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Abstract Recent advances in localization techniques have fundamentally enhanced social
networking services, allowing users to share their locations and location-related contents,
such as geo-tagged photos and notes. We refer to these social networks as location-based
social networks (LBSNs). Location data bridges the gap between the physical and digital
worlds and enables a deeper understanding of users’ preferences and behavior. This addition
of vast geo-spatial datasets has stimulated research into novel recommender systems that
seek to facilitate users’ travels and social interactions. In this paper, we offer a systematic
review of this research, summarizing the contributions of individual efforts and exploring
their relations. We discuss the new properties and challenges that location brings to rec-
ommender systems for LBSNs. We present a comprehensive survey analyzing 1) the data
source used, 2) the methodology employed to generate a recommendation, and 3) the objec-
tive of the recommendation. We propose three taxonomies that partition the recommender
systems according to the properties listed above. First, we categorize the recommender sys-
tems by the objective of the recommendation, which can include locations, users, activities,
or social media. Second, we categorize the recommender systems by the methodologies
employed, including content-based, link analysis-based, and collaborative filtering-based
methodologies. Third, we categorize the systems by the data sources used, including user
profiles, user online histories, and user location histories. For each category, we summarize
the goals and contributions of each system and highlight the representative research effort.

J. Bao (�) · M. Mokbel
University of Minnesota, Minneapolis, MN, USA
e-mail: baojie@cs.umn.edu

M. Mokbel
e-mail: mokbel@cs.umn.edu

Y. Zheng
Microsoft Research, Beijing, China
e-mail: yuzheng@microsoft.com

D. Wilkie
University of North Carolina, Wilmington, NC, USA
e-mail: wilkie@cs.unc.edu

mailto:baojie@cs.umn.edu
mailto:mokbel@cs.umn.edu
mailto:yuzheng@microsoft.com
mailto:wilkie@cs.unc.edu


526 Geoinformatica (2015) 19:525–565

Further, we provide comparative analysis of the recommender systems within each cate-
gory. Finally, we discuss the available data-sets and the popular methods used to evaluate the
performance of recommender systems. Finally, we point out promising research topics for
future work. This article presents a panorama of the recommender systems in location-based
social networks with a balanced depth, facilitating research into this important research
theme.

Keywords Location-based social networks · Recommender systems · Location-based
services · Location recommendations · Friend recommendations · Community
discoveries · Activity recommendations · Social media recommendations

1 Introduction

With millions of users, social networking services like Facebook and Twitter have become
some of the most popular Internet applications. The rich knowledge that has accumulated
in these social sites enables a variety of recommender systems for new friends and media.

Recently, advances in location-acquisition and wireless communication technologies
have enabled the creation of location-based social networking services, such as Foursquare,
Twinkle, and GeoLife [131]. In such a service, users can easily share their geo-spatial loca-
tions and location-related contents in the physical world via online platforms. For example,
a user with a mobile phone can share comments with his friends about a restaurant at which
he has dined via an online social site. Other users can expand their social networks using
friend suggestions derived from overlapped location histories. For instance, people who
constantly hike on the same mountain can be put in contact.

The location dimension bridges the gap between the physical world and the digital online
social networking services, giving rise to new opportunities and challenges in traditional
recommender systems in the following aspects:

1. Complex objects and relations: A location is a new object in location-based social
networks (LBSNs), generating new relations between users, between locations, and
between users and locations. New recommendation scenarios, like location and
itinerary recommendations, can be enabled using this new knowledge, and tradi-
tional recommendation scenarios, such as friend and media recommendation, can be
enhanced. However, doing so requires new methodologies for generating high-quality
recommendations.

2. Rich knowledge: A location is one of the most important components defining a user’s
context. Extensive knowledge about a user’s behavior and preferences can be learned
via their location history [113]. The huge volume of location-related data generated
by users improves the likelihood that social opinions, e.g., the most favorite dish in a
restaurant or the most popular activity at a point of interest, can be accurately assessed
by recommender systems.

These opportunities and challenges have been tackled by many new approaches to rec-
ommender systems, using different data sources and methodologies to generate different
kinds of recommendations. In this article, we provide a survey of these systems, and the pub-
lications proposing them, with a systematic review on over sixty articles published over the
last five years in the major journals, conferences, and workshops, including but not limited
to KDD, WWW, Ubicomp, ACM SIGSPATIAL, LBSN, RecSys, ACM TIST, and VLDB.
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For each publication, we analyze 1) what a produced recommendation is (i.e., the objective
of a recommendation), 2) the methodology employed to generate a recommendation, and
3) the data source it used. According to these three aspects, we propose three taxonomies
to respectively partition the recommender systems. This survey presents a panorama of
the recommendations in location-based social networks with a balanced depth, facilitating
research into this rising topic. The contributions of this article are detailed as follows:

– We distinguish LBSNs from conventional social networks and define their unique
properties, challenges, and opportunities.

– We categorize the major recommender systems for LBSNs in three taxonomies,
organized by data sources, methodologies, and recommendation objectives. In each
category, we summarize the goals and contributions of each system. In addition, we
highlight one representative system in each category, providing a more in-depth view
of the methodology.

– We summarize the public LBSN datasets and the major methods for evaluating the
recommendations in LBSNs.

– We point out promising research directions in LBSN recommender systems, paying
special attention to directions that result from the analysis and synthesis of the different
recommender system categories.

The rest of the paper is organized as follows: In Section 2, we provide an overview
of location-based social networks. We then propose taxonomies for existing recommender
systems for LBSNs in the three subsequent sections. In Section 3, we propose a taxon-
omy organized by objective of the recommendations. In Section 4, we propose a taxonomy
organized by the methodology of the recommendation system. In Section 5, we propose a
taxonomy organized by the data source used by the recommender systems. In Section 6, we
summarize the datasets and major methods for evaluating a recommendation in an LBSN.
In Section 7, we present potential future research directions and discuss how they relate to
the existing recommender systems. Finally, in Section 8 we present our concluding remarks.

2 Overview

In this section, we first present a formal definition of location-based social networks. After
that, we summarize the unique properties of locations as the new data type and discuss the
new challenges they bring to recommender systems for LBSNs.

2.1 Concepts of location-based social networks

A social network is an abstract structure contains different relations between the individuals,
such as friendships, common interests, and shared knowledge. An online social networking
service is a participatory digital representation of real-world social networks. The social
networking services reveal user’s real social connections, and also enhance the growth by
allowing them to share and communicate about ideas, activities, events, news, and interests
in a much easier fashion.

The addition of spatial aspect in a location-based social networking service strengthens
the connection between the social networking services and the real-world social networks.
Location-based Social Networks or Geosocial Network is formally defined as a type of
social networking in which geographic services and capabilities such as geocoding and
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geotagging are used to enable additional social dynamics [78]. Zheng further elaborate the
concept for these location-based social networks [137], as:

“A location-based social network (LBSN) does not only mean adding a location to
an existing social network so that people in the social structure can share location-
embedded information, but also consists of the new social structure made up of
individuals connected by the interdependency derived from their locations in the phys-
ical world as well as their location-tagged media content, such as photos, video, and
text. Here, the physical location consists of the instant location of an individual at a
given timestamp and the location history that an individual has accumulated in a cer-
tain period. Further, the interdependency includes not only that two persons co-occur
in the same physical location or share similar location histories but also the knowl-
edge, e.g., common interests, behaviors, and activities, inferred from an individual’s
location (history) and location-tagged data.”

Figure 1 gives an overview of different networks contained in a typical location-based
social networks, in which the addition of locations creates new relations and correlations.
As a consequence, conceptually, we can build three graphs within a LBSN as: a location-
location graph, a user-location graph, and a user-user graph.

– Location-location graph. In the location-location graph (shown in the bottom-right of
Fig. 1), a node is a location/venue and a directed edge represents the relation between
two locations. This relations can be explained in many possible ways. For example, it
can indicate the physical distances between the locations, or the similarities between
the locations in terms of their functionality/category. Also, it can be connected by the
user activities that some users consecutively visited.

– User-location graph. In the user-location graph (shown in the left of Fig. 1), there are
two types of nodes, users and locations. An edge starting from a user and ending at
a location can indicate that the user’s travel histories, and the weight of the edge can
indicate the number of visits or the user’s review ratings.

Fig. 1 Concept of location-based social networks [137]
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– User-user graph. In the user-user graph (shown in the top-right of Fig. 1), a node is a
user and an edge between two nodes represents the relations between users, as: a) the
physical distances between the users, b) the friendship relations in a traditional social
networking system. And c) the other relation derived from the users’ location histories,
e.g., two users may be connected if they have visited the same location, or similar types
of places. The latter connection. In other words, we can recommend users to an indi-
vidual based on the inferred location-based connection. Once the individual accepts the
recommendation, the relationship switches from the inferred location-based connection
to the traditional social connection.

The existing location-based social networking services can be classified into three major
groups:

– Geo-tagged-media-based. Geo-tagging services enable users to label the media content
such as text, photos, and videos generated in the physical world. The tagging can occur
passively when the content is created by the device or can be added explicitly as the
content by the user. Users can then view the created contents in a map. Representative
websites of such location-based social networking services include Flickr, Panoramio,
and Geo-twitter. Though a location dimension has been added to these social networks,
the focus of these services is still on the media content. That is, location is used only as
an additional label to organize and enrich the media contents.

– Point-location-based. Applications like Foursquare and Yelp encourage people to share
their current locations, such as restaurants or museums, which are the most popular
type of location-based social networking services. In Foursquare, points and badges
are awarded for users’ checking in. With the real-time location of users, an individual
can discover friends (from her social network) around their location to enable social
activities in the physical world, e.g., inviting people to have dinner or go shopping.
Users can also add comments and reviews as tips to venues that other users can read.
With this kind of service, a location (or a venue) is the first class citizen in the system,
where all the activities like checking in, tipping, and posting photo are all required to
be associated with a point location.

