
Lab 3. Pointers
Programming Lab (Using C)

XU Silei

slxu@cse.cuhk.edu.hk

Outline

• What is Pointer
• Memory Address & Pointers

• How to use Pointers
• Pointers Assignments

• Call-by-Value & Call-by-Address Functions

• When Pointers meet Arrays
• Arrays & Memory Address

• Passing Arrays to Functions

Outline

• What is Pointer
• Memory Address & Pointers

• How to use Pointers
• Pointers Assignments

• Call-by-Value & Call-by-Address Functions

• When Pointers meet Arrays
• Arrays & Memory Address

• Passing Arrays to Functions

What is Pointer

• Where do variables store
• Memory (Stack, Heap, Static, …)

• Address in memory
• Byte-addressable

• Each address identifying a single

 8 bit of storage (larger data reside in

 multiple bytes occupying a sequence

 of consecutive address)

• E.g., Memory address of the variable

 C is 0400.

What is Pointer

• &c
• denotes the address of the variable c in memory, say, 0400.

• scanf(“%c”, &c);
• The input character, say ‘A’, will be stored in the memory address of c

• So variable c is ‘A’ after the statement;

Definition of Pointers

• ptr is another variable,

 storing the memory address of

 the variable c

‘A’

Definition of Pointers

• Declare the variable ptr
• char *ptr; OR char* ptr;

• Variable name is ptr, Not *ptr
• The * denotes that ptr is a pointer

• The type of ptr is pointer to char, or char pointer
• Variable ptr is to be used to store the memory address of another char

variable

Definition of Pointers

• c: ‘A’

• &c: 0400

• ptr: 0400

• *ptr: ‘A’

• &ptr: 0123

‘A’

Definition of Pointers

• c: ‘A’

• &c: 0400 ----- Pointer

• ptr: 0400 ------ Pointer

• *ptr: ‘A’

• &ptr: 0123 ----- Pointer

• Q: *&ptr? &*ptr?

‘A’

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

10

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

11

7 a 7 b p ?

Declare the two integer
variables a and b, and
the integer pointer
variable p.

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

12

7 a 7 b p

Store the address of
variable a into pointer p.

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

13

7 a 7 b p

• Now, we can use pointer p to
access the value of variable a
by using the indirection (or
called the dereferencing)
operator *.

• *p refers to the value of the
variable to which p points, i.e.,
a

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

14

3 a 7 b p

When *p appears on the
LHS of an assignment, it
means the value on the
RHS is to be written onto
the memory location to
which p points.

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

15

3 a 7 b p

Update pointer p to store
the address of variable b.

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

16

3 a 7 b p

The actual calculation
performed is 2  7 – 3.

Re-read line 11 as:

b = 2 * b – a;

#include <stdio.h>

int main(void)

{

 int a = 7, b = 7, *p;

 p = &a;

 printf(“a = %d\n”, *p);

 *p = 3;

 printf(“a = %d\n”, a);

 p = &b;

 *p = 2 * *p – a;

 printf(“b = %d\n”, b);

 return (0);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

a = 7

a = 3

b = 11

17

3 a 11 b p

The actual calculation yields
eleven.

Re-read line 11 as:

b = 2 * b – a;

Outline

• What is Pointer
• Memory Address & Pointers

• How to use Pointers
• Pointers Assignments

• Call-by-Value & Call-by-Address Functions

• When Pointers meet Arrays
• Arrays & Memory Address

• Passing Arrays to Functions

How to use Pointers

• Pointers Assignments
• One pointer can be assigned to another only when both pointers have the

same type.

int x, *ptr1, *ptr2;

char c, *ptr3;

ptr1 = &x; /* valid */

ptr2 = ptr1; /* valid */

ptr3 = &c; /* valid */

ptr2 = ptr3; /* invalid */

How to use Pointers

• The void Pointer
• Pointer assignment is allowed when one of the operands is of type

“pointer to void”

• We treat void* as a generic/ universal pointer type

int x, *xptr;

char *cptr;

void *vptr;

xptr = &x;

vptr = xptr; /* valid */

cptr = vptr; /* valid */

Call-by-Value & Call-by-Address Functions

• Call-by-Value Functions
• Input: 4 5

• Output: Result = 9

Call-by-Value Functions

• Another example
• What’s the output?

• a = 0, b = 100

• Why?

