
Lab 4: Structure and 
 dynamic structure 

Programming Lab (Using C) 

LIU, Yannan 

ynliu@cse.cuhk.edu 



Outline 

• Introduction to structure 

• Structure declaration 

• Accessing structure members 

• Structure Assignment 

• Miscellaneous topics 

– Point, array, and Nested structure 

• Dynamic structure 



Introduction to Structure 

• A structure is a collection of related storage 
elements, possibly of different types, under a 
single name.   

  
 
 
 
 

• To use a structure 
– Structure type declaration 

• e.g. Student or teacher 

– Structure variable declaration 
• e.g. student Tom,  student Jerry, Teacher Green 



Structure type declaration 

 A Structure type can be defined using the keyword struct: 
 

/* define a NEW type for storing data LATER */ 

struct student { 

    char    id[9]; 

    char    name[26]; 

    double  gpa; 

}; 

 

 This defines a new data TYPE called struct student, which 
consists of three related members, id, name and gpa. 

 

 However, NO variable storage has YET been allocated. 

 

 This is just the design of the new type. 



More Structure Examples 

• 2D Coordinates 
struct coord2D { 
  double  x; 

  double  y; 

}; 

 

 

• Employee record 
struct employee { 
  char    name[50]; 

  double  salary[12]; 

  double  MPF_contrib; 

}; 

 Quadratic form Ax2+Bx+C 

struct quad_form { 

  double  A, B, C; 

}; 

 
 Polynomial Axn+Bxn-1+…+E 

struct polynomial { 

  unsigned degree; 

  double   coeff[5]; 

}; 



Structure variable declaration 

Structure  
Type  

Declaration 

Structure 
Variables 

Declaration 



Structure variable declaration Cont’d 

• Defining structure with “typedef” 

Structure 
Variables 

Declaration 



Structure variable declaration 
Initializtion 

 struct variables can be initialized as follows: 
 
struct date { 
  int day, month, year; 
}; 
 
struct date   today = {25, 12, 1997}; 

 

 The initial values should be constant values or constant expressions.  
I.e., no variables should be involved in the initializer expressions. 

 
int i = 1997; 
 
struct date   today = {25, 12, i }; // this is WRONG! 

 

 If fewer initializers are listed than the number of members in the 
struct, values of the remaining members are undefined. 

 
struct date   today = {25, 12}; // today.year is undefined 

8 

Same as  
today.day = 25,  

today.month = 12,  

today.year = 1997; 

Same as  
today.day = 25,  today.month = 12,  today.year = ?; 



Structure variable declaration 
Initialization Cont’d 

struct employee { 

  char    name[50]; 

  double  salary[12]; 

  double  MPF_contrib; 

}; 

 

struct employee peter = { 

  "Peter Pan", 

  { 9500,  9500, 10000, 11000, 12000, 12050, 

   12100, 13000, 13000, 13000, 14000, 14000}, 

  0.05 

}; 



Accessing structure members 

The Member Operator: 
Members of a struct variable can be accessed 

using the member operator,  

  i.e. the DOT  . 
For example, 

  variable.member = 999; 

 



Accessing structure members Cont’d 

 #include <stdio.h> 

 

struct date { 

  int day; 

  int month; 

  int year; 

}; 

 

int main(void) 

{ 

  struct date   today; 

  today.day   = 25; 

  today.month = 12; 

  today.year  = 1997; 

  if (today.day == 25   &&   today.month == 12) 

    printf("Merry Christmas!\n"); 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// Define the type struct date 

// today is a variable of type struct date 

// Use of the member operator . 
 

11 



Accessing structure members Cont’d 

 #include <stdio.h> 

typedef{ 

  char surname[31]; 

  char forename[31]; 

  int  age; 

} person_t; 

int main(void) { 

  person_t admin= { “CSE", “Admin", 50 }; 

  person_t user; 

  printf("Your surname? "); 

  gets(user.surname); 

  printf("Your forename? "); 

  gets(user.forename); 

  printf("Dear %c. %s\n", user.forename[0], user.surname); 

  printf("I am %s %s.\n", admin.surname, admin.forename); 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// Define the type struct person 

Your surname? Collins 

Your forename? Phil 

Dear P. Collins 

I am CSE Admin. 

12 



Structure Assignments 

• To assign the value of a structure variable to another 
structure variable of the same type, the assignment 
operator '=' can be applied to structure variables. 

 

 



Structure array 

• A structure may occur as an array element. 
 



Nested Structure 

 #include <stdio.h> 

#include <string.h> 

struct date { 

  int     day, month, year; 

}; 

struct book { 

  char           author[30], title[50], publisher[30]; 

  int            edition; 

  struct date    date_of_pub; 

}; 

int main(void) { 

  struct book    booklist[100]; 

  strcpy(booklist[10].author,    "Al Kelley, Ira Pohl"); 

  strcpy(booklist[10].title,     "C By Dissection"); 

  strcpy(booklist[10].publisher, "Addison-Wesley"); 

  booklist[10].edition = 4; 

  booklist[10].date_of_pub.day   = 1; 

  booklist[10].date_of_pub.month = 10; 

  booklist[10].date_of_pub.year  = 2000; 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 
15 



Pointer to Structures 

• Revision: 
 

  int i; 

  int *ptr; 

 

  ptr = &i;     // the address of i 

 

  *ptr = 1999;  // i.e. i = 1999 

 

• Does the same apply to the members of a structure? 
 