– Trajectory-based. In a trajectory-based social networking service, such as Microsoft
GeoLife and cyclopath [67], is a new type of location-based social networking ser-
vices. Addition to the point location history, users also record their GPS trajectory
route connecting the point locations. These services tell users’ basic information, such
as distance, duration, and velocity, about a particular trajectory, but they also show
users’ experiences, represented by tags, tips, and photos along the trajectories. In short,
these services provide “how and what” information in addition to “where and when.”
Other users can reference these experiences (e.g. travel) by browsing or replaying the
trajectory on a digital map or in the real world with a GPS-enabled phone.

2.2 Influence of locations in social networks

Users’ location histories contain a rich set of information reflecting their preferences, once
the patterns and correlations in the histories has been analyzed [30]. Research into location
histories found that the distribution of locations often fit a power law, i.e. the closer loca-
tions have a much higher probability of being visited, e.g., [11, 21, 49]. In [11], the authors
study the location histories of marked currency as it circulates (shown in Fig. 2a). They
collect a total of 20,540 trajectories throughout the United States. The authors investigate
the probability P(r) of finding a traversal distance r within a number of days. A total of
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Fig. 2 Location Influences in LBSNs [11, 73]

14,730 (that is, a fraction Q = 0.71) secondary reports occurred outside a short range radius
Lmin = 10 km. The distribution shows power-law behavior P(r) r(1+β) with an exponent
β = 0.59 ± 0.02. Recent investigations found similar patterns in users’ location histories in
LBSNs. For example, [73] studies a large point-location data set collected from Foursquare
that reveals several patterns: a user’s activities are different during the weekdays and week-
ends, and the spatio-temporal patterns of users’ check-ins fit the power law distribution.
They found that 20 % of the user’s check-ins occur within a distance of 1 km, 60 % occur
between 1 and 10 km, 20 % occur between 10 km and 100 km, and a small percentage
extend to distances beyond 100 km. Analysis such as the above, coupled with investigations
into user and location correlations and patterns, provide clues of user preferences that can
guide recommender systems.

2.3 Unique properties of locations

Location information brings the following three unique properties to LBSNs, as shown in
Fig. 3,:

Hierarchical Locations span multiple scales: for example, a location can be as small as
a restaurant or as big as a city. Locations with different granularities form a hierarchy,
where locations on a lower tiers refer to smaller geographic areas. For example, a restaurant
belongs to a neighborhood, the neighborhood belongs to a city, the city belongs to a county,
and so on (see Fig. 3a). Different levels of location granularity imply different location-
location graphs and user-location graphs, even given the same location histories of users.

Fig. 3 Unique properties of locations
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These hierarchical relationships need to be considered as, for example, users who share
locations at a lower level (such as a restaurant) likely have a stronger connection than those
who share locations at a higher level (such as living in the same city). This hierarchical
property is unique in LBSNs, as it does not hold in an academic social network, where a
conference never belongs to others.

Measurable distances Connecting the physical world to a LBSN leads to three new geospa-
tial distance relations, the distance between different users’ locations (shown as D1 in
Fig. 3b), the distance between a user and a location (shown as D2 in Fig. 3b), and the
distance between two locations (shown as D3 in Fig. 3b). According to the first law of geog-
raphy posed by Waldo Tobler [97], “everything is related to everything else, but near things
are more related than distant things”, we propose that distance affects an LBSN in the fol-
lowing three ways. 1) The user-user distance influences the similarity between users. For
example, users with a history of visiting nearby locations are more likely to have similar
interests and preferences [56, 105], and users who live close to each other are more likely to
be friends [26]. 2) The user-location distance influences the likelihood a user will be inter-
ested in a location. For instance, users in Foursquare visit restaurants close to their homes
more frequently than others [55]. 3) The location-location distance affects the correlations
between locations. For example, car dealerships are often placed close to each other.

Sequential ordering Subsequent visits by a user to two locations creates a relation with
a chronological ordering. For instance, the two users in Fig. 3c share a location visiting
pattern. From the time of each visit, we can create an ordering which may indicate some
similarities between their preferences [129] or may imply traffic conditions [96].

2.4 Challenges to recommendations in LBSNs

While creating new opportunities for LBSNs, the unique properties of locations also bring
new challenges such as 1) location context awareness, 2) the heterogeneous domain, and
3) the rate of growth.

2.4.1 Location context awareness

Recommender systems in LBSNs need to consider how the current location of a user,
the location history of the user, and the location histories of other users influences what
recommendation to make.

The current location of a user A user’s current location plays a vital role in generating
recommendations in LBSNs due to the following three reasons.

First, a user’s current location can be represented on different levels of granularity (the
hierarchical property of locations). Choosing a proper granularity for the recommendation
scenario is important and challenging. For instance, we should use a fine granularity when
recommending restaurants to a user, while a relatively coarse granularity (like in a city or
state) for local news recommendations.

Second, the distance property of locations implies that people are more likely to visit
nearby locations than distant ones. However, the quality of a location (like a restaurant) is
also important for recommendation-making. Ranking a recommendation based on both the
user-location distance and the quality of a location is non-trivial. Further, a location indicates
a spatial constraint for generating recommendations, but also influences user preferences.



532 Geoinformatica (2015) 19:525–565

For example, beaches might be given a high recommendation rank to a user traveling to
Hawaii, even though the user prefers sporting events more than beaches typically. The same
user may be more interested in seeing the status of her friends living in Hawaii. An addi-
tional challenge is that fine grain location needs to be taken into account quickly: users
often access LBSNs via mobile devices that frequently update their location information.
Addressing this requires efficient algorithms to generate recommendations quickly.

Third, due to the sequential property of locations, a user’s current location affects future
travel decisions. For instance, the majority of people visiting Tiananmen Square will sub-
sequently travel to the Forbidden City, or a dessert or drink recommendation may be
appropriate after visiting certain restaurants. Discovering these sequential relations and
incorporating them into recommendations presents subtle challenges.

The historical locations of the user Earlier works, e.g., [29, 31], have suggest that a user’s
historical behaviors is a powerful indicator of the user’s preferences. A user’s historical
locations accumulated in an LBSN (e.g., check-ins and geo-tagged photos) reflect more
accurately a user’s experiences, living patterns, preferences and interests than the user’s
online behaviors [137]. However, it is non-trivial to model a user’s location history due to
the hierarchy, distance, and sequential properties of locations. Moreover, learning a user’s
personal preferences from the user’s location history is very challenging for the following
reasons. 1) As users do not share their locations everywhere, a full set of a user’s location
history does not exist. Learning a user’s preferences from sparse location data is challenging.
2) A user’s preferences span multiple kinds of interests, such as shopping, cycling, and arts,
rather than consisting of binary decisions, e.g., a set of ’like or dislike’ statements. 3) A
user’s preferences have hierarchies and granularity, such as “Food” → “Italian food” →
“Italian pasta”. 4) A user’s preferences are constantly evolving (and location dependent).

The location histories of other users Location histories generated by other users in LBSNs
make up the social opinion, which is one of the most important information bases for making
recommendations. To extract social opinions from the location histories, however, we are
faced with the following two challenges. 1) It is difficult to design a model to consistently
represent different users’ distinct locations and make these location histories comparable
and computable. 2) Users have different degrees of knowledge about different geospatial
regions. For instance, local experts of a town are more likely to find high quality restau-
rants and shopping malls. As a result, weighting different users’ data according to their
experiences and knowledge is useful when inferring social opinions from the massive user-
generated and location-related data. Further, the knowledge of a user is region-related and
changes over the granularity of a location. A travel expert in New York City might have
less knowledge of Seattle. Likewise, people who are shopping experts in one district of a
city might not be the most knowledgeable of the city as a whole. Effectively and efficiently
inferring social opinions with respect to users’ knowledge of different regions is a difficult
problem.

2.4.2 Heterogeneous domain

The graph representing an LBSN is heterogeneous, consisting of at least two types of nodes
(user and location) and three types of edges (user-user, location-location, and user-location).
Alternatively, we can say there are at least three tightly associated graphs that model an
LBSN (as mentioned in Section 2.1). If an LBSN is trajectory-based, trajectories can be
regarded as another type of node in the social network.
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A location is not only an additional dimension of information about the user, but also an
important object in the LBSN. Inferring the similarity or correlation between two objects in
a heterogeneous graph must incorporate the information from related nodes of other types.
For instance, determining the connection between two users in an LBSN needs to involve
the user-location and location-location relations. A location shared by two users could be
evidence of similarity, or it could simply indicate that a location is very popular. Only careful
analysis can determine which case holds, and to what extent it should influence the strength
of the connection between the users.

2.4.3 The rate of growth

Location-based social networks evolve at a faster pace than traditional social networks in
both social structure and properties of nodes and links. Though academic social networks
are also heterogeneous, with authors, conferences, and papers, they evolve at a much slower
speed than LBSNs do. For example, adding new links in an LBSN is much easier than it
is in a academic social network as visiting a new location is easier than publishing a paper.
Further, the properties of nodes and links in a LBSN evolve more quickly than those of
academic social networks. A user can become a travel expert in a city after visiting many
interesting locations over several months, while a researcher needs years before becoming
an expert in a research area. The rate of growth and evolution in LBSNs raise the standard
of scalability, efficiency, and updating strategy demanded of recommender systems.

