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Overview

• What is a file

• Open files

• Basic file operations

• Reading, Writing, Appending

• Close a File

• Binary file operation

• Practice
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What is a file
• A file is a collection of information.

• A file can be processed as a char stream.

- Line break is just a symbol in the stream.

- File processor may "display" lines

This is an apple.\nThis apple is red.\nHello world!\n...

Text file in Unix line break format:
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Data Structure for 
Representing a File in C

 The pre-defined data structure is FILE:

typedef struct {
 …buffer…;  // inside details are
 …buffer_size…; // implementation dependent,
 …pointer…;  // we DO NOT touch the inside
} FILE;

 We use FILE * (a structure pointer) rather than using the structure 
directly by value.

 File related data structures and functions are defined in “stdio.h”
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Example on Using Files
#include <stdio.h>

int main() {
   FILE *fptr;
   char name[30];

   fptr = fopen("data.txt", "r"); /* open file */

   fscanf(fptr, "%s", name);      /* process file */
   printf("Name = %s\n", name);

   fclose(fptr);                  /* close file */
   return 0;
}
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Name = Programming

File data.txt:
Programming in C

Don’t panic if you don’t 
understand now!
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Open files
FILE *fopen(char *filename, 

//file name(including the path)
            char *mode

//open mode
);

Opens the file named by filename in the way specified 
by the string mode.

Return values:
Returns a non-NULL pointer (of type FILE *, usually referred to 

as a stream), if the file can be opened successfully;
Returns NULL pointer otherwise.
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Open modes
Mode Description

"r" Open for reading

"w" Truncate to zero length or create file for writing
"a" Append; open for writing at end-of-file, or 

create for writing"rb" Open binary file for reading
"wb" Over-write or create binary file for writing

Pay attention when using fopen( ):
" double quote STRING MODE! "
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Representing file path 
in different OSs

• Windows

• fopen(“c:\\document\\student.txt”, “r”);

• Linux

• fopen(“/home/root/student.txt”, “r”);
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Example on fopen()
#include <stdio.h>
#include <stdlib.h>

int main() {
   FILE *fp;

   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      printf("Cannot open file.\n");
      exit(0);
   }
   ……
}
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Reading: fscanf()

int fscanf(FILE *fp, char *format, args, …);

Similar to scanf(), except that the data comes from 
the stream fp (the file), instead of standard input( the 
console).

Advances the "file position indicator" associated with 
fp. 
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fscanf()

int fscanf(FILE *fp, char *format,

           args, …);

Return values:
Returns the number of fields read and assigned from the 

stream fp.
Returns EOF if the file position indicator reaches the end-of-

file before the first assignment.
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Example on fscanf()
#include <stdio.h>
#include <stdlib.h>

int main() {
   FILE *fp;
   int x;

   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      printf("Cannot open file.\n");
      exit(0);
   }

   fscanf(fp, "%d", &x);
   ……
}
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Reading fgetc()

int fgetc(FILE *fp);
Reads and returns the next character from the stream 
fp.

Advances the file position indicator associated with fp 
one character ahead.

Return values:
Returns the read character as an int.
Returns EOF at end-of-file or upon an error.
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Example on fgetc()
#include <stdio.h>

int main() {
   FILE *fp;
   int c;

   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      ……
   }

   c = fgetc(fp);
   if (c == EOF) {
      ……   /* error processing */
   }
   ……
}
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Reading: fgets()

char *fgets(char *s, int n, FILE *fp);

Reads characters from the stream fp into an array 
pointed to by s, until:
n – 1 characters are read, or
a newline character is read and transferred to s, or
an end-of-file condition is encountered.

The string s is then NULL-terminated.
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fgets()

char *fgets(char *s, int n, FILE *fp);

Return values:
Upon successful completion, s is returned.
If end-of-file is encountered and no characters have been 

read, no characters are transferred to s and a NULL pointer 
is returned.

If a read error occurs (e.g., reading a file that has not been 
opened), a NULL pointer is returned.
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Example on fgets()
#include <stdio.h>

int main() {
   FILE *fp;
   char line[100];

   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      ……
   }

   if (fgets(line, 100, fp) == NULL) {
      ……   /* error processing */
   }
   ……
}
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Writing & Appending

int fprintf(FILE *fp, char *format,
            args, …);

Similar to printf(), except that the data is written to 
the stream fp (instead of the standout output).