16 



Pointer to members in Structure 

  struct date { 

    int     day, month, year; 

  }; 

 

  struct date   today; 

 

  int *ptr; 

 

  ptr = &today.year;  // the address of today.year 

 

  *ptr = 1999;        // i.e. today.year = 1999 

 

• A step further, can we have a Pointer to a Structure? 
 

today 

day 

month 

year 

ptr 

17 



Pointer to Structures 

#include <stdio.h> 

 

struct date { 

  int day, month, year; 

}; 

 

int main(void) 

{ 

  struct date   today; 

  struct date  *date_ptr; 

  date_ptr    = &today; 

  (*date_ptr).day   = 25;  // (*date_ptr) refers 

  (*date_ptr).month = 12;  //    today 

  (*date_ptr).year  = 1997; 

  if (today.day == 25   &&   today.month == 12) 

    printf("Merry Christmas!\n"); 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// Define the type struct date 

today 

day 

month 

year 

date_ptr 

18 



Pointer to Structures 

#include <stdio.h> 

 

struct date { 

  int day, month, year; 

}; 

 

int main(void) 

{ 

  struct date   today; 

  struct date  *date_ptr; 

  date_ptr    = &today; 

  date_ptr->day   = 25;    // -> is a short-hand 

  date_ptr->month = 12;          struct_ptr->member  

  date_ptr->year  = 1997;   (*struct_ptr).member 

  if (today.day == 25   &&   today.month == 12) 

    printf("Merry Christmas!\n"); 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// Define the type struct date 

today 

day 

month 

year 

date_ptr 

19 



Pointer to Structures 

• Note on the use of the operator -> 
– This is a short-hand notation. 

– Usage examples: 
 

struct_ptr->member = ...; 

 

... = struct_ptr->member; 

 

– struct_ptr must be a pointer referring to a proper 
structure entity, i.e. storing the address of a structure. 

 

– member should be defined in the structure definition. 

20 



Practices for structure 

• Define a structure type, which can record 
student ID, student name, and student age. 

• Get the information for five students from 
console. 

ID Name Age 

11345 Tim 18 

60765 John 17 

19146 Jerry 20 

20984 Lucy 22 

57862 William 19 



Practices for structure Cont’d 

• After collecting all these information,  

– Practice 1 

• Print out the student ID for the each student, whose 
age is larger than 19. 

– Practice 2 

• Print out the student name for the each student, whose 
name’s second letter is ‘e’. 

– Practice 3 

• Print out the student’s name, whose age is the largest.  

 



Dynamic Memory Manipulations 

 Dynamic Memory Allocation: malloc() 

 
 

/* header file stdlib.h declares the function */ 

#include <stdlib.h> 

 

void * malloc(size_t size); 

 

 size_t has been type-defined to unsigned int. 

 size is the number of bytes required in the allocation. 

 malloc() returns a pointer to a block of memory of 
size bytes. 

 The function call returns NULL when the allocation failed. 

From the C reference manual: 



Dynamic Memory Manipulations 

 Dynamic Memory De-Allocation: free() 

 
 

/* header file stdlib.h declares the function */ 

#include <stdlib.h> 

 

void free(void * ptr); 

 

 void * is a generic pointer type, i.e. pointer of ANY type. 

 ptr is a pointer to a block of memory previously allocated by 
malloc(). 

 It releases the block of memory pointed to by ptr. 

 The function call returns nothing. 

From the C reference manual: 



#include <stdio.h> 

#include <stdlib.h> 

typedef struct {double x, double y} Coordinates; 

 

int main(void) { 

  Coordinates point1 = {3.4, -5.9}, *ptr; 

 

  ptr = &point1; 

  ptr->x = 3.458,   ptr->y = -5.967; 

 

  ptr = malloc (sizeof(Coordinates)); 

  if ( ptr == NULL) return 0; 

 

  ptr->x = 47.57,   ptr->y = 23.45; 

 

  free(ptr); 

  return 0; 

} 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

// Define a structure type 

// Declare a structure point1 and a pointer ptr  

// Modify point1 via ptr 

Dynamic Memory for Structures 

// Create another structure 
 

// Free it after use 



Practice for dynamic structure 

• Requirements: 

– Implement the same functions in above practices 

– This time, you should enable the user to specify 
the student number by himself during run time, 
instead of a constant ‘5’ fixed in code. 



Code Template 

• We provide code template for all the 
practices. You can download it from e-learning 
system, and just need to complete the missing 
parts(marked by “/*missing*/”). 

• We will post the complete correct code in next 
week. 


