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Origins
Leonhard Euler--bridges of Konigsberg
G. Yule—preferential attachment
Kermack, McKendrick—epidemic model
Paul Erdos--discrete mathematics, Erdos-Renyi algorithm
Stanley Milgram—small-world network

Duncan Watts—sparse networks in the physical world

Steven Strogatz—network structure on complex adaptive
systems

Albert-Laszlo Barabasi—scale-free networks, nonrando%
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Principles of Network Science
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Set-theoretic Definition

® A graph G =[N,Lf] is a 3-tuple consisting of a set of
nodes N, a set of links L, and a mapping function f:
L—N % N, which maps links into pairs of node

G = [N,L,f] 1s a graph composed of three sets:
N = [vy,v2,...,0,] are nodes; n = |N| 1s the number of nodes 1in N.
L =ley,es,....e,] are links; m = |L| 1s the number of links in L.

f: L — N x N maps links onto node pairs.

® Nondirectional link

° Mapping function &?ez \@ @'\?ez \@
(a) (b)

® Directional link
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Node Degree and Hub

® Node degree

® The number of links (directed or undirected) connecting a
node v to the graph is called the degree of the node

® When the graph is directed

® The out-degree of a node is equal to the number of outward-
directed links

® The in-degree is equal to the number of inward-directed links

® Hub

® The hub of a grapﬁuig ;h;lg\x?;ﬁﬁﬁzt\vs?e largest degree

& ,i .
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f=le1:v2 ~ vy, er:v3 ~ vy]

(a) (b)

dlvy)) =d, =1 in_d(vy) =1n.d; =1

out_d(v;) = out_.d; =0
d(vy) =d, =12 in_d(vs) = in.ds> = 0

d(vy) =d3 =3 out_d(v,) = out_d, = 2
in_d(v3) = in_d3 =1
out_d(v3) = out_.d3; =0

V, is the hub
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€2
® Path e €s
® A path is a sequence of
nodes in G e
o

The length of a path is equal to the number of links (hops) between
starting and ending nodes of the path

® The shortest path is used as the path connecting nodes u and v. It is also
called the direct path between two nodes.
® The average path length of G is equal to the average over all shortest
paths
® Circuit

® A path that begins and ends with the same node is called a circuit ;@
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(b)
¢ Connectedness

® Undirected graph G is strongly connected if every node v is
reachable along a path from every other node v, 7 v, for j
=1,2,...,i-Il,i+ I, , N.

®

Weakly connected!?

® Component

® A graph G has components G, and G, if no (undirected) path
exists from any node of G, to any node of G, ,@
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Diameter and Radius

® Diameter

® The longest path between any two nodes in a graph G is called
the diameter of G

® Radius

® The longest path from a node u to all other nodes of a

connected graph be defined as the radius of node u

The largest radius over all nodes is the graph’s diameter

@4» €3 Node Radius (Node)

2 hops

€s s 2 2 hops
3 3 hops
€4 Radius(u) = maximum,-{minimum,-{pathj(u,-,v,-)}} '@
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Centrality, Betweenness and
Closesness

® Centrality
® The center of the graph is the node with
the smallest radius \®

® Betweenness

® Betweenness of node v is the number of Node Betweenness Closeness
paths from all nodes (except v) to all otl; 6 0
nodes that must pass through 2 6 4
node v 3 0 0
4 2 0
¢ Closesness Measures of the power of an intermediary!
°

Closeness of node v is the number of
direct paths from all nodes to all other 1@
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Questions

If u is connected to v, and v is connected to w, then is u
connected to w!

s it possible for a graph to contain multiple paths
connecting nodes?

s it true that there is no node farther away from all other
nodes than the graph’s diameter?

Under what conditions would closeness not be a perfect
measure of an intermediary’s power over others!?

@
n ‘ N\
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Matrix Algebra Definition

® Connection matrix

® The connection matrix of G, C(G) is a mapping function f
expressed as a square matrix, where

® rows correspond to tail nodes
® columns correspond to head nodes
() _ . .y _ . .
¢; = kifv,~v,or ¢;; = 0 otherwise. (i, j) = ([1,n], [I,n])
® kis the number of links that connert v ~v =
U] 0 1 0 0O 1 O
%92 @ " 62 CO=_ 10 17 |1 o1
& \@ e, \® bz 0 1 0 0 1 0
by U2 U3
, U1 O 0 O O O 0
=1 0 1T |1 o
. . 55 0 0 0 000 @
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Adjacency Matrix

