
Tutorial 10
Pointers in C

Shuyue Hu

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

2 3/15/2017

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

3 3/15/2017

What is a pointer
• So far, we have seen that a variable is used to store a

value.

• Variables allow the programmer to directly manipulate the

data in memory.

• A pointer variable, however, does not store a value but

store the address of the memory space which contain the
value i.e. it directly points to a specific memory address.

• Why would we want to use pointers?

– To call a function by reference so that the data passed to the
function can be changed inside the function.

– To create a dynamic data structure which can grow larger or
smaller as necessary.

4 3/15/2017

Variable declaration
• A variable declaration such as,

• int number = 20; causes the compiler to allocate a
memory location for the variable number and store
in it the integer value 20.

• This absolute address of the memory location is
readily available to our program during the run
time.

• The computer uses this address to access its
content.

5

number

20
number directly references a

variable whose value is 20

11001100

3/15/2017

Pointer declaration
• General Format:

data_type *pointer_name;

• A pointer declaration such as,
int *numberPtr;

• declares numberptr as a variable that points to an
integer variable. Its content is a memory address.

• The asterisk * indicates that the variable
being declared is a pointer variable instead
of a normal variable.

6 3/15/2017

Pointer declaration (cont.)

• Consider the following declaration
int *numberPtr, number = 20;

• In this case, two memory address have been reserved
in the memory, namely the numberPtr and number.

• The value in variable number is of type integer, and the
value in variable numberPtr is an address for another
memory.

7

20

11001100 00010100

number *numberPtr

3/15/2017

Pointer Initialization

• To prevent the pointer from pointing to a random
memory address, it is advisable that the pointer
is initialized to 0, NULL or an address before
being used.

• A pointer with the value NULL, points to nothing.

• Initializing a pointer to 0 is equivalent to

initializing a pointer to NULL, but NULL is
preferred.

8 3/15/2017

Pointer Operator (& and *)
• When a pointer is created, it is not pointing to any valid memory

address. Therefore, we need to assign it to a variable’s address by
using the ampersand & operator. This operator is called a reference
operator.

• Look at this example:
 int number = 20;
 int *numberPtr; //(a) We define a pointer variable

 numberPtr = &number; //(b) assign the address of a variable to a pointer

 printf(“number = %d”, *numberPtr); //(c) finally access the value at the
address available in the pointer variable.

• The statement numberPtr = &number assigns the address of the

variable number to a pointer variable numberPtr.
• Variable numberPtr is then said as to “point to” variable number.

9

Output:

number = 20

3/15/2017

Graphical representation

• int *numberPtr, number = 20;

• numberPtr = &number;

10

20

11001100 11111111

number *numberPtr

20 11001100

11001100 11111111

number *numberPtr

3/15/2017

Pointer Operator (& and *) (cont.)

• After a pointer is assigned to a particular address,
the value in the pointed address can be
accessed/modified using the asterisk * operator.

• This operator is commonly called as the
indirection operator or dereferencing operator.

• The * operator returns the value of the object to
which its operand points. For example, the
statement
– printf(“number = %d”, *numberPtr);
 //prints the value of variable number, namely as 20.
 //Using * in this manner is called dereferencing operator.

11 3/15/2017

Example: & and *
#include <stdio.h>

int main()

{

 int var = 10;

 int *ptrvar = &var;

 printf("The address of the variable var is: %d\n", &var);

 printf("The value of the pointer ptrvar is: %d\n", ptrvar);

 printf("Both values are the same\n\n");

 printf("The value of the variable var is: %d\n", var);

 printf("The value of *ptrvar is: %d\n", *ptrvar);

 printf("Both values are the same\n\n");

 printf("The address of the value pointed by ptrvar is: %d\n", &*ptrvar);

 printf("The value inside the address of ptrvar is: %d\n", *&ptrvar);

 printf("Both values are the same\n\n");

}

12 3/15/2017

Example: & and *

/*Sample Output */

The address of the variable var is: 1245052

The value of the pointer ptrvar is: 1245052

Both values are the same

The value of the variable var is: 10

The value of *ptrvar is: 10

Both values are the same

The address of the value pointed by ptrvar is: 1245052

The value inside the address of ptrvar is: 1245052

Both values are the same

Press any key to continue

13 3/15/2017

&* and *&

• & and * are inverse operations.

• &* acts equivalent to *& and this leads back to the original
value.

• Example: (Assume that the address of num is 1245052)

#include <stdio.h>
int main()
{
 int num = 5;
 int *numPtr = #

 printf("%d \n", numPtr);
 printf("%d \n", &*numPtr);
 printf("%d \n", *&numPtr);
}

14

Output:

1245052

1245052

1245052

3/15/2017

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

15 3/15/2017

Pointer arithmetic

• A pointer in c is an address, which is a numeric
value. Therefore, you can perform arithmetic
operations on a pointer.