Call-by-Value Functions

• Another example

0
a

x

100
b

y

Call-by-Value Functions

• Another example

0

0

a

x

100

100

b

y

Call-by-Value Functions

• Another example

0

100

a

x

100

0

b

y

Call-by-Value Functions

• The formal parameters x and y (the local variables of swap()) are
created when the function is entered, and are destroyed (free from
the memory) when the function returns/ terminates

• No matter how the value of the formal parameters changes, the
variable in the calling environment (main() in this example) are never
changed

Call-by-Address Functions

Call-by-Address Functions

• Another example
• What’s the output?

• a = 100, b = 0

• Success !!!

Call-by-Address Functions

• Another example

0

a

x

100
b

y

0400 0404

Call-by-Address Functions

• Another example

0

0400

a

x

100

0404

b

y

0400 0404

Call-by-Address Functions

• Another example

100

0400

a

x

0

0404

b

y

0400 0404

Call-by-Address Functions

• The address of the actual parameters (the variables a and b in main())
are passed to the function

• The functions applies dereference operator * on the received
addresses (stored in pointer variable x and y) to access/ modify the
“remote” variables in the calling environment (main() in this example)
indirectly.

• Therefore, dereference is also called indirection

Outline

• What is Pointer
• Memory Address & Pointers

• How to use Pointers
• Pointers Assignments

• Call-by-Value & Call-by-Address Functions

• When Pointers meet Arrays
• Arrays & Memory Address

• Passing Arrays to Functions

When Pointers Meet Arrays

• One-Dimensional Arrays
• E.g., int list[5];

• Assumption
• 4-byte integers

• the array is stored at
memory address 1000
onwards

One-Dimensional Arrays

• An array name without index denotes the address of the first element
of the array
• list == &list[0] (base address)

• i.e., list == 1000

• *list == *&list[0] == list[0]

• list + 1 == &list[1]

• *(list +1) == *&list[1] == list[1]

• Starting address of list[i] is given by
• &list[i] = base address + sizeof(int)  i = 1000 + 4i

One-Dimensional Arrays

• String: One-Dimensional Character Arrays
• char s[] = “abc”;

• char s[3] = {‘a’, ‘b’, ‘c’};

• char *s = “abc”;

One-Dimensional Arrays

• String: One-Dimensional Character Arrays
• char s[] = “abc”;

• char s[3] = {‘a’, ‘b’, ‘c’};

• char *s = “abc”; ---- Read Only !

• Place “abc” in the read-only part of the memory, and make s a pointer to that.

• *s == ‘a’;

• char s[] = “abc”;

• char *t = &s; ----- Writable !

Two-Dimensional Arrays

• int matrix[3][4];
• An array name without index denotes the

address of the first element of the array
• matrix == &matrix[0][0]

• For int matrix[ROW][COL], starting
address of matrix[i][j] is given by
• Base address + sizeof(int)  (COL  i + j)

• E.g. &matrix[2][3] = 1000 + 4  (4  2 + 3)
=1044

Passing Arrays to Functions

• Output
• list[0] = 2

• list[1] = 4

• list[2] = 6

• list[3] = 8

• list[4] = 10

Passing 1-D Arrays to Functions

• In the calling environment main()
• The name of the array is used as the parameter

• The bracket pair [] must be omitted

• In the called function times2()
• The bracket pair is required, which is to tell the complier that the parameter

of this function is an array

• The array size can be omitted

Passing Multi-D Arrays to Functions

• In the calling environment
• The name of the array is used as the parameter
• The bracket pairs [] [] … [] must be omitted
• E.g., times2 (array3d);

• In the called function
• The bracket pairs [] [] … [] are required to tell the compiler that the

parameter is a multi-dimensional array
• The first dimension’s size can be omitted, while the all the other dimension’s

size must be specified.
• E.g., void times2 (array3d[][10][20]) { … }

Passing Arrays to Functions

• Call-by-Address Mechanism
• In the calling environment main(), after calling times2(), elements in list[] are

doubled.

• Why?

• The array list[] is not copied to the function times2(). No new array is created.

• Instead, a[] in times2() refers to the same array list[] in main()

• Thus modifying any element in a[] causes corresponding modifications on
list[] actually.

• Call-by-Address!

Passing Arrays to Functions

• An Alternative View

Practice

• 1.Array Swap

 Let A[10] and B[10] be two arrays
• int A[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

• int B[] = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1};

 Write a function to swap the elements of A and B and write another

 function to print the result

Practice

• 2. Reverse String

 Let S be a string:
• char S[] = “nametag”;

 Write a function to reverse the elements in S and write another

 function to print S
• E.g., “ABCDE” -> “EDCBA”

Thanks