® Adjacency matrix

® The adjacency matrix A ignores duplicate links between node

pairs
. j— 1 ~~ — . o B —
a; = | if v, v,ora; = 0 otherwise. (i, j) = ([1,n], [1,n])
vy, O O 0O 2 O 0 0 2
€3 cCG)=v, 1 0 1 0=|1010
vz O 1 1 0 O 1 1 0
€1 e, vy 0 0 0 0 0 0 0 0
e U U 1% v
e 6 1 2 3 4
2 vy, O O O 1 0O 0 0 1
@ AG) =1, 1 0 1 0=]10 10
) 0O 1 1 O
e vz O 1 1 O
) vy, O O O O 0O 0 O O
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Laplacian Matrix

® Laplacian matrix

® The Laplacian matrix of graph G, namely, L(G), is a combination

of the connection matrix and (diagonal) degree matrix: L = C
- D, where D is a diagonal matrix and C is the connection

matrix
a degree(v-) ifj=1i

i = otherwise

Uy U U3 Uy
-2 | 0 ] -2 | 0 |
@ L(G) = 1 | —3 | ] = 1 -3 | |
v 0 1 —1 0 0 1 -1 0
U4 | | 0 -2 | | 0 -2

° 0
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Path Matrix

® Path matrix

® Path matrix P(G) stores the number of hops along the direct
path between all node pairs in a graph

® P(G) enumerates the lengths of shortest paths among all node

NnAIre
/%\ vl
P = (%)

=
<
\)
<
[O8)
<
AN

O 1 2 1 0O 1 2 1
1 0o 1 1 =11 011
vz 2 1 0 2 2 1 0 2
vy 11 2 0 I 1 2 0

® letDhe the size of the longest path — the diameter of G

P = mlnk_ 1{kA } @
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Euler Path & Euler Circuit

® A path that returns to its starting
point is called a circuit

® A path that traverses all links of a 5

; e
)
graph is called an Euler path
® A Euler circuit is a Euler path that % 0
begins and ends with the same
€1
E €3

node

‘ E
[ L) , s v
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Spectral Properties of Graphs

® Adjacency matrix

® Spectral decomposition

® If A is a diagonal matrix, then A may be decomposed as A =

A I where I is the identity matrix and A is a matrix containing

eigenvalues
At O 0
0O A O
A= .
O O O
0 0 A,
® det[A- AI]=0
® Eigenvalues are the diagonals A , A, ..., A @
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Spectral Radius

® Spectral radius

® The spectral radius o (G) is the largest nontrivial eigenvalue of
det [A(G) — Al =0

® Ais the adjacency matrix and I is the identity matrix

01 0 1 A1 0 1
10 1 1 I oA 11
01 0 ol=d o 1 )\ o |=0
1 1.0 0 1 0 —A

Expanding the determinant along column 3 using Laplace’s

® How to compute?
expansion formula:

A — AN =20+ 1 =0

The roots are { —1.48, —1.0,0.311,2.17},s0p = 2.17.

Ny %
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Type of Graphs

® Line

® The mapping function of a line graph

defines a linear sequence of nodes,
each connected to a successor node

The first and last nodes have degree
I

All intermediate nodes have degree

® fline :[ei:UiNUH-]]; [ =12,....n—1
baroell

Nzhcad Nztail
./_\\ ,/\
D D
) J —
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Type of Graphs

® Ring

® Similar to line graph, but the ending
node in the chain or sequence
connects to the starting node
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Average Path Length

® The APL for a line and ring graph of n nodes

® Analyze the path matrix for two cases: even and odd n.

® Sum all nonzero elements of the path matrix (denoted as T).

® In the case of a line graph, T is the sum of off-diagonal elements.

® In the case of the ring network, T is the sum of the rows of the path matrix.

® The number of nonzero elements of the symmetric path matrix is equal

to n(n-1)

® Average path length is T/ n(n-1).

avg_path_length(line) ~ 0(%)

avg_path_length(ring) ~ O(g)
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Average Path Length

® Line graph

n—1 n—I1 n—I
Matrix total =T = 2 Z {liln — 1)} = 2[11 Z [ — Z i{|

i=1 = =1
n—I1 y n—I1 ) . '
v . o nn—1) s (nn—1)2n —1))
Given Zz =——=— and Zz = 6
i=1 - i=1

