
File manipulation in C
LIU, Yannan

ynliu@cse.cuhk.edu.hk

Monday, 14 October, 13

mailto:ynliu@cse.cuhk.edu.hk
mailto:ynliu@cse.cuhk.edu.hk

Overview

• What is a file

• Open files

• Basic file operations

• Reading, Writing, Appending

• Close a File

• Binary file operation

• Practice

Monday, 14 October, 13

What is a file
• A file is a collection of information.

• A file can be processed as a char stream.

- Line break is just a symbol in the stream.

- File processor may "display" lines

This is an apple.\nThis apple is red.\nHello world!\n...

Text file in Unix line break format:

Monday, 14 October, 13

Data Structure for
Representing a File in C

 The pre-defined data structure is FILE:

typedef struct {
 …buffer…; // inside details are
 …buffer_size…; // implementation dependent,
 …pointer…; // we DO NOT touch the inside
} FILE;

 We use FILE * (a structure pointer) rather than using the structure
directly by value.

 File related data structures and functions are defined in “stdio.h”

Monday, 14 October, 13

Example on Using Files
#include <stdio.h>

int main() {
 FILE *fptr;
 char name[30];

 fptr = fopen("data.txt", "r"); /* open file */

 fscanf(fptr, "%s", name); /* process file */
 printf("Name = %s\n", name);

 fclose(fptr); /* close file */
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Name = Programming

File data.txt:
Programming in C

Don’t panic if you don’t
understand now!

Monday, 14 October, 13

Open files
FILE *fopen(char *filename,

//file name(including the path)
 char *mode

//open mode
);

Opens the file named by filename in the way specified
by the string mode.

Return values:
Returns a non-NULL pointer (of type FILE *, usually referred to

as a stream), if the file can be opened successfully;
Returns NULL pointer otherwise.

Monday, 14 October, 13

Open modes
Mode Description

"r" Open for reading

"w" Truncate to zero length or create file for writing
"a" Append; open for writing at end-of-file, or

create for writing"rb" Open binary file for reading
"wb" Over-write or create binary file for writing

Pay attention when using fopen():
" double quote STRING MODE! "

Monday, 14 October, 13

Representing file path
in different OSs

• Windows

• fopen(“c:\\document\\student.txt”, “r”);

• Linux

• fopen(“/home/root/student.txt”, “r”);

Monday, 14 October, 13

Example on fopen()
#include <stdio.h>
#include <stdlib.h>

int main() {
 FILE *fp;

 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 printf("Cannot open file.\n");
 exit(0);
 }
 ……
}

Monday, 14 October, 13

Reading: fscanf()

int fscanf(FILE *fp, char *format, args, …);

Similar to scanf(), except that the data comes from
the stream fp (the file), instead of standard input(the
console).

Advances the "file position indicator" associated with
fp.

Monday, 14 October, 13

fscanf()

int fscanf(FILE *fp, char *format,

 args, …);

Return values:
Returns the number of fields read and assigned from the

stream fp.
Returns EOF if the file position indicator reaches the end-of-

file before the first assignment.

Monday, 14 October, 13

Example on fscanf()
#include <stdio.h>
#include <stdlib.h>

int main() {
 FILE *fp;
 int x;

 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 printf("Cannot open file.\n");
 exit(0);
 }

 fscanf(fp, "%d", &x);
 ……
}

Monday, 14 October, 13

Reading fgetc()

int fgetc(FILE *fp);
Reads and returns the next character from the stream
fp.

Advances the file position indicator associated with fp
one character ahead.

Return values:
Returns the read character as an int.
Returns EOF at end-of-file or upon an error.

Monday, 14 October, 13

Example on fgetc()
#include <stdio.h>

int main() {
 FILE *fp;
 int c;

 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 ……
 }

 c = fgetc(fp);
 if (c == EOF) {
 …… /* error processing */
 }
 ……
}

Monday, 14 October, 13

Reading: fgets()

char *fgets(char *s, int n, FILE *fp);

Reads characters from the stream fp into an array
pointed to by s, until:
n – 1 characters are read, or
a newline character is read and transferred to s, or
an end-of-file condition is encountered.

The string s is then NULL-terminated.

Monday, 14 October, 13

fgets()

char *fgets(char *s, int n, FILE *fp);

Return values:
Upon successful completion, s is returned.
If end-of-file is encountered and no characters have been

read, no characters are transferred to s and a NULL pointer
is returned.

If a read error occurs (e.g., reading a file that has not been
opened), a NULL pointer is returned.

Monday, 14 October, 13

Example on fgets()
#include <stdio.h>

int main() {
 FILE *fp;
 char line[100];

 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 ……
 }

 if (fgets(line, 100, fp) == NULL) {
 …… /* error processing */
 }
 ……
}

Monday, 14 October, 13

Writing & Appending

int fprintf(FILE *fp, char *format,
 args, …);

Similar to printf(), except that the data is written to
the stream fp (instead of the standout output).

