
Lab 4: Structure and
 dynamic structure

Programming Lab (Using C)

LIU, Yannan

ynliu@cse.cuhk.edu

Outline

• Introduction to structure

• Structure declaration

• Accessing structure members

• Structure Assignment

• Miscellaneous topics

– Point, array, and Nested structure

• Dynamic structure

Introduction to Structure

• A structure is a collection of related storage
elements, possibly of different types, under a
single name.

• To use a structure
– Structure type declaration

• e.g. Student or teacher

– Structure variable declaration
• e.g. student Tom, student Jerry, Teacher Green

Structure type declaration

 A Structure type can be defined using the keyword struct:

/* define a NEW type for storing data LATER */

struct student {

 char id[9];

 char name[26];

 double gpa;

};

 This defines a new data TYPE called struct student, which
consists of three related members, id, name and gpa.

 However, NO variable storage has YET been allocated.

 This is just the design of the new type.

More Structure Examples

• 2D Coordinates
struct coord2D {
 double x;

 double y;

};

• Employee record
struct employee {
 char name[50];

 double salary[12];

 double MPF_contrib;

};

 Quadratic form Ax2+Bx+C

struct quad_form {

 double A, B, C;

};

 Polynomial Axn+Bxn-1+…+E

struct polynomial {

 unsigned degree;

 double coeff[5];

};

Structure variable declaration

Structure
Type

Declaration

Structure
Variables

Declaration

Structure variable declaration Cont’d

• Defining structure with “typedef”

Structure
Variables

Declaration

Structure variable declaration
Initializtion

 struct variables can be initialized as follows:

struct date {
 int day, month, year;
};

struct date today = {25, 12, 1997};

 The initial values should be constant values or constant expressions.
I.e., no variables should be involved in the initializer expressions.

int i = 1997;

struct date today = {25, 12, i }; // this is WRONG!

 If fewer initializers are listed than the number of members in the
struct, values of the remaining members are undefined.

struct date today = {25, 12}; // today.year is undefined

8

Same as
today.day = 25,

today.month = 12,

today.year = 1997;

Same as
today.day = 25, today.month = 12, today.year = ?;

Structure variable declaration
Initialization Cont’d

struct employee {

 char name[50];

 double salary[12];

 double MPF_contrib;

};

struct employee peter = {

 "Peter Pan",

 { 9500, 9500, 10000, 11000, 12000, 12050,

 12100, 13000, 13000, 13000, 14000, 14000},

 0.05

};

Accessing structure members

The Member Operator:
Members of a struct variable can be accessed

using the member operator,

 i.e. the DOT .
For example,

 variable.member = 999;

Accessing structure members Cont’d

 #include <stdio.h>

struct date {

 int day;

 int month;

 int year;

};

int main(void)

{

 struct date today;

 today.day = 25;

 today.month = 12;

 today.year = 1997;

 if (today.day == 25 && today.month == 12)

 printf("Merry Christmas!\n");

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// Define the type struct date

// today is a variable of type struct date

// Use of the member operator .

11

Accessing structure members Cont’d

 #include <stdio.h>

typedef{

 char surname[31];

 char forename[31];

 int age;

} person_t;

int main(void) {

 person_t admin= { “CSE", “Admin", 50 };

 person_t user;

 printf("Your surname? ");

 gets(user.surname);

 printf("Your forename? ");

 gets(user.forename);

 printf("Dear %c. %s\n", user.forename[0], user.surname);

 printf("I am %s %s.\n", admin.surname, admin.forename);

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// Define the type struct person

Your surname? Collins

Your forename? Phil

Dear P. Collins

I am CSE Admin.

12

Structure Assignments

• To assign the value of a structure variable to another
structure variable of the same type, the assignment
operator '=' can be applied to structure variables.

Structure array

• A structure may occur as an array element.

Nested Structure

 #include <stdio.h>

#include <string.h>

struct date {

 int day, month, year;

};

struct book {

 char author[30], title[50], publisher[30];

 int edition;

 struct date date_of_pub;

};

int main(void) {

 struct book booklist[100];

 strcpy(booklist[10].author, "Al Kelley, Ira Pohl");

 strcpy(booklist[10].title, "C By Dissection");

 strcpy(booklist[10].publisher, "Addison-Wesley");

 booklist[10].edition = 4;

 booklist[10].date_of_pub.day = 1;

 booklist[10].date_of_pub.month = 10;

 booklist[10].date_of_pub.year = 2000;

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21
15

Pointer to Structures

• Revision:

 int i;

 int *ptr;

 ptr = &i; // the address of i

 *ptr = 1999; // i.e. i = 1999

• Does the same apply to the members of a structure?