We summarize the differences among different types of social networks, e.g., academic
networks, such as DBLP, general online social networks, such as Facebook, and location-
based social networks, like Foursquare and GeoLife, in Table 1. LBSNs present novel
opportunities and challenges given the unique properties of locations, the heterogeneous
structure of a network, and their high rate of growth and evolution.

2.4.4 Cold start & data sparsity

Cold start problem happens, when the system encounter some individual users or items with
very limited history or activity. For the new user or item, the recommendation model does
not have enough knowledge to provide effective suggestion. The cold start problem gets
worse in LBSNs, as the growth ratio is very rapid. It is a non-trivial task to recommend the
new items (e.g., geo-tagged photos, activities, and tweets) in the LBSNs quickly enough for
the user. As a result, some novel method/models and hybrid approaches that take advantage
of different recommendation models are necessary, e.g., [34, 88].

Data sparsity happens, when the entire data in the recommendation model are insufficient
for identifying similar users/items and it is one of the major issues limiting the quality of
recommendations. For the recommender systems in LBSNs, it have more significant impact.
The main reasons are: 1) a user’s location history are limited, as we discussed in Section 2.2,

Table 1 Comparison of three social networks

Location Heterogeneous Evolving

awareness environments speed

Academic social networks
√

Slow

General online social networks Fast

Location-based social networks
√ √

Fast
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while the number of places in a LBSN is a much larger number even in one city. In this
case, the recommender system will generate a very sparse user-location model; and 2) a
user’s location history is always locally crowded [73]. As a consequence, even if a user has
enough location history near her residential area, the recommender system will run into the
data sparsity issue, when she travels to some new areas.

2.5 Structure of the paper

To provide a comprehensive survey on recommendations in LBSNs, we studied over
forty related publications from the major conferences and journals from 2008 to 2011, as
summarized in Table 2.

For each publication, we study: 1) what is being recommended (i.e. the objective), 2) the
methodology employed to generate the recommendation, and 3) the data source used. Based
on these three aspects, we propose three taxonomies to partition these recommender systems
for LBSNs. Following the framework shown in Fig. 4, we further detail the three taxonomies
taxonomy as follows.

Recommendation objective Four types of recommendations are common in LBSNs:
1) location recommendations, which suggest stand-alone locations (e.g., POIs and regions)
or sequential locations (such as travel routes and sequences) to a user; 2) user recommenda-
tions, which suggest popular users (like local experts and opinion leaders), potential friends
(i.e., who share similar interests and preferences), or communities, which a user may wish to
join due to shared interests and activities; 3) activity recommendations, which refer to activ-
ities that a user may be interested taking into consideration the user’s interests and location;
4) social media recommendations, which suggest social media, such as photos, videos, and
web contents, to the user taking into account the location of a user and the location metadata
of the social media.

Table 2 Statistics on literatures related to recommendations in LBSNs

Names 2008 2009 2010 2011 2012 2013

Conferences

WWW 0 2 3 2 1 1

MDM 1 1 1 1 0 2

KDD 0 0 1 4 3 3

ACM-GIS 1 1 2 3 2 2

UbiComp 0 0 4 1 0 2

LBSN N/A 3 3 5 4 N/A

RecSys 0 0 2 1 1 2

Journals

VLDB 0 0 2 0 1 0

ACM-TIST 0 0 1 1 4 2

ACM TWEB 0 0 0 1 0 0

Total numbers 2 7 19 19 16 14
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Fig. 4 An overview of recommender system categories in LBSNs

Recommender system methodology We categorize the major methodologies used by the
recommender systems in LBSNs into the following three groups: 1) content-based recom-
mendation, which uses data from a user’s profile (e.g., age, gender, and preferred cuisines)
and the features of locations (such as categories and tags associated with a location) to make
recommendations; 2) link analysis-based recommendation, which applies link analysis
models, e.g., hypertext induced topic search (HITS) and PageRank, to identify experienced
users and interesting locations; and 3) collaborative filtering (CF) recommendation, which
infers a user’s preferences from historical behavior (such as from a location history).

Data sources used Recommender systems in LBSNs can take advantages of various data
sources such as: 1) user profiles, which explicitly specify a user’s age, gender, interests,
preferences, etc.; 2) user geo-located content, which includes a user’s ratings of visited loca-
tions, geo-tagged content, check-ins, etc.; and 3) user trajectories, consisting of sequential
locations contained in a user’s GPS trajectories.

Table 3 provides an overview of some representative publications in regard to the three
aspects mentioned above. For instance, Zheng et al. [136] recommend interesting loca-
tions and local experts in a city to users based on user location histories in a form of GPS
trajectories using a HIST-based link analysis method.

3 Categorization by objectives

Location-based social networks open new recommendation possibilities. In this section,
we categorize the existing recommender systems in LBSNs based on their objectives as
1) locations, including the stand-alone locations and traveling routes, 2) users, including
expert users, friends recommendation, and community discovery, 3) activities, and 4) social
media.

3.1 Location recommendations

As location recommendation is a very broad topic, in this paper, we only focus on location
recommendations in the context of social networking, where the techniques and methods
are based on user’s geo-social activities. Figure 5 gives an overview of the existing loca-
tion recommender system in LBSNs. These systems can be divided into two groups by the
objectives of their recommendation: 1) stand-alone location recommender systems, which
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Table 3 Summary of the existing recommender systems in location-based social networks

Objectives Methodologies Data sources

Social Location User Activity Content Link CF User Individual User

Media based analysis profile locations trajectories

Sandholm [83]
√ √ √

Levandoski [55]
√ √ √ √

Park [76]
√ √ √

Horozov [45]
√ √ √

Ye [111]
√ √ √

Chow [20]
√ √ √

Ye [112]
√ √ √

Tai [94]
√ √ √

Yoon [121]
√ √ √

Cao [13]
√ √ √

Ye [110]
√ √ √

Liu [62]
√ √ √

Zheng [136]
√ √ √ √

Zheng [133]
√ √ √ √

Li [56]
√ √ √

Hung [47]
√ √ √

Xiao [106]
√ √ √ √

Ying [120]
√ √ √ √

Scellato [87]
√ √ √

Zheng [127]
√ √ √ √ √

Symeonidis [75]
√ √ √ √

Yin [114]
√ √ √ √

provide a user with individual locations, such as restaurants or cities, that match their pref-
erences, and 2) sequential location recommender systems, which recommend a series of
locations (e.g., a popular travel route in a city) to a user based on their preferences and their
constraints, such as in time and cost. As shown in Fig. 5, each type of location recommender
system can be further categorized based on the data sources used.

Fig. 5 Location Recommendations in LBSNs
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3.1.1 Stand-alone location recommendations

The stand-alone location recommender systems have been a focus of recent research,
including the development of multiple prototype systems, e.g., [20, 76, 95, 111, 126, 127,
132, 136]. We can further subdivide and categorize the stand-alone location recommender
systems based on the data sources used, as follows.

User profiles These location recommendation systems suggest locations by matching the
user’s profile against the location meta data, such as description and semantic text and tags.
The first prototype of system proposed in [76] matches user’s profile data – including age,
gender, cuisine preferences, and income – against the price and category of a restaurant
using a Bayesian network model. In [80], Ramaswamy et al., focus on enabling location
recommendation on low-end devices capable only of voice and short text messages (SMS).
Their approach focuses on using a user’s address and ’social affinity’, social connections
implied by a user’s address book, to make recommendations. The social affinity computa-
tion and spatio-temporal matching techniques in the system are continuously tuned through
the user feedback. In [52], Kodama et al., select location candidates using semantic data
and make a final recommendation using a skyline operator [9] that takes into account both
the price and the distance of the candidate locations. The advantage of this type of tech-
nique is that, the recommendation will not suffer from the cold-start problem, where the
users or venues are new and have limited history. As long as the user or venue has a com-
plete profile and category information, the recommendation can be done in an efficient
way by matching the keywords and applying some filtering conditions. However, such sys-
tems potentially suffer from the recommendation quality issue, because the system may
recommend a matching place with poor quality from the social opinion.

User location histories A user’s location history includes a) their online rating history
of locations (e.g., hotels and restaurants) and b) their the check-in history in location-
based social networking systems. Using users’ location histories, as described above, for
making recommendations has advantages over relying solely on profile data as location
histories also capture the ratings from the other users. It therefore improves the qual-
ity of recommendation by ignoring poorly-reviewed locations that otherwise match user’s
profile.

