Lab 4: Structure and
dynamic structure

Programming Lab (Using C)
LIU, Yannan
vnliu@cse.cuhk.edu

Outline

Introduction to structure
Structure declaration
Accessing structure members
Structure Assignment
Miscellaneous topics

— Point, array, and Nested structure

Dynamic structure

Introduction to Structure

* A structure is a collection of related storage
elements, possibly of different types, under a

single name.
“lstruct student { —lstruct teacher {
char student_id[9]; char teacher id[9];

char name[26];
double gpa;

I I
* To use a structure
— Structure type declaration
e e.g. Student or teacher

— Structure variable declaration
e e.g. student Tom, student Jerry, Teacher Green

char name[26];
int salary;

Structure type declaration

A Structure type can be defined using the keyword struct:

/* define a NEW type for storing data LATER */
struct student {

char id[9];
char name[26] ;
double gpa;

};

This defines a new data TYPE called struct student, which
consists of three related members, id, name and gpa.

However, NO variable storage has YET been allocated.

This is just the design of the new type.

More Structure Examples

e 2D Coordinates

struct coord2D {
double x;
double vy;

};

® Quadratic form Ax?+Bx+C
struct quad form {
double A, B, C;

};

® Polynomial Ax"+Bx"1+...+E
struct polynomial {

unsigned degree;
double coeff[5];

};

 Employee record
struct employee {
char name [50] ;
double salary[12];
double MPF contrib;

};

Structure variable declaration

Structure
Type

—Istruct student { Declaration
char student id[9];
char name[26];
double gpa;

}s

—Istruct student Tom, Jerry;

L

Structure

Variables
Declaration

Structure variable declaration Cont’d

* Defining structure with “typedef”

—ltypedef struct {

char teacher id[9];
char name[26];

int salary;

-1} teacher_t;

teacher_t Green;
Structure
Variables
Declaration

Structure variable declaration
Initializtion

struct variables can be initialized as follows:

Same as
st;uctddate { . today.day = 25,
};lnt ay, month, year; today.month = 12,

today.year = 1997;

struct date today = {25, 12, 1997};

The Initial values should be constant values or constant expressions.
l.e., no variables should be involved in the initializer expressions.

int i = 1997;

struct date today = {25, 12, i }; // this is WRONG!
If fewer initializers are listed than the number of members in the
struct, values of the remaining members are undefined.

struct date today = {25, 12}; // today.year is undefined

_—

Same as 8
today.day = 25, today.month = 12, today.year = ?;

Structure variable declaration
Initialization Cont’d

struct employee {
char name[50] ;
double salary[12];
double MPF contrib;

};

struct employee peter = {
"Peter Pan'",
{ 9500, 9500, 10000, 11000, 12000, 12050,
12100, 13000, 13000, 13000, 14000, 14000},
0.05

};

Accessing structure members

® The Member Operator:

OMembers of a struct variable can be accessed
using the member operator,

i.e.the DOT o

OFor example,
variable.member = 999;

Accessing structure members Cont’d

oo Jdoy Ul d WD R

#include <stdio.h>

struct date {
int day;
int month; // Define the type struct date
int year;

b E

int main (void)
{
struct date today; // today is a variable of type struct date
today.day = 25;
today.month = 12; // Use of the member operator .
today.year = 1997;
if (today.day == 25 && today.month == 12)
printf ("Merry Christmas!\n");
return O;

Accessing structure members Cont’d

Your surname? Collins
1| #include <stdio.h> Your forename? Phil
2 | typedef{ Dear P. Coll::Lns
3 yzhar surname[31]; [am CSE Admin.
4 char forename[31]; // Define the type struct person
5 int age;
6|} person t;
7| int main(void) {
8 person t admin= { “CSE", “Admin", 50 };
9 person_t user;
10 printf ("Your surname? ") ;
11 gets (user. surname) ;
12 printf ("Your forename? ") ;
13 gets (user. forename) ;
14 printf ("Dear %c. %s\n", user.forename[0], user.surname) ;
15 printf ("I am %s %s.\n", admin.surname, admin.forename) ;
16 return O;
17 |}
18

Structure Assignments

To assign the value of a structure variable to another
structure variable of the same type, the assignment
operator '=' can be applied to structure variables.

—#include <stdio.h>

—struct student {
char student id[9];
char name[26];
double gpa;

¥

—int main()
1
struct student Tom = {"11445","Tom",3.87};
struct student Jerry;

[/ /5tructure Variable Assignment
Jerry = Tom;

return 9;

Structure array

A structure may occur as an array element.

