File manipulation in C

LIU, Yannan
ynliu@cse.cuhk.edu.hk



mailto:ynliu@cse.cuhk.edu.hk
mailto:ynliu@cse.cuhk.edu.hk

Overview

® What is afile
® Open files
® Basic file operations
® Reading, Writing, Appending
® Close a File
® Binary file operation

® Practice

Monday, 14 October, 13



What is a file

® A fileis a collection of information.
® A file can be processed as a char stream.
- Line break is just a symbol in the stream.

- File processor may "display” lines

Text file in Unix line break format:

This is an apple.\nThis apple is red.\nHello world'\n...

Monday, 14 October, 13



Data Structure for
Representing a File in C

® The pre-defined data structure is FILE:

typedef struct ({

} FILE;

® \We use FILE * (a structure pointer) rather than using the structure
directly by value.

® File related data structures and functions are defined in “stdio.h”

Monday, 14 October, 13



Example on Using Files

[ N

Don’t panic if you don’t
understand now!

\_ )

fptr = fopen("data.txt", "r"); /* open file */

name) ; /* process file */
$s\n", name) ;

/* close file */

1 |#include <stdio.h>
2

3 |int main() {

4 FILE *fptr;

5 char name[30];
6

7

8

9 fscanf (fptr, "%s"
10 printf ("Name =
L1 fclose (fptr) ;
12 return O;

13 }

File data. txt:
Programming in C

Name

= Programming

Monday, 14 October, 13




Open files

FILE *fopen(char *filename,

char *mode

) ;
® Opens the file named by £ilename in the way specified
by the string mode.

® Return values:

OReturns a non-NULL pointer (of type FILE *, usually referred to
as a stream), if the file can be opened successfully;

OReturns NULL pointer otherwise.

Monday, 14 October, 13



Open modes

Mode

Description

Waatl
r

Open for reading

Weall
W

Truncate to zero length or create file for writing

W n
a

Append; open for writing at end-of-file, or

(A rb (A

Open binary file for reading

A Wb A

Over-write or create binary file for writing

Pay attention when using fopen( ):

Monday, 14 October, 13



Representing file path
in different OSs

® VWindows
e fopen(“c:\\document\\student.txt”,“r”);
® Linux

® fopen(‘‘/home/root/student.txt”,"r”);




Example on fopen()

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp;

fp = fopen('"data.txt", "r");

if (fp == NULL) {
printf ("Cannot open file.\n");
exit(0) ;

oooooo

Monday, 14 October, 13



Reading: fscanf()

int fscanf (FILE *fp, char *format, args, ..);

® Similar to scanf (), except that the data comes from
the stream £p (the file), instead of standard input( the
console).

® Advances the "file position indicator" associated with
fp.

Monday, 14 October, 13



fscanf()

int fscanf (FILE *fp, char *format,

args, ..);

® Return values:

OReturns the number of fields read and assigned from the
stream £p.

OReturns EOF if the file position indicator reaches the end-of-
file before the first assignment.

Monday, 14 October, 13



Example on fscanf()

#include <stdio.h>
#include <stdlib.h>

int main() {
FILE *fp;
int x;

fp = fopen('"data.txt", "r");

if (fp == NULL) {
printf ("Cannot open file.\n");
exit(0) ;

}

fscanf (fp, "%d", &x);

oooooo

Monday, 14 October, 13




Reading fgetc()

int fgetc (FILE *fp);

® Reads and returns the next character from the stream
fp.

® Advances the file position indicator associated with £p
one character ahead.

® Return values:
OReturns the read character as an int.
OReturns EOF at end-of-file or upon an error.

Monday, 14 October, 13



Example on fgetc()

#include <stdio.h>

int main() {
FILE *fp;
int c;

fp = fopen("data.txt", "r");
if (fp == NULL) {

c = fgetc(fp)
if (c == EOF) {
...... /* error processing */

Monday, 14 October, 13




Reading: fgets()

char *fgets(char *s, int n, FILE *fp);
® Reads characters from the stream £p into an array
pointed to by s, until:
On — 1 characters are read, or
Oa newline character is read and transferred to s, or
Oan end-of-file condition is encountered.

® [he string s is then NULL-terminated.

Monday, 14 October, 13



fgets()

char *fgets(char *s, int n, FILE *fp);

® Return values:
OUpon successful completion, s is returned.

Olf end-of-file is encountered and no characters have been
read, no characters are transferred to s and a NULL pointer

IS returned.

OIf a read error occurs (e.g., reading a file that has not been
opened), a NULL pointer is returned.