Many online web services, e.g. Yelp and Yellowpage, allow users to explicitly express
their preferences for locations using ratings. Using these ratings, a body of research,
e.g., [20, 25, 45, 111], proposes location recommendation systems using Collaborative
Filtering (CF) models that give personalized recommendations for locations that take
into account other users’ ratings. The intuition behind these methods is that a user will
share location preferences with similar users. Most of the CF-based location recommender
systems undertake three discrete operations, 1) similarity inference, which calculates a sim-
ilarity score between users based on their historical ratings, 2) candidate selection, which
selects a subset of candidate locations using the user’s current location, and 3) recommen-
dation score predication, which predicts the rating a user would give to a location. For
example, motivated by the observation that “people who live in the same neighborhood are
likely to visit the same local places”, [45] uses the historical ratings from users living close
to the user’s query location, which significantly reduces the number of users in the user sim-
ilarity matrix and thus reduces the computational cost of the recommendation. Similarly,
Ye et al. 2010 [111] suggest that solely using the ratings of a user’s friends is more effi-
cient and just as effective as using the ratings generated by the top-k most similar users.
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The authors present a set of experiments showing that a user’s friends share more prefer-
ences than strangers. Ye et al. 2011 [112], use user check-ins to study the effects of the
CF-model, geographical distance, and social structures in making location recommenda-
tions. The authors find that geographical distance has the largest impact in their model.
In their following work [32], they extend the solution to consider the user’s social rela-
tions and her current position. Zhang and Chow [125] further explore the geographical
influences in location recommendation, from the perspective of a user’s personalized travel
pattern. In their model, each user in the system has a personalized travel distance pref-
erences, which has the biggest impact on choosing the location recommendation. The
proposed technique achieves 40 % in precision and 25 % in recall, which are signifi-
cantly superior than the conventional user-based collaborative filtering. In paper [119],
the recommendation model extended by considering the general popularity of the can-
didate venues by analyzing the large scale user check-in behavior. Shi et al. 2011 [89]
propose a personalized location recommender system to take advantage of the venue cate-
gory information using on a category-regularized matrix constructed from the user location
histories. This type of location recommendations consider both the user’s preferences as
well as a category-based location similarity. Bao et al. [8] identify the the “new-city”
recommendation issue, and propose a solution with three key components in a location
recommender system, a) the user’s current location, which constrains the location candi-
dates, b) the user’s location category histories, which reflects the user’s preferences, and
c) the opinions from the local experts. Yin et al. 2013 [114] further extend the problem
by proposing an LCA-LDA model, a location-content-aware probabilistic generative model
to quantify both the local preference and the item content information in the recommen-
dation process. Yang et al. [108] also take advantage of the content information in the
users’ comments left in the check-ins to build a more fine-grained user preference model
for personalized location ranking using tensor factorization techniques. In terms of improv-
ing the efficiency of the location recommendations [20, 107], Chow et al., propose a new
recommendation algorithm that using the safe region technique to reduce the system com-
municational and computational overhead for the users moving on their paths. In [25],
Del Prete and Capra present a decentralized mobile recommendation service designed for
pervasive environments using peer knowledge to avoid the bottleneck of the centralized
server.

Representative research Ye et al. 2011 [112] present a recommender system which uses
CF module to fuse multiple factors as: a) the user’s preferences, which are extracted from
the check-in history, b) the user’s social connections, which are measured by the user’s dis-
tance to other users in the social network, and c) the geographic distance between the user
and the candidate locations, within a collaborative filtering model. As a result, the proba-
bility Si,j of a location lj to be visited by the user ui can be estimated using the following
equation:

Si,j = (1 − α − β) × Su
i,j + α × Ss

i,j + β × S
g
i,j (1)

where the two weighting parameters α and β (0 ≤ α+β ≤ 1) denote the relative importance
of social influence and geographical influence compared to user preference. Here α = 1
implies that Si,j depends completely on social influences, β = 1 implies that Si,j depends
completely on geographical influences, and α = β = 0 implies that Si,j depends only on
user preference.
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The authors explore the effect of the different factors in two large data sets from
Foursquare and Whrrl. They found their model allowed high precision and recall. Further,
they observed that a) geographical influences had a greater impact on the probability of a
user visiting a location than did social influences, b) Random Walk and Restart may not
be suitable for POI recommendations in LBSNs as close social network connections still
exhibit significantly different location preferences, and c) the insufficient number of visitors
to many locations limits some Collaborative Filtering approaches.

Representative research As applying the collaborative filtering approach directly can not
capture the insights how these information influence a user’s choice over different POIs.
Liu et al. [62] proposed a more generative model that integrates the: a) The geographi-
cal influence on a users check-in behavior, by taking into consideration of geographical
factors, such as the regional popularity and the Toblers first law of geography. b) The
latent factor in explicit rating recommendation to implicit feedback recommendation set-
tings by considering the skewed count data characteristic of LBSN check-in behaviors.
The proposed model is flexible and could be extended to incorporate different later fac-
tor models which are suitable for both explicit and implicit feedback recommendation
settings.

Figure 6 gives an overview of the decision processes captured in the model, where a user
i checked in a POI j . First, the user samples a region from all R regions following a multi-
nomial distribution r ∼ Multinomial(ηi), then a POI is selected from the sampled region
lj ∼ N (μr, �r). Finally, based on a) user preferences, b) the POI popularity, and c) the
distance between the user and the POI, the user makes a check-in decision following certain
distribution. The user is preference for POI j can be represented as a linear combination
of a latent factor uᵀ

i vj and a function of user and item observable properties x
ᵀ
i Wyi . Addi-

tionally, ρ(j) indicates the popularity of the POI j and (d0 + d(i, j))−τ is a power-law like
parameter term to model the distance factor for the user’s check-in behavior between her
current location and the POI location.

In this generative model, u and v are user and item factors, xi and xj are user and item
observable properties respectively, and W is a matrix that is used to transfer the observ-
able prosperity space into the latent space to capture the affinity between the observed
features and the user-item pair. The results, based on the real data from Foursquare, con-
firms that they can achieve at least three time better precision and recall ratio over the

(a) (b)

Fig. 6 An overview of geographical preference model for POI recommendation [62]
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traditional single value decomposition (SVD), probabilistic matrix factorization(PMF),
non-negative matrix factorization (NMF) and Bayesian non-negative matrix factorization
(BMF) methods.

User trajectories Compared to stand-alone check-in data, user-generated trajectories con-
tain a richer set of information, such as the visiting sequence between locations, the path
traveled, and the duration of stay at each location. As a result, trajectory data can be used
to more accurately estimate a user’s preferences. Examples of recommender systems using
trajectory data include [54, 58, 95, 135, 136]. In particular, Zheng, et al. [135, 136] propose
a recommendation framework to find expert users and interesting locations by mining GPS
trajectory data. In [13], Cao et al. extend the previous work to consider location-location
relations as well as location-user relations. In [54], Leung et al. propose a dynamic cluster-
ing algorithm in a collaborative location recommendation framework that takes advantage
of user classes.

Representative research Zheng et al. 2009 [136] extend the hypertext induced topic search
(HITS) model to extract interesting locations and experienced users using two approaches,
1) dividing the geographical space into a Tree-based Hierarchical Graph (TBHG), and
2) assigning scores to each user and location that indicate the popularity of the location
and the travel experience of the user. Figure 7 gives an example of a TBHG structure,
in which the multiple layers on the right side of the figure represent the location clusters
at different levels of granularity, and the tree structure on the left describes the relation-
ships between the clusters on each level. The intuition behind the score assignment in
(2) is that the more experienced users should be better able to recommend interesting
locations, while the interesting locations are likely to be accessed by more experienced
users.

In this model, a user’s visit to a location is modeled as an edge from the user to the
location. Thus, a user is a ’hub’ if they have visited many locations, and a location is an
’authority’ if it has been accessed by many users. Further, the user’s travel experience and
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a location’s interest have a mutually reinforcing relationship. Based on this relationship, a
ranking of experienced users and interesting locations can be derived from the model using
the following equations:

al
ij =

∑

uk∈U

vk
jk × hk

lq (2)

hk
lq =

∑

cij ∈clq

vk
ij × al

ij (3)

where the subscripts ij implies that the quantity xij is of the ith level of the j th cluster
in the TBHG, hk

ij represents the kth user’s experience, al
ij represents the location interest,

and clq is cij ’s parent node on the lth level. The rating is local, as the system rates user
experience and location interest at every level of the TBHG, which is consistent with the
intuition, for example, that a very experienced user in New York may not have any idea of
the interesting locations in Beijing. The authors use this model to extract the top n most
interesting locations and the top k most experienced users in a given region using a power
iteration method. Based on the traveling trajectory from 108 users in GeoLife, the solution
achieves the score at 1.6/2, which is at least 20 % better than the ranking by count method,
in a real user study.

3.1.2 Sequential location recommendations

Sequential location recommendations can have more complex objectives. For example, a
suggested location path could maximize the number of interesting places visited while min-
imizing travel time or energy consumption. From a user’s location history, one can infer
how a users preferences for locations are correlated [132]. A number of sequential location
recommender systems have been proposed based on either users’ geo-tagged social media
posts [58, 63, 65, 94, 102] and users’ GPS trajectories [15, 28, 35, 36, 121, 122, 133].

1) Mining Geo-tagged social media A user’s geo-tagged social media content can be used
as a knowledge base for making sequential location recommendations, e.g., as done in
[4, 42]. In [94] the authors use association rule mining [2, 41] and sequence mining [40,
93] over sequences of locations extracted from geo-tagged photos. Based on the user’s
historical visiting pattern, the system creates an itinerary of scenic locations to visit that
are popular among other users. Using a vast amount of geo-tagged photos collected
from Panoramio, the authors of [65] propose a Travel Route Suggestion algorithm to
suggest customized travel plans that take into account the time spent at each location,
the total travel time, and user preferences. In [115], Yin et al. propose a trip recommen-
dation method that focuses on ranking trajectory patterns mined from uploaded photos.
In [58], the authors make use of users’ historical visiting patterns, including the type of
location, to suggest subsequent locations.

Representative research In [63, 102], the authors propose the Route Inference framework
based on Collective Knowledge (RICK) to construct popular routes from uncertain tra-
jectories. Given a location sequence and a time span, RICK constructs the top-k routes
by aggregating uncertain trajectories in a mutually reinforcing way. RICK is comprised
of constructing a routable graph and inferring popular routes, as seen in Fig. 8. First,
RICK constructs a routable graph from uncertain trajectories by aggregating user check-
in data. Second, a routing algorithm is used to construct the top-k routes according to a
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Fig. 8 Construct popular routes [63, 102]

user-specified query. The proposed routable graph provides a good model of the uncer-
tain trajectory with an accuracy of 0.9. Also, on average, the system can find the top-3
routes within 0.5 seconds, with a distance error smaller than 300 meters compared to its
corresponding ground-truth.