#include <stdio.h>
- struct student {
char 1d[9];
char name[38];
int mark;

T
—int main(void)

1
struct student student list[18@6];

student 1ist[99].mark = 98;

return 8;

¥

Nested Structure

1 | #include <stdio.h>

2 | #include <string.h>

3 | struct date {

4 int day, month, year;

511}

6 | struct book {

7 char author[30], title[50], publisher[30];
8 int edition;

9 struct date date of pub;
10 | };

11 | int main(void) {

12 struct book booklist[100];

13 strcpy (booklist[10] .author, "Al Kelley, Ira Pohl");
14 strcpy (booklist[10].title, "C By Dissection");

15 strcpy (booklist[10] .publisher, "Addison-Wesley") ;

16 booklist[10] .edition = 4;

17 booklist[10] .date of pub.day = 1;

18 booklist[10] .date of pub.month 10;

19 booklist[10] .date of pub.year = 2000;
20 return 0O; 15

Pointer to Structures

e Revision:

int 1i;
int *ptr;

ptr = &i; // the address of i

*ptr = 1999; // i.e. i1 = 1999

 Does the same apply to the members of a structure?

Pointer to members in Structure

struct date {
int day, month, year;

};

struct date today;

int *ptr;
ptr = &today.year; // the address of today.year

*ptr = 1999; // i.e. today.year = 1999

* Astep further, can we have a Pointer to a Structure?

17

Pointer to Structures

#include <stdio.h>

struct date {

int day, month, year; // Define the type struct date
};

int main (void) date ptr
{

9 struct date today;
10 struct date *date ptr;
11 date ptr = &today;
12 (*date ptr) .day = 25; |// (*date ptr) refers
13 (*date ptr) .month = 12; |// today
14 (*date ptr) .year = 1997;
15 if (today.day == 25 && today.month == 12)
16 printf ("Merry Christmas!\n");
17 return O;

oo Jdoy Ul d WD R

18

Pointer to Structures

#include <stdio.h>

struct date {

int day, month, year; // Define the type struct date
};

int main (void) date ptr
{

9 struct date today;
10 struct date *date ptr;

oo Jdoy Ul d WD R

11 date ptr = &today;

12 date ptr->day = 25; // -> is a short-hand

13 date ptr->month = 12; struct ptr->member
14 date ptr->year = 1997; |€=» (*struct ptr) .member

15 if (today.day == 25 && today.month == 12)
16 printf ("Merry Christmas!\n");
17 return 0O;

19

Pointer to Structures

* Note on the use of the operator —->

— This is a short-hand notation.
— Usage examples:

struct ptr->member = ...;

. = struct_ptr—>member;

— struct ptr must be a pointer referring to a proper
structure entity, i.e. storing the address of a structure.

— member should be defined in the structure definition.

Practices for structure

* Define a structure type, which can record
student ID, student name, and student age.

e Get the information for five students from
console.

D IName |Age
11345 Tim 18
60765 John 17
19146 Jerry 20
20984 Lucy 22

Practices for structure Cont’d

» After collecting all these information,

— Practice 1

* Print out the student ID for the each student, whose
age is larger than 19.

— Practice 2

* Print out the student name for the each student, whose
name’s second letter is ‘e’.

— Practice 3

* Print out the student’s name, whose age is the largest.

Dynamic Memory Manipulations

Dynamic Memory Allocation: malloc ()

From the C reference manual:

/* header file stdlib.h declares the function */
#include <stdlib.h>

void * malloc(size t size);

size t has been type-defined to unsigned int.
size is the number of bytes required in the allocation.

malloc () returns a pointer to a block of memory of
size bytes.
The function call returns NULL when the allocation failed.

Dynamic Memory Manipulations

Dynamic Memory De-Allocation: free ()

From the C reference manual:

/* header file stdlib.h declares the function */
#include <stdlib.h>

void free(void * ptr);

void * IS a generic pointer type, i.e. pointer of ANY type.

ptr is a pointer to a block of memory previously allocated by
malloc().

It releases the block of memory pointed to by ptr.
The function call returns nothing.

Dynamic Memory for Structures

oo Jdoy Ul d WD R

#include <stdio.h>
#include <stdlib.h>
typedef struct {double x, double y} Coordinates;

// Define a structure type
int main(void) {

Coordinates pointl = {3.4, -5.9}, *ptr;

// Declare a structure pointl and a pointer ptr
ptr = &pointl;
ptr->x = 3.458, ptr->y = -5.967; // Modify pointl viaptr

ptr = malloc (sizeof(Coordinates)) ; // Create another structure
if (ptr == NULL) return O;

ptr->x = 47.57, ptr->y = 23.45;

free (ptr) ; // Free it after use
return O;

Practice for dynamic structure

* Requirements:
— Implement the same functions in above practices

— This time, you should enable the user to specify
the student number by himself during run time,
instead of a constant ‘5’ fixed in code.

Code Template

* We provide code template for all the
practices. You can download it from e-learning
system, and just need to complete the missing
parts(marked by “/*missing™/”).

 We will post the complete correct code in next
week.