• There are four arithmetic operators that can
be used on pointers: ++, --, +, and –

• int *ptr = 1000; char *ptr = 1000;

• ptr++ ptr++

• ptr = 1004 ptr = 1001

3/15/2017 16

Example
#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

 ptr++;

 }

 return 0;

}

3/15/2017 17

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

18 3/15/2017

Array of pointers

• declaration of an array of pointers to an
integer:

int *ptr[MAX];

• It declares ptr as an array of MAX integer
pointers. Thus, each element in ptr, holds a
pointer to an int value.

3/15/2017 19

Example
#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr[MAX];

 for (i = 0; i < MAX; i++) {

 ptr[i] = &var[i]; /* assign the address of

integer. */

 }

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, *ptr[i]

);

 }

 return 0;

}

3/15/2017 20

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

21 3/15/2017

Pointer to Pointer

• When we define a pointer to a pointer, the
first pointer contains the address of the
second pointer, which points to the location
that contains the actual value as shown below.

• Declare a pointer to a pointer of type int

int **var;

3/15/2017 22

Example
#include <stdio.h>

int main () {

 int var;

 int *ptr;

 int **pptr;

 var = 3000;

 /* take the address of var */

 ptr = &var;

 /* take the address of ptr using address of operator & */

 pptr = &ptr;

 /* take the value using pptr */

 printf("Value of var = %d\n", var);

 printf("Value available at *ptr = %d\n", *ptr);

 printf("Value available at **pptr = %d\n", **pptr);

 return 0;

}

3/15/2017 23

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

24 3/15/2017

Passing pointers to functions in C

• C programming allows passing a pointer to a
function.

• To do so, simply declare the function parameter
as a pointer type.
– Declare the variable that is meant to return a value to

the calling function as a pointer variable in the formal
parameter list of the function.

 void function_name(int *varPtr);

– When to call the function, use a variable together
with address operator (&)

 function_name(&var);

3/15/2017 25

Parameter Passing by Reference/Pointer

• This way of passing the argument can realize the purpose

of passing by reference. However, there is no “passed by
reference” in C.

• Just because you're passing the value of the pointer to the
method and then dereferencing it to get the integer that is
pointed to.

• When the value referenced by the pointer is changed inside
the function, the value in the actual variable will also
change.

• When a pointer is passed to a function, we are actually
passing the address of a variable to the function.

• Since we have the address, we can directly manipulate the
data in the address.

26 3/15/2017

Example

#include <stdio.h>

void Func1(int, int); // pass by value

void Func2(int *, int *); // pass by pointer

int main()

{

 int a = 8, b = 9;

 printf("Before Func1 is called, a = %d, b = %d\n", a, b);

 Func1(a, b);

 printf("After Func1 is called, a = %d, b = %d\n\n", a, b);

 printf("\nBefore Func2 is called, a = %d, b = %d\n", a, b);

 Func2(&a, &b);

 printf("After Func2 is called, a = %d, b = %d\n\n", a, b);

}

27 3/15/2017

Example
void Func1(int a, int b)

{

 a = 0;

 b = 0;

 printf("The value inside Func1, a = %d, b = %d\n", a,

b);

}

void Func2(int *pa, int *pb)

{

 *pa = 0;

 *pb = 0;

 printf("The value inside Func2, *pa = %d, *pb =

%d\n", *pa, *pb);

}

28 3/15/2017

Result

/* output */

Before Func1 is called, a = 8, b = 9

The value inside Func1, a = 0, b = 0

After Func1 is called, a = 8, b = 9

Before Func2 is called, a = 8, b = 9

The value inside Func2, *pa = 0, *pb = 0

After Func2 is called, a = 0, b = 0

Press any key to continue

29 3/15/2017

Content

 Basic concept of pointers

 Pointer arithmetic

 Array of pointers

 Pointer to pointer

 Passing pointers to functions in C

 Return pointer from functions in C

30 3/15/2017

Return pointer from functions in C

• Declare a function returning a pointer:

int * myFunction() { . . . }

• It is not a good idea to return the address of a
local variable outside the function, so you
would have to define the local variable
as static variable.

3/15/2017 31

Example

#include <stdio.h>

#include <time.h>

/* function to generate and retrun random numbers. */

int * getRandom() {

 static int r[10];

 int i;

 /* set the seed */

 srand((unsigned)time(NULL));

 for (i = 0; i < 10; ++i) {

 r[i] = rand();

 printf("%d\n", r[i]);

 }

 return r;

}

3/15/2017 32

/* main function to call above defined function */

int main () {

 /* a pointer to an int */

 int *p;

 int i;

 p = getRandom();

 for (i = 0; i < 10; i++) {

 printf("*(p+[%d]):%d\n",i,*(p + i)

);

 }

 return 0;

}

Summary
 Some Interview Questions

 Basic concept of pointers

 Pointer arithmetic
 ptr++

 Array of pointers
 int *ptr[MAX];

 Pointer to pointer
 int **var;

 Passing pointers to functions in C
 void function_name(int *varPtr);

 Return pointer from functions in C
 int * myFunction() { . . . }

33 3/15/2017

Thank you!

