operations as many as possible.

Input The input consists of the number of test cases, m in the first line and followed by
m test cases. In each test case, the first integer is the total number of carts, n (1 ≤
n ≤ 100, 000), followed by the order your manager wants you to achieve after your
re-arrangement. Assume that in the initial state, all the carts are ordered from 1 to n,
with Cart 1 in the first place.

3

3 2 1 3

7 3 6 7 5 4 2 1

5 5 1 2 3 4

Output The output should be m lines of operations. Each line should be the shortest se-
quence of ’S’, ’I’, and ’O’ if you can achieve the demanded order by your re-arrangement.
We use ’S’ to denote ’Straight Through’, ’I’ to denote ’Enqueue’, and ’O’ to denote ’D-
equeue’. There is no space between operations. If you cannot achieve the demanded
order, please output ’Impossible’.

ISOS

Impossible

IIIISOOOO

Remark The problem is almost the same as what you have done in your homework except
for the substitution from stack to queue.

6



Problem F - Fruit Merge II

The harvest season has come! Since Maggie works in an orchard, she has picked all the fruits
and separated them into n piles according to the kind, e.g. one pile for apples, one pile for
oranges, etc. After that, she wants to merge all these piles into one pile. Every time, she
can only merge two piles, and the energy cost of merging them is the sum of weight of the
two piles. It is easily to see that after n− 1 merges, there is only one pile left, and the total
energy cost is sum of energy cost in all these n− 1 merges. Of course, Maggie wants to save
her energy as much as possible.

Now, assume that the weight of each fruit is 1 and you have known the total number of
piles and number of fruits in each pile. Your target is to output the minimum total energy
cost of Maggie.

Hint It has been proved that you can achieve the minimum total energy cost by merging the
two piles with the smallest number of fruits every time.

Input There are multiple test cases. In each test case, the first line is an integer n (1 ≤ n ≤
1, 000, 000) representing the total number of piles. The next line includes n positive
integers with each representing the number of fruits in each pile. Please note that we
have sorted all these numbers in non-decreasing order for your convenience. The end of
input is specified by a line in which n = 0.

3

1 2 9

6

1 1 3 4 4 6

0

Output For each test case, you should use one line to output your result. The result includes
only one integer, which is the minimum total energy cost of Maggie after merging all
the fruit piles into one pile. The answer will be fit in a signed 64-bit integer. You can
use the type of long long to store it (use %lld in printf()).

15

45

Remark The problem is exactly the same as what you have done in your homework except
for the range of n. Please be careful on the time complexity of your algorithm.

7



Problem G - Counting Factor Trees

Factoring, i.e., listing all the prime factors, of an integer is a useful skill that often helps
to solve math problems. For example, one of the ways to find the GCD (Greatest Common
Divisor) or LCM (Least Common Multiple) of two integers is by listing all their prime factors.
The GCD is then the product of all the common factors; the LCM is the product of all the
remaining ones.

The Factor Tree is a tool for finding such prime factorizations. The figure below demon-
strates three factor trees of 108. At the beginning a root with a number is given, say N ,
which is to be factored. Then, the root is factored into two children N1 and N2 such that
N = N1×N2(N1 ≥ 2, N2 ≥ 2). Note that N1 and N2 need not be prime. The same factoring
process continues until all the leaves are prime.

While the prime factorization is unique, the factor tree reflects the order in which the
factors were found, and is by no means unique. So, how many factor trees of a number are
there?

Input There are no more than 10,000 cases. A line containing an integer N (2 ≤ N ≤
1, 000, 000, 000) is given for each case.

12

108

642485760

Output Print the number of factor trees of N in a line for each case. The answer will be fit
in a signed 64-bit integer. You can use the type of long long to store it (use %lld in
printf()).

6

140

9637611984000

8