Advances the file (buffer) position indicator associated 
with fp after writing.
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fprintf()

int fprintf(FILE *fp, char *format,
            args, …);

 Return values:
 Returns the number of characters written to the stream fp.
 Returns EOF on error.
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Example on fprintf()
#include <stdio.h>

int main() {
   FILE *fp;

   fp = fopen("data.txt", "w");
   if (fp == NULL) {
      ……
   }

   fprintf(fp, "%s\n", "Hello!");
   ……
}
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fputc()

int fputc(int c, FILE *fp);

Writes a single character c to the stream fp.
Advances the file position indicator associated with fp 

one character ahead.
Return values:

Returns the value written (i.e., c).
Returns EOF on error.
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Example on fputc()
#include <stdio.h>

int main() {
   FILE *fp;

   fp = fopen("data.txt", "w");
   if (fp == NULL) {
      ……
   }

   fputc(‘A’, fp);
   ……
}
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Closing Files

int fclose(FILE *fp);
Causes the buffered data associated with the stream 
fp to be written out to disk and the corresponding file 
to be closed.

Return values:
Returns zero (0) upon successful completion.
Returns EOF otherwise.
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Examples on fclose()
#include <stdio.h>

int main() {
   FILE *fp;
   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      ……
   }

   ……   /* processing the file data */

   if (fclose(fp) == EOF)
      printf("Cannot close file.\n");

   return 0;
}
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Inquiring End-of-File

int feof(FILE *fp);

Tests for end-of-file on the stream fp.
Return values:

Returns non-zero if end-of-file has previously been detected for 
the stream fp,

Returns zero (0) otherwise.
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Example on feof()
#include <stdio.h>

int main() {
   FILE *fp;
   int c;

   fp = fopen("data.txt", "r");
   if (fp == NULL) {
      ……
   }

   if (feof(fp) == 0)
      c = fgetc(fp);
   ……
}
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Binary Files

size_t  fread( void *buffer_ptr, 
size_t  item_size,  size_t  no_of_items,  FILE *fp );

size_t  fwrite( const void *buffer_ptr, 
size_t item_size,  size_t  no_of_items, FILE *fp );

Consider the file stream as a sequence of bytes.
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Example on reading 
binary file

#include <stdio.h>
int main() {
   FILE *fptr;
   double rainfall[12];
   int numRead;

   fptr = fopen("rain.dat", "rb"); 
   numRead = fread(rainfall, sizeof(double), 12, fptr);
  if (numRead != 12) {
     fputs ("Reading error",stderr); exit (3);
   }   
    fclose(fptr); 
    printf("%f", rainfall[3]);
   return 0;
}

size_t  fread( void *buffer_ptr, size_t  item_size,                        
   size_t  no_of_items,  FILE *fp );
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Example on writing 
binary file

#include <stdio.h>
int main() {
   FILE *fptr;
   char buffer[] = { 'x' , 'y' , 'z' }; 
  int numWritten;

   fptr = fopen(“myfile.bin", "wb"); 
   
   numWritten = fwrite(buffer, sizeof(char),                 
          sizeof(buffer), fptr);
  if (numWritten != sizeof(buffer)) {
     fputs (“Writing error",stderr); exit (3);
   }          
   fclose(fptr); return 0;
}
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Summary
File processing is closely related to Operating System.

File operations MAY FAIL, we should always check the 
return value of a file function.

There are often cross-platform issues.

File format, file reading procedure, and file writing 
procedure should be designed TOGETHER.
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Practice

• Remember the practices in structure session?

• Requirements:

‣ Reading the student information from a file, 
instead of console.

‣ Appending the results to the same file above. 

• You can modify the complete code for lab4 
directly.

Monday, 14 October, 13



Practice for reading file
• Define a structure type, which can record 

student ID, student name, and student age.
• Reading the below information from file

ID Name Age
11345 Tim 18
60765 John 17
19146 Jerry 20
20984 Lucy 22
57862 William 19
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Practices for file appending
• After collecting all these information, 

–Practice 1
• Record the student ID in the same file, for the each student 
whose age is larger than 19.

–Practice 2
• Record the student name for the each student, whose 
name’s second letter is ‘e’.

–Practice 3
• Record the student’s name, whose age is the largest. 
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