5 nn—0H2n—1) n—2n—1) (1 — .
IT'=n"n—1)— 2 = n(n — l)[ 3 ] — n(n l:'” + 11

avg_path_length = — - = nt’) or O('—z): n == 1 |Line]
(n(n—1)) 3 3
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Average Path Length

Ring graph

(II./"2J—|

. n
row _total = 2 E 1+ (;): even n

=1 -

(n—1)/2

2 Z i odd n

i=1

There are n rows, so T = n(row_total ). But the average path length is 7/(n(n— 1)), so

(n(row_total)) row _total

avg_path_length =

nn—1) -1
(n/‘."’_)2 n’
= = s even n
n—1) AEHn-—1)
(n+1)
= :oddn

Assuming n >> |, so that n/(n—1) ~ 1, the average path length of a ring is

avg_path_length ~ ()(i—:) n == 1 |Ring]
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Random Graph

® A random graph is constructed by
randomly selecting a tail, then randomly
selecting a head node, and then
connecting them with a link

® The mapping function uses random

numbers r, and r,, to select nodes:

Jrandom = [e,- “Ulgrin ~ U lrhn]:

i = 1.2.....m. where m = number of links

® Sample r from a uniform distribution
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Structured Versus Random

® Structured graphs (regular graphs)

® The mapping function establishes some kind of pattern (visually
or in the adjacency matrix)

Ring graph, line graph, complete graph...
® Unstructured graphs (random graphs)
® No discernible pattern appears
® Between structured graph and unstructured graph

® k-Regular Graphs

® Each node has k degree exactly
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# links _
(n— 1)) ~ (n(n—1))

Density(G) =
("3

Figure k-Regular graphs: (a) 2-regular graph nodes connect to two sequential successors;
(b) 3-regular graph nodes connect to three sequential successors; (c) a complete graph
links every node to every other node.
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Topological Structure

® Degree sequence

® ¢g=][d, d, ..., d] define a degree sequence containing the
degree values of all n nodes in G

7

® Degree sequence distribution ’ % ke
° g’ = [hl) hZ: ceey hmax_d] where 8 0
h, = fraction of nodes with degree 1

h> = fraction of nodes with degree 2

hmax ¢ = fraction of nodes with max_d = maximum degree (hub) of G

3 1
g = [5.,3.3.3] g = |:0,0,—,O, —] = [0,0,0.75,0.25]

474 :
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Topological Structure

® Scale-free topology

® Poisson process: the probability of obtaining exactly k
successes in m trials is given by the
binomial distribution

B(k.m) = C(’Z )Pk(l —p) ¢ X

B(k,m) is approximated by the Poisson distribution

|
|

by replacing p with (A/m), in B(k.m), and

letting m grow without bound:

|
|
IP%
AN
\.\
/ 3%
/ ;
5% 0% \I_'H«.' ;.j_jnvu [
2 3 4 5 6 14 | 6

01 2 3 4 56 7 8 9 0o 1 2 7 8 9 10111213 141516
Hik I exp(—A) (a) (b)
( ) _ k| Figure Degree histogram for (a) a random graph and (b) a scale-free graph. One line
) graph shows a Poisson distribution, and the other line graph shows a power-law fit to the
where A = mean node degree; kK = node degree. histogram data.
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Topological Structure

® Small-world topology

® A small-world graph, G, is a graph with relatively small average
path length, and a relatively high cluster coefficient, CC(G).

® For a node u, suppose that the neighbors share c links, then

the cluster coefficient of node u, Cc(u), is

2c
/,\ Celu) = degree(u)(degree(u) — 1)

24) 8 2 " Ce(r) 2
:g : 3:: CC("‘)_l(z):lz:S CCG) =) 620)25

The Chinese University of Hong Kong, CMSC5733 Social Computing, Irwin King




TABLE 1 Some Common Examples of Small-World Networks
Small-World Cluster Random Cluster

Graph Size, n Coefficient Coefficient
World Wide Web 153,127 0.11 0.00023
Internet 6,209 0.30 0.00100
Actors in same movie 225,226 0.79 0.00027
Coauthor scientific papers 52,909 0.43 0.00018
Western US power grid 4,941 0.08 0.00200

C. elegans neural network 282 0.28 0.05000
Foodweb (ecological chain) 134 0.22 0.06000

TABLE 2 Comparison of Some Properties of Graphs (n = 100, m = 200),

and p = 5% for the Small-World Graph

Property Random Scale-Free Small-World 2-Regular
Hub degree 10 21 10 4
Average degree 4.0 3.94 4.0 -+
Distribution Poisson Power Poisson-like Delta(4)
Average path

length 3.38 3.08 4.0 12.88
Diameter 7 5 9 25
Cluster coefficient 0.045 0.156 0.544 0.500
Entropy 2.9 2.3 0.9 0.0