2) Mining GPS trajectory
GPS trajectories contain a rich set of information, including the duration a user

spent at a location and the order of location visits, that can improve sequential loca-
tion recommendations. In [28], the authors present a graph model for socio-spatial
networks that stores information about frequently traveled routes and implement a
route recommender system using their query language. In [15], the authors propose
a route recommender system that takes into account a user’s own historically pre-
ferred road segments, mined from the user’s historical trajectories. The intuition for
this approach is that users may feel more comfortable traveling on familiar roads. In
[35], Ge et al 2011. propose an approach to travel recommendation based on the user’s
cost constraints, where the travel costs are learned using tour data from professional
travel agencies. In [36], Ge et al. 2010 integrate energy consumption into a mobile
recommender system by learning energy-efficient transportation patterns from trajec-
tories. In [43], the system integrates the real-time information updates from the local
community to recommend a better route to avoid the traffic.

Representative research The itinerary recommender system [121, 122, 133] further
extended the previous works by incorporating additional constraints, such as 1) a total time
constraint on the trip, e.g., a user only has 8 hours for traveling, 2) a destination constraint,
which indicates that the user wants to end the trip with a selected location, e.g. a user may
need to return to a hotel or the airport, and 3) a constraint on specific ratio metrics, includ-
ing a) the elapsed time ratio (ETR) between the duration of the recommended trip to the
total time constraint, which captures a user’s desire to utilize as much available time as
possible, b) the stay time ratio (STR) between the amount of time a user stays at location
to the amount of time spent traveling between locations, which captures a user’s desire to
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maximize the time in the interesting locations, and c) the interest density ratio (IDR), which
is the summation of interest scores for all the locations in the trip over the maximum total
interest. Figure 9 shows the architecture of the itinerary recommender system, containing
the following two components:

Offline model building The offline system builds the model used to identify interesting
locations and estimate travel times. First, it detects points along the user trajectories at which
a user has stayed at a location for some significant duration of time. Next, it clusters these
points into interest locations. The duration of a user’s stay and the travel time between each
location is then computed. Finally, the system infers the interest level based on the HITS
model.

Online recommendation The online system receives a user’s query, including a starting
location, a destination, and a time constraint, and returns an itinerary with a sequence of
locations. This computation involves three main steps, 1) query verification, which checks
the feasibility of the query with the spatial and temporal constraints, 2) itinerary candidate
selection, which collects the candidate itineraries based on the HITS model generated in
the model building step, and 3) itinerary candidate ranking, which ranks the candidate trips
based on the elapsed time ratio, stay time ratio, and interest density ratio.

3) Temporal analysis of user sequential locations
Additionally, another branch of ongoing research aims to analyzing the temporal

characteristics of users’ sequential location history in LBSNs for better recommenda-
tions. For example, In [64], the authors explore the spatial and temporal relationships
among individual points within trajectories to identify the sub-sequences related to the
user’s preferred activities and assign to them a semantic meaning. Ye et al. 2011 [109]
proposes a method to extract location features based on the temporal distributions

Fig. 9 An overview of itinerary recommender system [121, 122]
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of users’ check-ins. Ye et al. [110] extends their work by considering two additional
aspects, 1) a set of explicit patterns, including the total number of check-ins, the total
number of unique visitors, the maximum number of check-ins by a single visitor, the
distribution of check-in times in a week, and the distribution of check-in times in a
24-hour interval, and 2) implicit relatedness, which captures the correlations between
locations in check-in behavior. Based on the temporal characteristics of users’ check-
in behaviors, recommender systems in LBSNs now recommend locations based on
the current time. For example, Cho et al. [19] propose a location recommendation
method based on the periodicity of the human movement. They propose two methods
PMM (Periodic Mobility Model) and PSMM (Periodic Social Mobility Model) using a
temporal probability distribution function and the social relations. Gao et al. [33] fur-
ther extends the model with using more aggregated temporal functions, such as sum,
mean, maximum and voting, over the users’ check-in data. Most recently, Rahimi and
Wang [79] further extend the existing work by studying the spatial and temporal peri-
odicity activities in the users’ check-in data, and propose two novel recommendation
algorithms, Probabilistic Category Recommender, which uses the temporal probabil-
ity distribution to recommend the category of location that would be interested for the
user based on her historical behavior, and Probabilistic Category-based Recommender,
which further considers the user’s spatial traveling behaviors. The experimental results
show that they can achieve over 15 % improvement in both recall and precision
evaluations.

Representative research Cho et al. [19] analyzed a large scale user check-in dataset from
BrightKite and Gowalla, where they find that humans experience a combination of periodic
movement affected by both the geographical location and the social relations. More specif-
ically, their short-ranged travel is periodic both spatially and temporally and not effected
by the social network structure, while long-distance travel is more influenced by social net-
work ties. The data reveals that social relationships can explain about 10 % to 30 % of all
human movement, while periodic behavior explains 50 % to 70 %.

Based on the insights, they propose two methods PMM (Periodic Mobility Model) and
PSMM (Periodic Social Mobility Model) to predict/recommend the user’s locations. In
PMM model, the authors define a limited number of states for the user that has periodicity
activities, like home or work. Based on the different time of the day, they build a temporal
component of PMM model as:

P [cu] = H ] = NH (t)

NH (t) + NW (t)
(4)

P [cu] = W ] = NW (t)

NH (t) + NW (t)
(5)

where P [cu(t)] models the probability distribution over the state of the user over time and
NW (t) and NH (t) are with a truncated Gaussian distribution parameterized by the time of
the day.

The spatial component is generated by modeling the movement when a user is in the
home/work state using a 2-dimensional time-independent Gaussian distribution:

P [xu(t) = xi |cu(t)] =
{

N (μH ,�H ) if cut = H

N (μW ,�W ) if cut = W
(6)
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where �H , �w are the home, work check-in position co-variance matrices. μH and μH are
the means of users check-in locations hen she is in home and work state, respectively.

PMMS model further improves the previous model by adding the factor from the user’s
social relations. To include the social network information to the model, we introduce
another check-in classification zu(t), where zu(t) = 1 implies the check-in is social (non-
periodic) and zu(t) = 0 implies that it is periodic. The PSMM mobility model then
becomes:

Pu[x(t) = x] = P [x(t) = x|zu(t) = 1] · P [zu(t) = 1]
+ P [x(t) = x|zu(t) = 0] · P [zu(t) = 0] (7)

where P [x(t) = x|zu(t) = 0] is the Periodic Mobility Model.

3.2 User recommendations

User recommendations, which includes popular user discovery [12, 38, 98], friend recom-
mendation [5, 16, 82, 104, 117], and community discovery [60, 103], have been extensively
studied in the context of traditional social networks. The traditional user recommenda-
tion approaches are based on the underlying social structure and user interaction patterns.
Location-based social networks provide a new way to make user recommendations by also
considering users’ location histories. Location histories provide rich contextual informa-
tion and have significant correlations to real social behaviors [22]. Several studies reveal
that geographical information actually plays a vital role in determining user relationships
within social networks. For example, by analyzing the spatial dissemination of new baby
names, [39] confirms the importance of geographical proximity, despite the interconnect-
edness of the Internet era. Liben-Nowell [59] shows that at least 2/3 of the friendships
in an online social network are determined by the users’ locations. Scellato [86] analyzes
the data collected from a location-based social networking system (Foursquare) and finds
that 1) about 40 % of the connections are within 100 km, 2) a strong heterogeneity exists
across users regarding the spatial distances of connections between their social ties and tri-
ads, and 3) gravity models may influence how these social connections are created. Thus,
considering users’ location histories in an LBSN can improve the effectiveness and effi-
ciency of user recommendations. In this section, we summarize the existing work in user
recommendation for location-based social networks, e.g., [48, 56, 105, 118, 120, 136], cat-
egorizing each work by its objective, 1) popular user discovery, 2) friend recommendation,
or 3) community discovery.

Popular user discovery Traditional approaches to popular user discovery [12, 98] find the
opinion leaders in a social networking service by analyzing the node degrees within the
information diffusion networks. In LBSNs, we consider ’popular users’ to be the users with
more knowledge about the locations. Finding experienced users is very important for the
recommender systems in LBSNs as these users can provide high quality location recom-
mendations. Zheng et al. 2009 [136] finds that a user’s traveling experiences are regional,
and a user’s experience is best determined by considering the qualities of the locations in
addition to the number of locations visited. The authors propose a system to identify experi-
enced travelers by applying a HITS inference model over a Tree-Based Hierarchical Graph
of users’ historical trajectories. Ying et al. 2011 [118] extends the previous work and pro-
poses four metrics that are used for analysis on EveryTrail (a website for sharing trips).
They found that users who share more trajectories get more attention from other users, and
users who are popular are more likely to connect to other popular users.
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Friend recommendation Traditional friend recommender systems provide a user with
promising potential friends based on their user profiles [16, 104], the social structure [27],
and the users’ interactions [5, 38, 82]. Location information in can significantly improve the
effectiveness of friend recommendations. The basic intuition is that user location histories
reveal preferences, and thus users with similar location histories have similar preferences
and are more likely to become friends. Several publications investigate the impact of users’
geographical locations on their social relations. For example, a recent study [26] on MyS-
pace data reveals that users’ social connections are highly related to their geographical
distances, i.e. that the users living close to each other are more likely to be friends. More-
over, Backstrom et al. [6] observe that at medium to long-range distances, the probability of
friendship is roughly proportional to the inverse of the distance. However, at shorter ranges,
distance does not play as large a role in determining the likelihood of friendships. Similarly,
Scellato et al. 2011 [87] analyze a large set of data from Gowalla (a location-based social
networking system), from which they find that the link prediction space can be reduced by
15 times by focusing on location-friends and friends-of-friends. Based on this observation,
they propose a link predication model using supervised learning that considers the users’
visited locations. Yu et al. [123] builds a pattern-based heterogeneous information network
to predict connection probabilities using an unsupervised link analysis model. The connec-
tions inside the information network reflect users’ geographical histories as well as their
social relationships. The connection probability and the friend recommendation score are
calculated by a random walk process over the user-location network. Other works, such
as [19], study the relationship between user movement and friendships through an analy-
sis of mobile phone communications and check-ins. The authors discover that users’ short
term periodical movement is irrelevant to social structure, but their long distance movement
significantly affects their social structure.