Monday, 14 October, 13



Example on fgets()

#include <stdio.h>

int main() {
FILE *fp;
char 1line[100];

fp = fopen("data.txt", "r");
if (fp == NULL) {

oooooo

if (fgets(line, 100, fp) == NULL) {
...... /* error processing */

oooooo

Monday, 14 October, 13




Writing & Appending

int fprintf (FILE *fp, char *format,
args, ..);
® Similar to print£f (), except that the data is written to
the stream £p (instead of the standout output).

® Advances the file (buffer) position indicator associated
with £p after writing.

Monday, 14 October, 13



forintf()

int fprintf (FILE *fp, char *format,
args, ..);
® Return values:

O Returns the number of characters written to the stream £p.
O Returns EOF on error.

Monday, 14 October, 13



Example on

fprintf()

#include <stdio.h>

int main() {
FILE *fp;

fp = fopen("data.txt", "w'");
if (fp == NULL) {

oooooo

fprintf (fp, "%s\n", "Hello!");

Monday, 14 October, 13




fputc()

int fputc(int ¢, FILE *fp);

® \\Vrites a single character c to the stream £p.

® Advances the file position indicator associated with £p
one character ahead.
® Return values:
OReturns the value written (i.e., c).
OReturns EOF on error.

Monday, 14 October, 13



Example on fputc()

#include <stdio.h>

int main() {
FILE *fp;

fp = fopen('"data.txt", "w");
if (fp == NULL) {

oooooo

fputc (A’ , fp);

oooooo

Monday, 14 October, 13



Closing Files

int fclose (FILE *fp);

® Causes the buffered data associated with the stream
fp to be written out to disk and the corresponding file

to be closed.

® Return values:
OReturns zero (0) upon successful completion.
OReturns EOF otherwise.

Monday, 14 October, 13



Examples on fclose()

#include <stdio.h>

int main() {
FILE *fp;

fp = fopen("data.txt", "r");
if (fp == NULL) ({

...... /* processing the file data */

if (fclose(fp) == EOF)
printf ("Cannot close file.\n");

return 0;

Monday, 14 October, 13




Inquiring End-of-File

int feof (FILE *fp);
® [ests for end-of-file on the stream £p.

® Return values:

OReturns non-zero if end-of-file has previously been detected for
the stream £p,

OReturns zero (0) otherwise.

Monday, 14 October, 13



Example on feof()

#include <stdio.h>

int main() {
FILE *fp;
int c;

fp = fopen("data.txt", "r");
if (fp == NULL) {

oooooo

if (feof (fp) == 0)
c = fgetc(fp)

Monday, 14 October, 13



Binary Files

size t fread( void *buffer ptr,
size t 1item size, size t no of items, FILE *fp );

size t fwrite( const void *buffer ptr,
size t item size, size t no of items, FILE *fp );

® Consider the file stream as a sequence of bytes.

Monday, 14 October, 13



Example on reading
binary file

#include <stdio.h>

int main() {
FILE *fptr;
double rainfall[l2];
int numRead;

fptr = fopen('"rain.dat", "rb");
numRead = fread( , sizeof (double), 12, fptr);
if (numRead '= 12) {
fputs ("Reading error",stderr); exit (3);
}
fclose (fptr) ;
printf ("%£f", rainfall[3])
return O;

size t fread( , Size t item size,
size t no of items, FILE *fp );

Monday, 14 October, 13




Example on writing
binary file

#include <stdio.h>
int main() {
FILE *fptr;
char buffer[] = { 'x' , 'y' , 'z' };
int numWritten;

fptr = fopen("myfile.bin", "wb");

numWritten = fwrite( , sizeof (char),
sizeof (buffer), fptr);
if (numWritten !'= sizeof (buffer)) {

fputs (“Writing error",stderr); exit (3);

}
fclose (fptr);, return O;

Monday, 14 October, 13



Summary

File processing is closely related to Operating System.

File operations MAY FAIL, we should always check the
return value of a file function.

There are often cross-platform issues.

File format, file reading procedure, and file writing
procedure should be designed TOGETHER.

Monday, 14 October, 13



Practice

® Remember the practices in structure session?
® Requirements:

p Reading the student information from a file,
instead of console.

p Appending the results to the same file above.

® You can modify the complete code for lab4
directly.

Monday, 14 October, 13



Practice for reading file

* Define a structure type, which can record
student ID, student name, and student age.

* Reading the below information from file

D Name _______Age

11345 Tim 18
60765 John 17
19146 Jerry 20
20984 Lucy 22

57862 William 19

Monday, 14 October, 13



Practices for file appending

* After collecting all these information,

—Practice |

 Record the student ID in the same file, for the each student
whose age is larger than 9.

—Practice 2

 Record the student name for the each student, whose
name’s second letter is ‘e’.

—Practice 3
* Record the student’s name, whose age is the largest.

Monday, 14 October, 13