(p = 5% means only 5% of the Small-World Graph links are random, while 95% are regular)
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Calculate Cluster Coefficients

es € ey ©6
€1 es = e,

(a) ° (b)
A\ 6
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REGULAR NETWORKS
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Link Efficiency

® Link Efficiency

® The tradeoff between number of links and number of hops in

the average path length of a network:
E(G) = m—avg path length(G)
m

where m is the number of links in G

® Let t be the total number of paths and r;; the length of the
direct path between node v. and v.

avg_path_length = Z Z

® A network is scalable if link efficiency approaches 100% as
network size n approaches infinity @
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TABLE 1 Link Efficiency of Several Network Classes, n > 1
Network
Class Efficiency Example
Li o Asymptotic 1o 2
Syn > 10 %
ine 3= D) symptotic to 5
Ri on— | Asymptotic to 3
ing symptotic to 3
= 4n ymp 4
2log, (n+1)—6
Binary tree | — & +l )~ 0 n= 127, m= 126, E=93.4%
n—
1
Toroid | — n= 100, m = 200, E=97.5%
4y/n
Random 98.31% n = 100, m = 200, avg_path_length = 3.38
I
Hypercube I — l n= 128, m=448, E=99.2%
n—
— 1
Complete ~1.0 m=n & 5 avg_path_length = 1

P
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Binary Tree Network

® Aline graph is not link-efficient

The number of links grows as fast as the number of hops in its
average path length

® The binary tree is more link-efficient

® A binary tree is defined recursively

The root node, has degree 2 and connects two subtrees,
which in turn connect to two more subtrees, and so forth

This recursion ends with a set of nodes called the leaf nodes,
which have degree |

As it grows, its average path length grows much slower thar@
|ts numbﬁﬁh@ﬁellbﬂ\k[Sty of Hong Kong, CMSC5733 Social Computing, Irwin King hpe



Binary Tree Network

® Balanced binary tree
® A balanced binary tree contains k levels and exactly
2k~ 1 nodes, m = (n — 1) links, for k =1,2, . . ..
® Unbalanced binary tree

® An unbalanced binary tree contains less than 2k 2 | nodes

(b)
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Properties

® Center
® The root node with radius r = k — |

® the leaf nodes lie at the extreme diameter, which is D = 2(k —

|) hops
® Diameter
® Grows logarithmic with size n because k = O(log,(n))

® Average path length

® Also grows logarithmically, is proportional to its diameter

’@
\‘ s A
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Binary Tree Average Path Length v. k

18
16 = = *Diameter-4
14 Approximation
"‘55,,12 ® avg path length
2 10
S
Sl 8
o
® 6
4
2_
O } Ll T L] L] 1] 1] A L]
o 1 2 3 4 5 6 7 8 9 10 11 12

Figure Path length and (D — 4) versus level k for a balanced binary tree with n = 25 — 1

nodes, m = n — 1 links, and diameter = D = 2(k — 1).

Average path length and (D — 4) merge for high values of k. Thus, average path length
1s asymptotic to (D — 4):

avg_path_length(balanced binary tree) = (D —4); k > |
D =2(k — 1),s0 avg_path_length =2k — 6 = 2log,(n+ 1) — 6
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® For smaller values of k, say, k < 9, the approximation
breaks down

® The nonlinear portion of the approximation diminishes

exponentially as k increases — reaching zero as (D — 4)
dominates:
avg_path_length = (D — 4) +

I + exp(BKk)

where A =10.67, B = 0.45 gives the best fit.

® Substituting D = 2(k — 1) and k =log,(n+1)

| 10.67
avg_path_length = 2log,(n 4+ 1) — 6 +

I 4+ exp(0.45 log,(n + 1))
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Link Efficiency

® A balanced binary tree has m = n — | links

® Link efficiency of a “large” balanced binary tree is:

D—4  @Qk—1)—4

E(balanced binary tree) = 1 —
| m n—1

k>9

2log,(n+ 1) — 6
n— 1

E=1

, because kK =log,(n+ 1)

® Assuminec k >> |

Zl 9 1
E(balanced binary tree) = 1 — 0"“(”): k>9
n

® Binary tree link efficiency approaches 100%, as n grows
without bound
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