A related body of research proposes to measure the similarity between two users from
their historical locations and trajectories. Li et al. 2008 [56] present a user similarity algo-
rithm that builds a tree-based hierarchical graph of locations. A user’s detailed trajectory is
abstracted as a set of sequentially visited locations. Based on a sequence matching algorithm
that takes into account location hierarchies, the system finds users with similar traveling
patterns. Xiao et al. [105] extend the user similarity approach by considering the available
semantic information for each location, such as its tags and categories. This allows connec-
tions between users who have different geographic behaviors, e.g., living in different cities,
but share similar semantic behaviors, i.e. they go to the same types of locations. For this
approach, the authors transform users’ trajectories int location histories with category infor-
mation. Similarity scores between users are calculated by matching their maximal traveling
sequences at different spatial granularities. Ye et al. 2010 [120] expand on the use of location
semantic information. Their framework consists of four phases, 1) semantic trajectory trans-
formation, which converts a user trajectory into a sequence of locations with semantic data,
such as parks and schools; 2) maximum semantic trajectory pattern mining, which applies
the sequential pattern mining algorithm to each user’s trajectory to find the most frequent
sequence, 3) semantic similarity measurement, which computes a similarity score between
users maximum semantic trajectories, and 4) potential friend recommendation, which uses
the constructed user similarity matrix to suggest potential friends.

Representative research Zheng et al. 2011 [134] further extends the user similarity mea-
sure framework presented in [56] by considering the sequences of locations at different
spatial granularities. The authors propose a new sequence matching algorithm that divides
the location sequences and considers the popularity of each visited locations separately. The
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newly proposed framework, referred to as a hierarchical-graph-based similarity measure-
ment (HGSM, shown in Fig. 10), is proposed to model each individual’s location history
and measure the similarity between each user. This similarity is based on the users’ location
histories and is measured using three factors, 1) the shared sequence of users’ movements,
i.e. the longer the sequence of similar visitations shared by two users, the more similar the
two users, 2) the baseline popularity of the locations, e.g. two users visiting a location less
traveled might be more correlated than others visiting a popular location, and 3) the hier-
archy of geographic spaces, i.e. the finer the granularity of geographic regions shared by
two individuals, the more similar these two individuals. The system reports a mean of the
precision score at 0.92, which significantly out-performs the conventional cosine similarity
measure.

Community discovery Traditional approaches to community discovery often cluster users
with either spectral clustering [57, 68, 100] or tensor factorization [60] based on the social
structure (see [37] for a detailed survey). With the availability of location information,
community discovery in LBSNs can be extended to discover user communities with simi-
lar location preferences. For example, [48] clusters users based on their traveling patterns,
which are mined from their trajectories. First, the authors extract each user’s frequently
visited locations. They then apply a distance based clustering algorithm to discover com-
munities within the social networks. This computation includes 1) constructing profiles,
consisting of a probability suffix tree (PST) for each user describing the frequency of loca-
tion visits, 2) measuring the distance between profiles, and 3) identifying communities using
a clustering algorithm.

Fig. 10 Hierarchical graph modeling individual location history [56]
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Representative research Xiao et al. 2012 [106] present an example of this line of research.
They hierarchically cluster users into groups by clustering according to the similarity mea-
sure proposed in [105]. Consequently, as depicted in Fig. 11, they can build a hierarchy
of user clusters, where a cluster denotes a group of users sharing some similar interests, at
different levels of similarity. The clusters on the higher layers stand for big communities
in which people share some high-level interests, e.g. sports. The clusters occurring at the
lower layers denote people sharing some narrower interests, e.g. hiking a particular moun-
tain. During the experiments, the authors find that users sharing (1) a ner semantic location,
(2) a longer sequence of locations, and (3) less popular semantic locations would be more
similar to each other

3.3 Activity recommendations

An activity recommendation in an LBSN is an information retrieval operation of one or
more activities that are appropriate for a query location. For example, sightseeing, boating,
and jogging could be recommended for the Olympic Park of Beijing. A list of possible
activities at a location can be obtained directly from user-labeled tags or inferred from users’
location histories and the semantic data attached to each location.

3.3.1 Individual inference-based approaches

A user’s activity at a certain location can be inferred from the user’s geo-tagged social
media data and the POI dataset. For example, Yin et al. 2011 [116] studied the distributions
of some geographical topics (like beach, hiking, and sunset) from the geo-tagged photos
acquired from Flickr. Pozdnoukhov and Kaiser [77] studied a large set of geo-tagged tweets
to explore the spatial-temporal distribution of the topical content. The authors show that
the topics, and thus activities, are often geospatially correlated. Hung et al. 2010 [47] pro-
pose a method to automatically detect activities using the spatial temporal attractiveness
(STPA) of points of interest (POI). By comparing the sub-trajectories contained in each
POI’s STPA, the authors show that most likely activities and their durations can be discov-
ered. The accuracy of this method depends on the POIs and trajectories having accurate
arrival time, duration, spatial accuracy, as well as other background factors. Noulas et al.
[72] also combines with the users communication patterns to infer the urban activity in a
supervised learning framework.

Fig. 11 Hierarchical graph modeling individual location history [106]
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3.3.2 Collaborative learning-based approaches

One shortcoming of individual inference-based approaches is that they have difficulty deal-
ing with data sparsity, which can be a common occurrence in LBSNs as some users may
have a limited location history and some locations may receive few visitors. An alterna-
tive approach based on collaborative learning uses information from all users to discover
activities. This idea was first proposed in [129], which extracts the location semantics from
GPS data and uses it in conjunction with user profile data to identify activities. The sys-
tem exploits the connections between the user activities and profiles in a joint learning
process. Further, Zheng et al. 2010 [127] propose a new model for location and activ-
ity histories using a user-location-activity rating tensor. Their system uses this model to
provide location-specific activity recommendations. Zheng et al. [128] proposes a new algo-
rithm that uses a ranking-based collective tensor and matrix factorization model. Separately,
[75] extends the previous work by using the Higher Order Singular Value Decomposition
(HOSVD) technique to perform dimensionality reduction and semantic analysis. As more
data is accumulated by their system, it uses incremental solutions to update a tensor that
includes users, locations and activities.

Representative research Zheng et al. [127] provides location and activity recommendations
in LBSNs to answer two questions for the tourists, 1) where to go for activities such as
sightseeing or dining in a large city and 2) what activities are available at specific locations,
e.g. if someone visits the Bird’s Nest in Beijing Olympic park, what can they do there? The
major challenge is due to data sparsity, as users in the system have very limited histories. To
this end, the authors propose a collaborative-based approach to extract the features for the
locations. Three matrices are constructed as the data model, as shown in Fig. 12:

Location-activity matrix. A user can log an activity in order to associate it with a point
in a trajectory. For example, in Foursquare, users can associate content with venues to
share with their friends. The specification of both activity and location in this social
media enables the authors to study the correlation between locations and activities and to
construct a location-activity matrix. Ideally, the activities associated with a location can
be discovered from the location-activity matrix. However, the matrix is typically very
sparse as the amount of user-added content is dwarfed by the number of locations. To
address this, the paper uses the location-feature and activity-activity matrices to infer
missing items in the location-activity matrix, as shown in Fig. 12.

Location-feature matrix. This matrix connects locations and categories (such as restau-
rants, cafes, and bars) based on the intuition that locations of the same category are likely
to have the same activity possibilities. In this matrix, a location may include multiple
categories (or features). For example, a mall would include shops, movie theaters, and
cafes. The matrix is built from a POI database, in which each POI is associated with a
set of properties such as, name, address, GPS coordinates, and categories.

Fig. 12 Collaborative location-activity leaning model [127]
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Activity-activity matrix. This matrix models the correlations between different activities.
From this, the authors infer the likelihood of an activity being performed at a location
given that a user has performed some other activity. The paper suggests two ways to
determine these correlations, (1) by mining the user-created content and (2) by using the
number of search engine results for the activity terms (if the user-content is insufficient).

After the system constructs the three matrices, a filtering approach is applied to train
the location-activity recommender system using collective matrix factorization [91]. An
objective function, shown in Eq. 8, is defined to infer the missing values. This function is
iteratively minimized using gradient descent.

L(U, V,W) = 1

2
‖ I ◦ (X − UV T )‖2

F + λ1

2
‖ Y − UWT ‖2

F + λ2

2
‖ Z − V V T ‖2

F

+λ3

2

(
‖ U‖2

F + ‖ V ‖2
F + ‖ W‖2

F

)
(8)

Where ‖ · ‖F denotes the Frobenius norm. I is an indicator matrix with its entry Iij = 0
if Xij is missing, Iij = 1 otherwise. The operator “◦” denotes the entry-wise product. As
shown in Fig. 12, the authors propagate the information among Xm×n, Ym×l and Zn×n by
requiring the matrices to share the low-rank matrices Um×k and Vn×k . The first three terms
in Eq. 8 control the loss in matrix factorization, and the last term controls the regularization
over the factorized matrices to prevent over-fitting. From the final location-activity matrix,
the top k values are suggested as activities for thelocation.