16

Pointer to members in Structure

 struct date {

 int day, month, year;

 };

 struct date today;

 int *ptr;

 ptr = &today.year; // the address of today.year

 *ptr = 1999; // i.e. today.year = 1999

• A step further, can we have a Pointer to a Structure?

today

day

month

year

ptr

17

Pointer to Structures

#include <stdio.h>

struct date {

 int day, month, year;

};

int main(void)

{

 struct date today;

 struct date *date_ptr;

 date_ptr = &today;

 (*date_ptr).day = 25; // (*date_ptr) refers

 (*date_ptr).month = 12; // today

 (*date_ptr).year = 1997;

 if (today.day == 25 && today.month == 12)

 printf("Merry Christmas!\n");

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// Define the type struct date

today

day

month

year

date_ptr

18

Pointer to Structures

#include <stdio.h>

struct date {

 int day, month, year;

};

int main(void)

{

 struct date today;

 struct date *date_ptr;

 date_ptr = &today;

 date_ptr->day = 25; // -> is a short-hand

 date_ptr->month = 12; struct_ptr->member

 date_ptr->year = 1997;  (*struct_ptr).member

 if (today.day == 25 && today.month == 12)

 printf("Merry Christmas!\n");

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// Define the type struct date

today

day

month

year

date_ptr

19

Pointer to Structures

• Note on the use of the operator ->
– This is a short-hand notation.

– Usage examples:

struct_ptr->member = ...;

... = struct_ptr->member;

– struct_ptr must be a pointer referring to a proper
structure entity, i.e. storing the address of a structure.

– member should be defined in the structure definition.

20

Practices for structure

• Define a structure type, which can record
student ID, student name, and student age.

• Get the information for five students from
console.

ID Name Age

11345 Tim 18

60765 John 17

19146 Jerry 20

20984 Lucy 22

57862 William 19

Practices for structure Cont’d

• After collecting all these information,

– Practice 1

• Print out the student ID for the each student, whose
age is larger than 19.

– Practice 2

• Print out the student name for the each student, whose
name’s second letter is ‘e’.

– Practice 3

• Print out the student’s name, whose age is the largest.

Dynamic Memory Manipulations

 Dynamic Memory Allocation: malloc()

/* header file stdlib.h declares the function */

#include <stdlib.h>

void * malloc(size_t size);

 size_t has been type-defined to unsigned int.

 size is the number of bytes required in the allocation.

 malloc() returns a pointer to a block of memory of
size bytes.

 The function call returns NULL when the allocation failed.

From the C reference manual:

Dynamic Memory Manipulations

 Dynamic Memory De-Allocation: free()

/* header file stdlib.h declares the function */

#include <stdlib.h>

void free(void * ptr);

 void * is a generic pointer type, i.e. pointer of ANY type.

 ptr is a pointer to a block of memory previously allocated by
malloc().

 It releases the block of memory pointed to by ptr.

 The function call returns nothing.

From the C reference manual:

#include <stdio.h>

#include <stdlib.h>

typedef struct {double x, double y} Coordinates;

int main(void) {

 Coordinates point1 = {3.4, -5.9}, *ptr;

 ptr = &point1;

 ptr->x = 3.458, ptr->y = -5.967;

 ptr = malloc (sizeof(Coordinates));

 if (ptr == NULL) return 0;

 ptr->x = 47.57, ptr->y = 23.45;

 free(ptr);

 return 0;

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

// Define a structure type

// Declare a structure point1 and a pointer ptr

// Modify point1 via ptr

Dynamic Memory for Structures

// Create another structure

// Free it after use

Practice for dynamic structure

• Requirements:

– Implement the same functions in above practices

– This time, you should enable the user to specify
the student number by himself during run time,
instead of a constant ‘5’ fixed in code.

Code Template

• We provide code template for all the
practices. You can download it from e-learning
system, and just need to complete the missing
parts(marked by “/*missing*/”).

• We will post the complete correct code in next
week.