Advances the file (buffer) position indicator associated
with fp after writing.

Monday, 14 October, 13

fprintf()

int fprintf(FILE *fp, char *format,
 args, …);

 Return values:
 Returns the number of characters written to the stream fp.
 Returns EOF on error.

Monday, 14 October, 13

Example on fprintf()
#include <stdio.h>

int main() {
 FILE *fp;

 fp = fopen("data.txt", "w");
 if (fp == NULL) {
 ……
 }

 fprintf(fp, "%s\n", "Hello!");
 ……
}

Monday, 14 October, 13

fputc()

int fputc(int c, FILE *fp);

Writes a single character c to the stream fp.
Advances the file position indicator associated with fp

one character ahead.
Return values:

Returns the value written (i.e., c).
Returns EOF on error.

Monday, 14 October, 13

Example on fputc()
#include <stdio.h>

int main() {
 FILE *fp;

 fp = fopen("data.txt", "w");
 if (fp == NULL) {
 ……
 }

 fputc(‘A’, fp);
 ……
}

Monday, 14 October, 13

Closing Files

int fclose(FILE *fp);
Causes the buffered data associated with the stream
fp to be written out to disk and the corresponding file
to be closed.

Return values:
Returns zero (0) upon successful completion.
Returns EOF otherwise.

Monday, 14 October, 13

Examples on fclose()
#include <stdio.h>

int main() {
 FILE *fp;
 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 ……
 }

 …… /* processing the file data */

 if (fclose(fp) == EOF)
 printf("Cannot close file.\n");

 return 0;
}

Monday, 14 October, 13

Inquiring End-of-File

int feof(FILE *fp);

Tests for end-of-file on the stream fp.
Return values:

Returns non-zero if end-of-file has previously been detected for
the stream fp,

Returns zero (0) otherwise.

Monday, 14 October, 13

Example on feof()
#include <stdio.h>

int main() {
 FILE *fp;
 int c;

 fp = fopen("data.txt", "r");
 if (fp == NULL) {
 ……
 }

 if (feof(fp) == 0)
 c = fgetc(fp);
 ……
}

Monday, 14 October, 13

Binary Files

size_t fread(void *buffer_ptr,
size_t item_size, size_t no_of_items, FILE *fp);

size_t fwrite(const void *buffer_ptr,
size_t item_size, size_t no_of_items, FILE *fp);

Consider the file stream as a sequence of bytes.

Monday, 14 October, 13

Example on reading
binary file

#include <stdio.h>
int main() {
 FILE *fptr;
 double rainfall[12];
 int numRead;

 fptr = fopen("rain.dat", "rb");
 numRead = fread(rainfall, sizeof(double), 12, fptr);
 if (numRead != 12) {
 fputs ("Reading error",stderr); exit (3);
 }
 fclose(fptr);
 printf("%f", rainfall[3]);
 return 0;
}

size_t fread(void *buffer_ptr, size_t item_size,
 size_t no_of_items, FILE *fp);

Monday, 14 October, 13

Example on writing
binary file

#include <stdio.h>
int main() {
 FILE *fptr;
 char buffer[] = { 'x' , 'y' , 'z' };
 int numWritten;

 fptr = fopen(“myfile.bin", "wb");

 numWritten = fwrite(buffer, sizeof(char),
 sizeof(buffer), fptr);
 if (numWritten != sizeof(buffer)) {
 fputs (“Writing error",stderr); exit (3);
 }
 fclose(fptr); return 0;
}

Monday, 14 October, 13

Summary
File processing is closely related to Operating System.

File operations MAY FAIL, we should always check the
return value of a file function.

There are often cross-platform issues.

File format, file reading procedure, and file writing
procedure should be designed TOGETHER.

Monday, 14 October, 13

Practice

• Remember the practices in structure session?

• Requirements:

‣ Reading the student information from a file,
instead of console.

‣ Appending the results to the same file above.

• You can modify the complete code for lab4
directly.

Monday, 14 October, 13

Practice for reading file
• Define a structure type, which can record

student ID, student name, and student age.
• Reading the below information from file

ID Name Age
11345 Tim 18
60765 John 17
19146 Jerry 20
20984 Lucy 22
57862 William 19

Monday, 14 October, 13

Practices for file appending
• After collecting all these information,

–Practice 1
• Record the student ID in the same file, for the each student
whose age is larger than 19.

–Practice 2
• Record the student name for the each student, whose
name’s second letter is ‘e’.

–Practice 3
• Record the student’s name, whose age is the largest.

Monday, 14 October, 13