One limitation of the proposed activity recommendation approach is that it can not
provide personalized recommendations for the users that take into account each user’s
preferences. Therefore, [126] extends the approach to create a personalized activity rec-
ommender system which includes user-user and user-location matrices. Specifically, the
authors model the user-location-activity tensor A under the factorization framework and use
additional information to address the data sparsity issue. Figure 13 illustrates the new tensor
model. Data scarcity results in missing entries in tensor A that must be filled. In addition
to the location-features, activity-feature, and activity-activity matrices used in the previous
system, the matrix B ∈ R

m×m, which encodes the user-user similarities, and the matrix
E ∈ R

m×n, which models the user’s location visiting preferences, are added to the com-
putation. Finally, to fill the entries in tensor A, model-based methods are applied [91, 92]
to decompose the tensor A with respect to each tensor entity.

Fig. 13 Personalized Collaborative location-activity leaning model [127]
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3.4 Social media recommendations

Social media recommendation aims to provide users with suggestions of photos, videos,
or other web content they might like. Using location information in LBSNs can improve
both the effectiveness and efficiency of traditional social media recommendations. Several
works in spatial keyword searching for web content show the effectiveness of this pairing,
e.g., [10, 17, 84, 124].

Mokbel et al. [69] analyzes the rating data from MovieLens [70] and finds that people at
different locations have different preferences. For example, users from Minnesota are more
interested in crime and war movies, while users from Florida are more interested in fantasy
and animation movies. Location-aware image ranking algorithms have been proposed to
increase the relevance of the search results, e.g., [3, 50]. Silva and Martins [90] improves the
quality of the image tags using a recommender system to automatically infer and suggest
candidate location tags. Daly and Geyer [23] discovers events using both social and location
information. Hu and Ester [46] propose a topic model that considering the spatial and textual
aspects of the user’s post and build a spatial topic model to capture the relation between the
user’s location and interests.

The efficiency of recommender systems can be significantly improved by using loca-
tion data to prune out irrelevant information. Scellato et al. [85] improves the efficiency
of content delivery networks using a novel caching mechanism based on geographic
location. Sandholm and Ung [83] builds a real-time recommender system for online
web content using a collaborative filtering method to make more diverse and person-
alized recommendations within a geographical area. Levandoski et al. [55] proposes a
novel location-aware recommendation framework, LARS, which considers the influences
of the spatial ratings and spatial users in the location-aware recommendations. In [84],
the authors further extend the viral marketing model in a location-based social network,
where they consider the user opinion, spatial distance and the social influences to rec-
ommend a best set of customers to the venue owners that may maximize the potential
profit.

4 Categorization by methodology

Although traditional recommendation systems have been successful by using community
opinions, e.g., inventories in Amazon [61] and news from Google [24], incorporating
location information requires novel approaches. In this section, we categorize the major
methodologies used by recommendation systems in location-based social networks as being
based on: 1) content, 2) link analysis, or 3) collaborative filtering.

4.1 Content-based recommendations

Content-based recommendation systems, such as [76, 80], match user preferences, discov-
ered from users’ profiles, with features extracted from locations, such as tags and categories,
to make recommendations. These systems require accurate and structured information for
both the user profiles and the location features to make high quality recommendations.

The major advantages of the content-based approach that such a system is robust against
the cold start problem for both new users and locations. As long as the newly added user
or location has the appropriate descriptive content, they can be handled effectively. How-
ever, content-based recommendation systems have many drawbacks in regard to LBSNs:
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1) content-based recommendation systems do not consider the aggregated community
opinions (inferred from users), which may result low quality recommendations, and 2)
content-based recommendation systems require that the structured information for both
users and locations be created and maintained, which can be costly, especially in LBSNs
in which the majority of the contents (i.e., user profiles and location tags) are generated by
the users.

4.2 Link analysis-based recommendations

Link analysis algorithms, e.g., PageRank [74] and Hypertext Induced Topic Search
(HITS) [14, 51], are widely used to rank the web pages. These algorithms extract high
quality nodes from a complex network by analyzing the structure. In LBSNs, there are inter-
connected networks of different types, e.g., user-user, user-location, and location-location
networks. Zheng et al. [136] extends the HITS algorithm for discovering experienced users
and interesting locations in an LBSN. In their system, each location is assigned a popularity
score, and each user is assigned a hub score, which indicates their travel expertise. Based
on a mutually reinforcing relationship, a ranking of expert users and interesting locations is
computed. Similarly, [81] extends a random walk-based link analysis algorithm to provide
location recommendation.

The advantages of link analysis-based methodologies are that 1) they take into account
the user’s experiences when making recommendations and amplify ratings from experi-
enced users, and 2) they are robust against the cold start problem. However, they have
a major drawback: they can only provide generic recommendations for all users, which
overlooks users’ personal preferences.

4.3 Collaborative filtering-based recommendations

Collaborative filtering (CF) is widely used in conventional recommendation systems [1].
The intuition in extending the CF model for recommendations in LBSNs is that a user is
more likely to visit a location if it is preferred by similar users. The CF approach used
by recommender systems in LBSNs consists of three processes: 1) candidate selection,
2) similarity inference, and 3) recommendation score predication.

Candidate selections The first step of CF-based recommendation systems is to select a
subset of candidate nodes to reduce the computational overhead. The traditional CF-based
recommendation algorithms use the most similar users (or locations, activities, etc.) as the
candidates. CF-based recommender systems in LBSNs can also use geographic bounds and
associations to constrain the candidate selection process. A spatial range can be computed to
prune candidate locations, e.g., [20]. Horozov et al. [45] selects candidate users by consid-
ering only individuals who live near the user’s querying location. Non-geographic criteria
can also be used. In [111], the authors select candidates by considering user preference
and social influence, but also geographic influence modeled as a power-law probabilistic
model.

Similarity inferences Similarities between users (or locations, activities, etc.) are inferred
from users’ ratings and location histories in LBSNs. The traditional CF models can be
divided into two subgroups: 1) user-based models, such as [44], that use similarity measures
between each pair of users; and 2) item-based models, such as [53], that use similarity mea-
sures between each pair of items (media content, activities, etc.). The following equation
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demonstrates a simple user similarity computation for user u and u′ using the Cosine
correlation function in a user-based CF model:

UserSim(u, u′) =
∑

o∈O r(o, u) × r(o, u′)
√∑

o∈O r(o, u)2
√∑

o∈O r(o, u′)2
(9)

where r(o, u) is the rating user u gives to each object o in the set of all objects O. Many
of the existing recommendation systems in LBSNs, e.g., [20, 25, 45, 111], provide location
recommendations based on the distribution of user’s ratings over their visited locations using
the above equation.

Similarity inference between users (and locations etc.) can also be done by analyzing the
pattern of location co-visitation. Recently, systems have been proposed that use the number
of visitations (e.g., tips and check-ins) at locations as an implicit rating of the location,
e.g., [89, 95]. Location similarity can also be captured using sequential relations [56] or
semantic similarities [105].

Recommendation score predication Finally, CF systems predict a recommendation score
for each object oi (locations, social media, etc.) in the candidate set. These scores are cal-
culated from ratings given by the set of users (U ) and the similarity measures between
individual users. The following equation gives an example of a recommendation score
computation:

RecScore(oi, u) =
∑

uj ∈U ′ UserSim(u, uj ) × r(oi, uj )
∑

uj ∈U ′:r(oi ,uj )>0 |UserSim(u, uj )| (10)

The advantages of the collaborative filtering models are that 1) they do not need to main-
tain well structured descriptions of items (locations, activities, etc.) or users, and 2) they take
advantage of community opinions, which provide high quality recommendations. However,
CF models also suffers from several drawbacks: 1) when data is sparse, e.g. the number
of user ratings is low, the user-item (location, etc.) rating matrix is very sparse and the
collaborative filtering model fails to make effective recommendations; 2) due to the large
number of users and items in the systems, the similarity model construction process is very
time consuming, presenting a scalability challenge that is exacerbated by the rapid growth
and evolution of LBSNs, and 3) the CF model deals poorly with the cold start problem,
providing recommendations for new users or new items in the system.

5 Categorization by data sources

In this section, we summarize the different types of data sources used in recommender
systems for LBSNs, including 1) user profiles, 2) user online histories, and 3) user location
histories.

5.1 User profiles

As in the conventional social networks, LBSN users maintain profiles that may include
demographic data, interests, and preferences. Such profile information is used by many
content-based recommender systems, e.g., [76], to recommend locations based on the
location’s categories, user generated tags, etc. Other research, e.g. [109, 110], focuses
on improving the accuracy of the location tags and categories by extracting user activity
patterns for each location.
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5.2 User online histories

Users’ online histories come in three main classes, user ratings, user interaction patterns,
and user search histories. Users in LBSNs may leave explicit ratings for locations to express
their opinions, just as they can in traditional recommender systems. User ratings in LBSNs
are associated with locations and can be used to find similar users or similar locations,
e.g., [20, 45, 111]. User interaction patterns in LBSNs include user tags and commenting
patterns. The user interaction patterns are used for friend recommendation and community
discovery systems, e.g. as in [38, 104]. User search histories include map browsing histories
and spatial searching logs. By accumulating such information, recommender systems can
estimate the community’s knowledge and preferences, e.g., [7, 99, 101].

5.3 User location histories

A user location history is a record of a user’s previously visited locations accumulated in an
LBSN, including for example check-in data and trajectories. A user’s location history can
be a more accurate data source to study the user’s behaviors and preferences as it records
where users actually go, rather than what they list as preferences. Location histories can also
be used for friend recommendation. For example, when two users share the location history
sequence or stay similar amounts of time at a same location, it provides evidence that the
users share preferences and interests.

6 Performance evaluation

In this section, we first summarize several popular location-based social networking
datasets. After that, we describe the typical methods used to verify the effectiveness of the
recommendation results.

6.1 Datasets

There are many famous benchmark datasets available, like MovieLens [70] and Netflix [71],
for evaluating the effectiveness and efficiency of the traditional recommendation tech-
niques. There are also several real location-based social networking datasets available from
different online services. In this subsection, we briefly introduce these real-world services,

Table 4 LBSN datasets used in recommendation evaluations

Name Type Statistics

GeoLife [131] GPS trajectory 17,621 trajectories from 182 users.

Brightkite [19] Check-ins & Friendships 4,491,143 check-ins from 58,228 users

Gowalla [19] Check-ins & Friendships 6,442,890 check-ins from 196,591 users

Twitter [18] Geo-tagged Tweets 22,506,721 tweets from 225,098 users

Foursquare 1 [73] Check-ins 12,000,000 check-ins from 679,000 users

Foursquare 2 [8] Check-ins, Friendships, User 325,606 check-ins from 80,606 users

Profiles & Venue Information

Foursquare 3 [33] Check-ins, Friendships, User Three sets of check-ins from 33,596 users

Profiles & Venue Information
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and thendescribe the basic properties/statistics of the datasets. Table 4 provides an overview
of the datasets described in this subsection.

GeoLife [131] This trajectory dataset1 was collected in (Microsoft Research Asia) Geo-
life project by 182 users in a period of over three years. Each data entry is a sequence of
time-stamped points, each of which contains the information of latitude, longitude and
altitude, recorded by different GPS loggers and GPS-phones, and have a variety of sam-
pling rates. This dataset recorded a broad range of users outdoor movements, including
shopping, sightseeing, dining, hiking, and cycling.

BrightKite [19] Brightkite was a location-based social networking website, where the
users were able to ”check in” at places and able to see who has been there before. The
service is not available currently, as it was acquired by Limbo. The dataset2 is collected
by BrightKit public APIs, and consists of a social network 58,228 users and 214,078
relations and a series of users’ check-in histories (total of 4,491,143 check-ins).

Gowalla [19] Gowalla was a location-based social networking website where users share
their locations by check-ins. However, the service is not available currently, as it was
acquired by Facebook in December 2012. This dataset3 is collected by Gowalla public
APIs, including a user friendship network (with 196,591 users and 950,327 relations)
and a total of 6,442,890 check-ins from these users.

Twitter [18] This dataset4 contains 22 million geo-tagged tweets collected via Twitter
APIs. The geo-tagged information was posted from more than 1,200 applications. More
than 53 % of the tweets are from Foursquare, and most of the other tweets are from
Twitter’s applications on mobile platforms like Blackberry, Android, and iPhone. A few
hundred thousands are from other location sharing services like Gowalla, Echofon, and
Gravity.

Foursquare 1 [73] Foursquare5 is a location-based social networking website, where the
users can check-in/comment at the nearby venues. This dataset contains approximately
12,000,000 user check-ins over a period of 111 days, describing the mobility patterns of
more than 679,000 users across about 3 million geo-tagged and categorized venues.

Foursquare 2 [8] This dataset6 contains 221,128 check-ins generated by 49,062 users in
New York City (NYC) and 104,478 check-ins generated by 31,544 users in Los Angeles
(LA). This dataset also includes the detailed information about the venue profiles, like
the name and category information.

Foursquare 3 [33] This dataset7 contains three datasets from Foursquare: a) check-in
history of 18107 users, b) check-in history of 11326 users, and c) 4163 users who live
in the California. Each user in the dataset has the profile, friendship relations, and each
venue contains its category information.

1http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
2http://snap.stanford.edu/data/loc-brightkite.html
3http://snap.stanford.edu/data/loc-gowalla.html
4http://infolab.tamu.edu/data/
5http://www.foursquare.com
6http://research.microsoft.com/en-us/projects/lbsn/default.aspx
7http://www.public.asu.edu/∼hgao16/dataset.html

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/loc-gowalla.html
http://infolab.tamu.edu/data/
http://www.foursquare.com
http://research.microsoft.com/en-us/projects/lbsn/default.aspx
http://www.public.asu.edu/~hgao16/dataset.html
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6.2 Evaluation methods

recommender systems in LBSNs have typically used two methods to evaluate the effective-
ness of their recommendations, 1) user studies and 2) precision and recall ratios.

User studies To conduct a user study of a recommender system, the researchers invite mul-
tiple subjects to use the recommender system and evaluate its performance, e.g., [127].
For each recommendation task, the subjects need to evaluate the top-k recommendations
suggested by the recommendation system.

To create a baseline for evaluation, researchers aggregate all the feedback provided by the
subjects to create an ideal ranking list. As recommendations are based on result rankings, the
normalized discounted cumulative gain (nDCG) [66] is used to measure the effectiveness of
the recommendation list. nDCG is also commonly used in information retrieval to measure
search engine performance. A higher nDCG value means that more relevant items appear
first in the results list.

Precision and recall ratios Precision and recall ratios are also used to evaluate the effec-
tiveness of recommendations in LBSNs, e.g., [8, 112]. To use this evaluation method, a
user’s location history is divided into two parts, 1) the location history generated within
a query area, which is used as ground truth, and 2) the rest of the user’s location history,
which is used as a training set to learn the user’s preferences and build the recommendation
model. The system is then evaluated by whether it can suggest those sites within the query-
ing region that the user has actually visited based on the training data (the location history
outside of the query region).

For example, in the left part of Fig. 14, the black dots are the venues the user visited.
A system trained with data outside the query region (the dotted square) recommends the
venues illustrated by the striped dots in the right part of Fig. 14. Using the black dots as
ground truth, recall and precision can be calculated.

precision = number of recovered ground truths

total number of recommendations
(11)

recall = number of recovered ground truths

total number of ground truths
. (12)

This evaluation measurement may be pessimistic as, for example, a user may still prefer
a location even if the user has not yet visited it.

Precision & Recall 

Evaluation

Location 

Recommender

Spatial Range Spatial Range

Spatial 

Range

Ground Truth Locations Recommended Locations

Querying City Querying CityUser 

Preferences

MBR MBR

Fig. 14 Evaluate recommendation using precision and recall ratios [8]
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7 Future work

Although many recommender systems have been proposed in LBSNs, there are still many
open questions and challenges to be addressed. In this section, we summarize potential
research directions to improve the effectiveness and efficiency of recommender systems in
LBSNs.

7.1 Effectiveness of recommendations

To improve their effectiveness, recommender systems need more accurate estimations of
user preferences and social knowledge. Potential paths to achieve this include 1) using
diverse data sources, 2) integrating and hybridizing different types of recommendation
methodologies, and 3) increasing context awareness.

Diverse data sources Most recommender systems in LBSNs currently use only one type of
the data source to make recommendations. However, there are many different types data in
LBSNs, e.g., users’ friendships, online interactions, and user location histories. By consid-
ering more diversified data sources, more effective recommendations can be provided. For
instance, the user online interactions, social structures, and location histories are all very
relevant to friend recommendation. If two users have more online interactions, are close in
the social structure, and have overlapped location histories, these users are likely to be com-
patible. A friend recommender system that can consider all these factors will make higher
quality friend recommendations. In addition, other data sources outside LBSNs, such as
POIs, road networks, and traffic conditions, can also be considered in the recommendation.
fusing the knowledge from multiple heterogeneous data sources into a recommendation
system is also a challenge [130].

Hybrid methodologies The recommendation methodologies used in the existing recom-
mender systems each have their own drawbacks. For example, in collaborative filtering
based recommender systems, data sparsity and cold starts are challenging problems. Link
analysis-based recommender systems avoid these problems, but only provide generic
recommendations that ignore users’ personal preferences. By integrating CF and link
analysis-based techniques, a hybrid recommender system could overcome the weaknesses
of both.

Context awareness Current recommender systems in LBSNs use a user’s history to extract
preferences. However, the user’s context is currently ignored. A context aware recommender
system in LBSNs would need to consider 1) user context, including static attributes like
income, profession, and age, as well as dynamic attributes include current user location,
mood, and status, (e.g., at home or in meeting) and 2) environmental context, includ-
ing information about the surrounding environment, e.g. the current time, weather, traffic
conditions, events, etc.

7.2 Efficiency of recommendations

Recommendations in LBSNs can be computationally costly, especially given the frequency
with which users add new location data and content.

User mobility Users in LBSNs interact with the services using mobile devices and want up-
to-date recommendations based on their current location. However, processing continuous
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recommendation requests as multiple individual requests is inefficient as many redun-
dant computations are undertaken between the consecutive recommendation queries. To
address this, more advanced recommendation algorithms are required that leverage prior
computations to reduce the cost of continuous recommendation requests.

Frequent user updates Users in LBSNs can be very active. They visit many locations over
short time spans, which adds information related to their preferences at a high rate. It is very
inefficient to re-compute the user preferences and user similarities every time a user under-
takes a new activity. As a result, new recommendation techniques are required to efficiently
address the update frequency in LBSNs.

8 Conclusion

Motivated by the prevalence of location-based social networks and the importance of rec-
ommender systems, we have provided a systematic survey of the related recent research. We
studied over 60 papers published in the last five years, including but not limited to KDD,
WWW, RecSys, UbiComp, ACM SIGSPATIAL LBSN, ACM TIST, and ACM TWEB. We
provided categorizations of existing systems in regard to their data sources, their methodolo-
gies, and their recommendation objective. This survey presents a panorama of this research
with a balanced depth and scope. Further, this survey serves as a tutorial, introducing the
concepts, unique properties, challenges, representative solutions and systems, evaluation
methods, and future work for recommender systems in LBSNs.
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